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Abstract

A third-order Energy Stable Weighted Essentially Non–Oscillatory (ESWENO) fi-
nite difference scheme developed by Yamaleev and Carpenter [1] was proven to
be stable in the energy norm for both continuous and discontinuous solutions of
systems of linear hyperbolic equations. Herein, a systematic approach is presented
that enables “energy stable” modifications for existing WENO schemes of any order.
The technique is demonstrated by developing a one-parameter family of fifth-order
upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are pre-
sented in the appendix. New weight functions are also developed that provide (1)
formal consistency, (2) much faster convergence for smooth solutions with an ar-
bitrary number of vanishing derivatives, and (3) improved resolution near strong
discontinuities.

Key words: high-order finite difference methods, weighted essentially
nonoscillatory schemes, energy estimate, numerical stability, artificial dissipation.

1 Introduction

A new, third-order weighted essentially nonoscillatory scheme (called Energy-
Stable WENO) has recently been proposed and developed by the authors of
the present paper [1]. In reference [1], we prove that the third-order ESWENO
scheme is energy stable, that is, stable in an L2 energy norm, for systems
of linear hyperbolic equations with both continuous and discontinuous solu-
tions. Stability is explicitly achieved (by construction) by requiring that the
ESWENO scheme satisfies a nonlinear summation-by-parts (SBP) condition
at each instant in time. Thus, L2 strict stability is attained without the need
for a total variation bounded (TVB) flux reconstruction or a large-time-step



constraint [2], [3] and [4]. Herein, we generalize and extend the third-order
ESWENO methodology [1] to an arbitrary order of accuracy. Similar to the
third-order ESWENO scheme, the new families of higher order (up to eighth
order) ESWENO schemes are provably stable in the energy norm and retain
the underlying WENO characteristics of the background schemes. Numerical
experiments demonstrate that the new family of ESWENO schemes provides
the design order of accuracy for smooth problems and delivers stable essen-
tially nonoscillatory solutions for problems with strong discontinuities.

Another issue that is addressed in this paper is the consistency of the new
class of ESWENO schemes. The consistency of any WENO-type scheme fully
depends on a proper choice of the weight functions. On one hand, for smooth
solutions the weights should provide a rapid convergence of the WENO scheme
to the corresponding underlying linear scheme. On the other hand, the weights
should effectively bias the stencil away from strong discontinuities. The high-
order upwind-biased WENO schemes with conventional smoothness indicators
that are presented in reference [2] are too dissipative for solving problems with
a large amount of structure in the smooth part of the solution, such as direct
numerical simulations of turbulence, or aeroacoustics[5], [6]. Furthermore, as
has been shown in references [7] and [8], the classical weight functions of the
fifth-order WENO scheme fail to provide the design order of convergence near
smooth extrema, where the first derivative of the solution becomes equal to
zero. New approaches are proposed in references [7] and [8] to improve the
error convergence near the critical points. Although these new weight func-
tions recover the fifth order of convergence of the WENO scheme near smooth
extrema, the problem persists if the first- and second-order derivatives vanish
simultaneously [8]. An attempt to resolve this loss of accuracy is presented in
reference [8]. This proposed resolution provides only a partial remedy for the
problem; the same degeneration in the order of convergence occurs if at least
the first three derivatives become equal to zero. To fully resolve this problem,
we propose new weights to provide faster error convergence than those pre-
sented in reference [8], and impose some constraints on the weight parameters
to guarantee that the WENO and ESWENO schemes are design-order accu-
rate for sufficiently smooth solutions with an arbitrary number of vanishing
derivatives.

This paper is organized as follows. In section 2, energy estimates for the con-
tinuous and corresponding discrete wave equations are presented. In section
3, we present a one-parameter family of fifth-order WENO schemes; one value
of the parameter yields a central scheme that converges with sixth-order ac-
curacy. In section 4, we present a systematic methodology for constructing
ESWENO schemes of any order and demonstrate the methodology by trans-
forming the family of WENO schemes presented in section 3, into a family
of fifth-order ESWENO schemes. In section 5, we analyze the consistency of
the new class of ESWENO schemes and we derive sufficient conditions for the
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weights functions that ensure that the ESWENO schemes are design-order ac-
curate regardless of the number of vanishing derivatives in the solution. The
tuning parameters in the weight functions are also optimized. In section 6, we
present numerical experiments that corroborate our theoretical results. We
summarize and draw conclusions in section 7.

2 Energy Estimates

Consider a linear, scalar wave equation

∂u
∂t

+ ∂f
∂x

= 0, f = au, t ≥ 0, 0 ≤ x ≤ 1,

u(0, x) = u0(x)
(1)

where a is a constant and u0(x) is a bounded piecewise continuous function.
Without loss of generality, assume that a ≥ 0, and further assume that the
problem is periodic on the interval 0 ≤ x ≤ 1. Applying the energy method
to equation (1) leads to

d

dt
‖u‖2

L2
= 0 (2)

where ‖ ·‖L2 is the continuous L2 norm. Thus, the continuous problem defined
in equation (1) is neutrally stable.

We now develop using mimetic techniques (see [1] or [9]) a class of discrete
spatial operators that is neutrally stable or dissipative. The continuous target
operator used for this development is the following singular perturbed wave
equation:

∂u
∂t

+ ∂f
∂x

=
N
∑

n=1
(−1)n−1 ∂n

∂xn

(

µ∂nu
∂xn

)

, f = au, t ≥ 0, 0 ≤ x ≤ 1,

u(0, x) = u0(x) ,
(3)

where µ = µ(u) is a non-negative C∞ function of u. As before, we assume
that equation (3) is subject to periodic boundary conditions. Our goal is to
match each spatial term in equation (3) with an equivalent discrete term that
maintains neutral stability (or dissipates) of the discrete energy norm.

We begin by showing that the terms on the right-hand side of equation (3)
are dissipative thereby ensuring stability. Multiplying equation (3) by u and
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integrating it over the entire domain yields

1

2

d

dt
‖u‖2

L2
+

1

2
au2

∣

∣

∣

∣

1

0
=

N
∑

n=1

1
∫

0

(−1)n−1u
∂n

∂xn

(

µ
∂nu

∂xn

)

dx . (4)

Integrating each term on the right-hand side by parts and accounting for
periodic boundary conditions yields the following energy estimate:

d

dt
‖u‖2

L2
= −2

N
∑

n=1

1
∫

0

µ(u)

(

∂nu

∂xn

)2

dx ≤ 0 . (5)

All the perturbation terms included in equation (3) provide dissipation of
energy.

Turning now to the discrete case, we define a uniform grid xj = j∆x, j = 0, J ,
with ∆x = 1/J . On this grid, we define a flux f̄ = aū and its deriva-
tive f̄x = aūx, where ū = [u(x0, t), . . . , u(xJ , t)]T and ūx = [ux(x0, t), . . . ,
ux(xJ , t)]T are projections of the continuous solution and its derivative onto
the computational grid. Next, we define a pth-order approximation for the
first-order derivative term in equation (1) as

∂f̄

∂x
= Df̄ + O(∆xp) . (6)

Placing a mild restriction on the generality of the derivative operator (see [1]
or [9]), the matrix D can be expressed in the following form:

D = P−1[Q + R] ; Q + QT = 0

R = RT ; vT Rv ≥ 0

P = P T ; vT Pv > 0

(7)

for any real vector v 6= 0. By choosing the matrix R as a discrete analog of
the dissipation operator in equation (3), we have

R =
N
∑

n=1

D1
nΛ[D1

n]T , (8)
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where Λ is a diagonal positive semidefinite matrix and D1 is the difference
matrix

D1 =















. . . 0

−1 1

0
. . .















.

By using the SBP operators [eqs. (6)–(8)], the semi-discrete counterpart of
equation (1) becomes

∂u

∂t
+ P−1Q f = −

N
∑

n=1

P−1D1
nΛ[D1

n]T f , (9)

where f = au, u = [u0(t), u1(t), . . . , uJ(t), ]T is the discrete approximation
of the solution u of equation (1), and Q and Λ are nonlinear matrices (i.e.,
Q = Q(u) and Λ = Λ(u). To show that the above finite-difference scheme is
stable, the energy method is used. Multiplying equation (9) with uT P yields

1

2

d

dt
‖u‖2

P + auT Qu = −a
N
∑

n=1

(

[D1
n]Tu

)T
Λ[D1

n]T u, (10)

where ‖ · ‖P is the P norm (i.e., ‖u‖2
P = uT Pu). Adding equation (10) to its

transpose yields

d

dt
‖u‖2

P + auT
(

Q + QT
)

u = −2a
N
∑

n=1

(

[D1
n]Tu

)T
Λ[D1

n]T u . (11)

If we account for periodic boundary conditions and the skew-symmetry of Q,
then the second term on the left-hand side vanishes, and the energy estimate
becomes

d

dt
‖u‖2

P = −2a
N
∑

n=1

(

[D1
n]Tu

)T
Λ[D1

n]T u ≤ 0 . (12)

The right-hand side of equation (12) is nonpositive because the diagonal ma-
trix Λ is positive semidefinite [vT Λv ≥ 0 for all real v of length (J + 1)] and
a ≥ 0; thus the stability of the finite-difference scheme given by equation (9)
is assured. This result can be summarized in the following theorem:

Theorem 1 The approximation [eq. (9)] of the problem [eq. (1)] is stable if
equations [(6)–(8)] hold.

Remark 2 Despite the fact that the initial boundary value problem [eq. (1)]
is linear, the finite-difference scheme [eq. (9)] constructed for approximation
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of equation (1) is nonlinear, because the matrices Q and Λ (and in principle
P ) are assumed to depend on the discrete solution u.

Remark 3 The only constraints that are imposed on the matrix Q and the
diagonal matrix Λ are the skew-symmetry of the former and positive semidef-
initeness of the later. No other assumptions have been made about a specific
form of the matrices Q and Λ to guarantee the stability of the finite-difference
scheme [eq. (9)].

Remark 4 The discrete operators that are defined by equations [(6)–(8)] are
similar in form to those that are used for conventional SBP operators (See refs.
[9,10]). What is new, however, is the fact that the matrices Q and Λ depend
on u.

SR

SLL

SL

SRR

xj-1xj-2 xj+ 3xj+ 2

xj+ 1/2

xj

fj+ 1/2

S6

xj+ 1

Fig. 1. Extended six-point stencil S6, and corresponding candidate stencils SLL, SL,

SR, and SRR for one-parameter family of fifth-order WENO schemes.

Next, a new one-parameter family of fifth-order WENO schemes is developed,
and then is used as the starting point in the development of a family of “energy-
stable” WENO schemes. Great care is exercised in the developing the WENO
schemes to ensure that design-order accuracy is achieved in the vicinity of
smooth extrema.

3 Fifth- and Sixth-order WENO Schemes

Any conventional high-order WENO finite-difference scheme for the scalar
one-dimensional wave equation (1) can be written in the following semidiscrete
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form:

duj

dt
+

f̂j+ 1
2
− f̂j− 1

2

∆x
= 0. (13)

For the fifth-order WENO scheme that is presented in reference [2], the nu-
merical flux f̂j+ 1

2
is computed as a convex combination of three third-order

fluxes defined on the following three-point stencils: SLL = {xj−2, xj−1, xj},
SL = {xj−1, xj, xj+1}, and SR = {xj, xj+1, xj+2}. (See figure 1.) Note that this
set of stencils is not symmetric with respect to the (j + 1

2
) point; thus, the

fifth-order WENO scheme is biased in the upwind direction. A central WENO
scheme can be constructed from the conventional fifth-order WENO scheme by
including an additional downwind candidate stencil SRR = {xj+1, xj+2, xj+3},
so that the collection of all four stencils is symmetric with respect to point
(j + 1

2
). 1 The WENO flux, constructed in this manner, is given by

f̂j+ 1
2

= wLL
j+1/2f

LL
j+1/2 + wL

j+1/2f
L
j+1/2 + wR

j+1/2f
R
j+1/2 + wRR

j+1/2f
RR
j+1/2, (14)

where f
(r)
j+1/2, r = {LL, L, R, RR} are third-order fluxes defined on these four

stencils:





















fLL(uj+1/2)

fL(uj+1/2)

fR(uj+1/2)

fRR(uj+1/2)





















= 1
6





















2 −7 11 0

−1 5 2

2 5 −1

0 11 −7 2























































f(uj−2)

f(uj−1)

f(uj)

f(uj+1)

f(uj+2)

f(uj+3)



































(15)

and wLL, wL, wR, and wRR are weight functions that are assigned to the
four stencils SLL, SL, SR, and SRR, respectively. The terms wLL, wL , wR ,
and wRR in equation (14) are nonlinear weight functions. These have both
preferred values that are derived from an underlying linear scheme as well as

1 The above approach to constructing central WENO schemes is proposed in refer-
ence [6]. In general, central high-order WENO schemes that are built in this manner,
are unstable when unresolved features or strong discontinuities exist in the compu-
tational domain. The generalized energy-stable methodology presented in the next
section guarantees the stability of the even order approximations while maintaining
their nonoscillatory properties.
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solution-dependent components. The preferred values are given by

dLL = 1
10

− ϕ ; dL = 6
10

− 3ϕ ; dR = 3
10

+ 3ϕ ; dRR = ϕ , (16)

where ϕ is a parameter. The convergence rate of the scheme [eqs. (13)–(16)]
with the preferred values w(r) = d(r) and r = {LL, L, R, RR} is greater than
or equal to 5 for all values of the parameter ϕ in equation (16). For the specific
value ϕc = 1

20
, the fifth-order term vanishes and the convergence rate increases

to 6. The classical fifth-order upwind-biased WENO scheme of Jiang and Shu
is obtained for ϕ = 0.

The weight functions wLL, wL , wR , and wRR needed in equation (14) are
given by

w
(r)

j+ 1
2

= αr
∑

l

αl

, (17)

where

αr = d(r)

(

1 +
τp

ε + β(r)

)

, r = {LL, L, R, RR}, (18)

and ε ≤ O(∆x2). The functions β(r) are the classical smoothness indicators.
[See equation (59) for the general expression.] For fifth-order schemes, they
are given by

βLL = 13
12

(uj−2 − 2uj−1 + uj)
2 + 1

4
(uj−2 − 4uj−1 + 3uj)

2

βL = 13
12

(uj−1 − 2uj + uj+1)
2 + 1

4
(uj−1 − uj+1)

2

βR = 13
12

(uj − 2uj+1 + uj+2)
2 + 1

4
(3uj − 4uj+1 + uj+2)

2

βRR = 13
12

(uj+1 − 2uj+2 + uj+3)
2 + 1

4
(−5uj+1 + 8uj+2 − 3uj+3)

2 .

(19)

The τp also varies with discretization order; the expression for τ5 is given by

τ5 =











(−fj−2 + 5fj−1 − 10fj + 10fj+1 − 5fj+2 + fj+3)
2 , for ϕ 6= 0

(fj−2 − 4fj−1 + 6fj − 4fj+1 + fj+2)
2 , for ϕ = 0

(20)

Expressions for the fourth-, seventh-, and eighth-order WENO schemes appear
in the appendix.
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The WENO mechanics expressed in equations (17)–(20) represents a signif-
icant departure from the mechanics used in the original algorithm by Jiang
and Shu [2]. For example, equation (18) replaces the expression

αr =
d(r)

(ε + β(r))2
(21)

that is used in the weight functions given in reference [2]. Furthermore, ε ≤
O(∆x2) replaces ε = O(10−6) in [2]. Equations (17)–(20) more closely resemble
the weight and smoothness indicators proposed by Borges et al. in [8] There
are differences, however, in how the parameters τp and ε are chosen; differences
motivated by the following observations.

Borges et al.[8] proposes the following function τ̃5:

τ̃5 = |βLL − βR| (22)

and a fixed value for the parameter ε. Although the above weights and smooth-
ness indicators [eqs. (17)–(19)] with the value of τ̃5 given by equation (22) sig-
nificantly outperform the conventional weights of Jiang and Shu [2] for both
continuous and discontinuous solutions, three remaining shortcomings include:

(1) The value of τ̃5 given by equation (22) is not smooth because an absolute
value function is used, which may reduce accuracy at points where βLL−
βR changes sign.

(2) This approach currently does not generalize to WENO schemes with
design orders other than 5. For example, neither τ̃6 = |βLL − βR| nor
τ̃6 = |βLL − βRR| provides the design order of accuracy for the central
sixth-order WENO scheme.

(3) Near critical points where f ′, f ′′, and f ′′′ vanish simultaneously, the mod-
ified weights [eqs. (17)–(19), and (22)] fail to provide the design order of
convergence for the fifth-order WENO scheme if no constraints are im-
posed on the parameter ε other than ε > 0. An example that demonstrates
this property is presented in Section 6.1.

Selecting τ5 in equation (20) to be a quadratic function of the fifth-degree
undivided difference defined on the entire six-point stencil, circumvents the
first, and second drawbacks encountered when using the scheme suggested in
reference [8] . Indeed, τ5 is a C∞ function in its arguments, and can readily be
generalized to WENO schemes of order p by choosing τp to be the pth-degree
undivided difference that is defined on the entire (p + 1)–point stencil. In
contrast to the τ̃5 found in reference [8], which is of order O(∆x5) for smooth
solutions, the proposed function τ5 as given by equation (20) is of order O(∆x8)
and O(∆x10) for ϕ = 0 and ϕ 6= 0, respectively; thus much faster convergence
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of the fifth- and sixth-order WENO schemes to the corresponding underlying
linear schemes is achieved. 2

A remedy for the third shortcoming requires an additional modification to
the approach proposed in reference [8]. Both the fifth- and sixth-order WENO
schemes with the new weights that are given by equations (17–20) are design-
order accurate for smooth solutions, including points at which the first- and
second-order derivatives of the solution vanish simultaneously. However, if
all derivatives up to fourth are equal to zero, then the fifth- and sixth-order
WENO schemes locally become only third-order accurate. To fully resolve this
issue, the constraint ε ≤ O(∆x2) is imposed herein.

Equations (13)–(20) describe a new family of fifth-order WENO schemes. The
primary difference between existing WENO schemes and this new family, is
in the stencil biasing mechanics described by equations (17)–(20). Detailed
theoretical justifications for the choice of τp and ε used in equations (17)–(20)
are presented in sections 5.2, 5.3. There, and again in the results section, it is
shown that these parameters provide fast convergence of the new WENO and
ESWENO schemes to the corresponding underlying linear schemes for smooth
solutions, and deliver improved shock-capturing capabilities near unresolved
features.

4 A General Approach to Constructing High-Order Energy-Stable

Schemes

Algorithm (1) transforms an existing WENO scheme into an ESWENO scheme
that is characterized by the following four properties: 1) a bounded energy
estimate for arbitrary nonsmooth initial data, 2) conservation, 3) design order
accuracy for sufficiently smooth data, and 4) discontinuity (shock) capturing
capabilities that are similar to those of the base WENO scheme.

By construction, algorithm (1) is applicable to 1-D periodic schemes of any
order and produces a modified scheme that automatically satisfies the first and
second properties: bounded energy estimate and conservation (See reference
[1] for details.) Likewise, as shown in the next section, the additional terms
added in the ESWENO formulation do not degrade the formal accuracy of
the original WENO discretization (property three). However, the degree to

2 The conventional fifth-order WENO scheme that corresponds to ϕ = 0, does not
include the downwind stencil SRR; therefore, the fourth-degree undivided difference
built on the available five-point stencil, is included in equation (20). This approach
to handle the narrow stencil encountered with ϕ = 0, also generalizes to other orders
of accuracy.
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Algorithm 1 ( Transformation from WENO to ESWENO)

1: Express the base WENO derivative operator as matrix D.

2: Decompose D into symmetric and skew-symmetric components as D = Dsk + Dsym .

3: Add an artificial dissipation operator Dad such that the modified symmetric matrix

Dsym + Dad is positive semidefinite.

3a: Form the decomposition Dsym =
∑s

i=0[D1
i]Λi[D1

i]
T
,

2s + 1 is the bandwidth of the matrix D.

The existence of this decomposition is established in the appendix.

3b: Modify the diagonal terms of Λi such that they are smoothly positive.

One such approach is

(λ̄i)j,j = 1
2

[√

(λi)2j,j + δ2
i + (λi)j,j

]

(23)

where δi, 0 ≤ i ≤ s are small positive constants that may depend on ∆x.

3c: Form the symmetric, positive semidefinite matrix

Dad = P−1∑s
i=0[D1

i]Λ̄i[D1
i]

T
(24)

4: Form the energy-stable operator

D̄ = D+Dad (25)

which the two formulations differ for unresolved data is not clear. Thus, the
properties of the new ESWENO scheme must be tested to ensure it retains
the desirable properties of the original formulation.

ESWENO Schemes of Fifth- and Sixth-order

We now apply algorithm (1) to the one-parameter family of fifth-order WENO
schemes [eqs. (17)–(20)] for the scalar 1-D wave equation (1) with a ≥ 0.
Combining equation (15) with equation (14) and substituting the resulting

WENO flux f̂j+ 1
2

into equation (13) produces a stencil for the jth grid point

of the form

D5
j,k

= 1
6∆x























0 2wLL
j+1/2

−7wLL
j+1/2

11wLL
j+1/2

0 0 0

0 0 −1wL
j+1/2

5wL
j+1/2

2wL
j+1/2

0 0

0 0 0 2wR
j+1/2

5wR
j+1/2

−1wR
j+1/2

0

0 0 0 0 11wRR
j+1/2

−7wRR
j+1/2

2wRR
j+1/2

−2wLL
j−1/2

7wLL
j−1/2

−11wLL
j−1/2

0 0 0 0

0 1wL
j−1/2

−5wL
j−1/2

−2wL
j−1/2

0 0 0

0 0 −2wR
j−1/2

−5wR
j−1/2

1wR
j−1/2

0 0

0 0 0 −11wRR
j−1/2

7wRR
j−1/2

−2wRR
j−1/2

0







































f(uj−3)

f(uj−2)

f(uj−1)

f(uj )

f(uj+1)

f(uj+2)

f(uj+3)

















(26)
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with k on the interval j − 3 ≤ k ≤ j + 3. An explicit expression for the
differentiation matrix D5 follows immediately from equation (26).

The derivative matrix D5 is now decomposed into symmetric and skew-symmetric
parts as

D5 = D5
skew + D5

sym .

As with the third-order case (ref. [1]), the skew-symmetric component of D5

and the norm, take the forms

D5
skew = P−1Q5 ; Q5 + QT

5 = 0 ; P = ∆xI .

while the matrix D5
sym is expressed as

D5
sym = P−1

(

D3
1 Λ5

3 [D3
1]

T
+ D2

1 Λ5
2 [D2

1]
T

+ D1
1 Λ5

1 [D1
1]

T
+ D0

1 Λ5
0 [D0

1]
T
)

.(27)

The matrices Λ5
j are diagonal with expressions for the jth element defined by

(λ5
3)j,j = 1

6

[

wLL
j+5/2 − wRR

j+1/2

]

(28)

(λ5
2)j,j = 1

12







+wLL
j+3/2 − 4wLL

j+5/2 + wL
j+3/2

−wR
j+1/2 + 4wRR

j−1/2 − wRR
j+1/2





 (29)

(λ5
1)j,j = 1

12





















3wLL
j+1/2 −5wLL

j+3/2 +2wLL
j+5/2

+wL
j+1/2 −wL

j+3/2

+wR
j−1/2 −wR

j+1/2

−2wRR
j−3/2 +5wRR

j−1/2 −3wRR
j+1/2





















(30)

(λ5
0)j,j = 1

2







−wLL
j−1/2 − wL

j−1/2 − wR
j−1/2 − wRR

j−1/2

+wLL
j+1/2 + wL

j+1/2 + wR
j+1/2 + wRR

j+1/2





 = 0 (31)

Because
∑

r w(r)
: = 1, Λ5

0 is always equal to zero, and is not included in D5
ad.

The sign of the diagonal terms (λi
5)j,j, i = 1, 2, 3, could be either positive

or negative; thus, the conventional fifth- and sixth-order WENO schemes may
become locally unstable. If we define (λ̄5

i )j,j, i = 1, 2, 3, to be smoothly positive

(λ̄5
i )j,j =

1

2
[

√

(λ5
i )

2
j,j + δ2

i + (λ5
i )j,j] ,

then the additional artificial dissipation operator becomes D̄5
ad = P−1∑s

i=1[D1
i](Λ̄5

i )[D1
i]

T
,

and the resulting energy-stable scheme is obtained by adding the additional

12



dissipation term to the original WENO scheme. That is,

D̄5 = D5 + D̄5
ad . (32)

By construction, D5 satisfies all of the conditions of Theorem 1, thereby pro-
viding stability of the fifth- and sixth-order ESWENO schemes that are defined
by equation (32).

5 Consistency Analysis

5.1 Necessary and Sufficient Conditions for Consistency of WENO Schemes

We now derive the necessary and sufficient conditions for the weight functions
w(r)

: for a family of pth-order WENO schemes to attain the design order of
accuracy. Similar conditions have been obtained for the conventional fifth-
order WENO scheme in reference [7]. With the same approach discussed in
section 3 for p = 5, a one-parameter family of pth-order WENO fluxes can be
constructed by using a convex combination of (s + 1) fluxes f (r)

: of sth order
as

f̂j±1/2 =
∑

r

w
(r)
j±1/2f

(r)
j±1/2, (33)

with

f
(r)
j±1/2 = h(xj±1/2) +

p
∑

l=s

c
(r)
l ∆xl + O(∆xp+1), (34)

where h(x) is the numerical flux function that is implicitly defined as

f(x) =
1

∆x

x+∆x
2

∫

x−∆x
2

h(η) dη (35)

and c
(r)
l are constants that do not depend on ∆x.

The corresponding pth-order WENO operator that approximates the first-
order spatial derivative is given by

[Dpf ]j =
f̂j+1/2 − f̂j−1/2

∆x
=

∑

r

(

w
(r)
j+1/2f

(r)
j+1/2 − w

(r)
j−1/2f

(r)
j−1/2

)

∆x
, (36)

13



where [·]j is a jth component of a vector, the index r in equation (36) sweeps
over all (s+1) stencils, and w(r) is a nonlinear weight function that is assigned
to the corresponding s-point stencil Sr. For sufficiently smooth solutions, the
weights w(r)

: approach their preferred values d(r), so that the WENO operator
converges to the target linear operator DTarget as

[

DTargetf
]

j
=

fTarget
j+1/2 − fTarget

j−1/2

∆x
=

∑

r

(

d(r)f
(r)
j+1/2 − d(r)f

(r)
j−1/2

)

∆x
, (37)

where d(r) is a one-parameter family of constants chosen to ensure pth-order
convergence of the target operator to the exact value of the first-order deriva-
tive at xj. That is,

[

DTargetf
]

j
=

∂f

∂x

∣

∣

∣

∣

∣

x=xj

+ O(∆xp). (38)

The coefficients d(r) for one-parameter families of linear target schemes up to
eighth order are given in the appendix. All target linear schemes in the family
are (2s−1)th-order accurate, except one central scheme, which is (2s)th-order
accurate.

Subtracting equation (37) from equation (36) and using equation (34), we have

[Dpf ]j −
[

DTargetf
]

j
=

∑

r

[

(w
(r)

j+1/2
−d(r))f

(r)

j+1/2
−(w

(r)

j−1/2
−d(r))f

(r)

j−1/2

]

∆x

= 1
∆x

∑

r

[

(w
(r)
j+1/2 − d(r))h(r)(xj+1/2) − (w

(r)
j−1/2 − d(r))h(r)(xj−1/2)

]

+
p
∑

l=s

∑

r
∆xl−1c

(r)
l

[

(w
(r)
j+1/2 − d(r)) − (w

(r)
j−1/2 − d(r))

]

+ O(∆xp)

(39)

From equation (39) it immediately follows that to retain pth-order accuracy,
the weights of the WENO operator Dp should satisfy the following necessary
and sufficient conditions:

∑

r

[

w
(r)
j±1/2 − d(r)

]

= O(∆xp+1)

∑

r
c(r)
s

[

(w
(r)
j+1/2 − d(r)) − (w

(r)
j−1/2 − d(r))

]

= O(∆xp−s+1)

. . .
∑

r
c(r)
p

[

(w
(r)
j+1/2 − d(r)) − (w

(r)
j−1/2 − d(r))

]

= O(∆x)

(40)

Here, we use the following properties of h(x) and d(r) : f ′(x) =
h(xj+1/2)−h(xj−1/2)

∆x
,

and
∑

r
d(r) = 1.

14



By construction, the weights [eq. (17)] are normalized such that
∑

r w(r)
: = 1;

thus, the first constraint in equation (40) is satisfied identically. To simplify the
analysis, especially for f(x) with an arbitrary number of vanishing derivatives,
we hereafter use the following sufficient condition on w(r)

: for the conventional
WENO scheme to attain pth-order accuracy:

w(r)
: − d(r) = O(∆xp−s+1) . (41)

This constraint is a direct consequence of the necessary and sufficient condi-
tions [eq. (40)].

5.2 Sufficient Conditions for Consistency of ESWENO Schemes

In this section, we show that the conditions [eq. (41)] and the constraints on
δi in equation (23):

δi = O(∆xp−2i+1) , 1 ≤ i ≤ s , (42)

guarantee that the energy-stable modifications of the conventional pth-order
WENO scheme (see section 4) preserve the design order of the original scheme.
As follows from equation (25), the ESWENO operator consists of two terms:
one is the original WENO operator and the other is the additional artificial
dissipation operator Dad that is given by equation (24). As shown in the
previous section, the WENO operator is pth-order accurate if equation (41)
holds. Hence, we need only show that Dadf = O(∆xp).

Let us prove this conjecture for the one-parameter family of fifth-order ESWENO
schemes that is presented in Section 4.1. Note that the term P−1D3

1Λ0[D
3
1]

T

in equation (27) is identically equal to zero because of the normalization
∑

r w(r)
: = 1; it need not be included in Dad. Thus, the additional artificial

dissipation term is given by

Dadf = P−1D1Λ̄1[D1]
T f + P−1D2

1Λ̄2[D
2
1]

T f + P−1D3
1Λ̄3[D

3
1]

T f (43)

λ̄i =
1

2

[
√

λi
2 + δ2

i + λi

]

, i = 1, 2, 3 (44)

where λi is a jth diagonal element of the matrix Λi. For simplicity, we have
omitted the superscript 5 and the subscript (j, j) in this section.

First, we evaluate the terms λ1, λ2, and λ3 that are defined by equations (28-
30). To simplify the derivation, the sufficient conditions [eq. (41)] for the one-
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parameter family of fifth-order ESWENO schemes is rewritten in the following
form:

w(r)
: − d(r) =

(

ϕ −
1

20

)

O(∆x3) + O(∆x4) . (45)

In equation (45), the stencil width s of each reconstruction polynomial is equal
to 3, and the order p of this family of schemes is equal to 5 if ϕ 6= 1

20
or 6 if

ϕ = 1
20

. As follows from equation (45), the stiffer constraint on the weights
should be imposed to obtain sixth-order accuracy.

Replacing w(r)
: in λ2 with the corresponding preferred values d(r) and using

equations (16) and (29), for any value of the parameter ϕ yields

1

12

[

dLL − 4dLL + dL − dR + 4dRR − dRR
]

≡ 0 . (46)

Subtracting equation (46) from equation (29) and taking into account equation
(45) yields

λ2 = 1
12

[

(wLL
j+3/2 − dLL) − 4(wLL

j+5/2 − dLL) + (wL
j+3/2 − dL)

−(wR
j+1/2 − dR) + 4(wRR

j−1/2 − dRR) − (wRR
j+1/2 − dRR)

]

=
(

ϕ − 1
20

)

O(∆x3) + O(∆x4) .

(47)

By comparing equations (29) and (30), one can see that λ1 is at least one order
higher than that of λ2 because of an additional cancellation that occurs within
each group of terms that is associated with the same stencil. For example,
expanding all of the terms wLL

: in equation (30) about xj yields

3wLL
j+1/2 − 5wLL

j+3/2 + 2wLL
j+5/2 = −2

∂wLL

∂x

∣

∣

∣

∣

∣

xj

∆x + O(∆x2) , (48)

which gives an extra factor O(∆x) compared with the corresponding terms
wLL

: in equation (30): wLL
j+3/2 − 4wLL

j+5/2 = O(1). The same conclusion can be
drawn for the other groups of terms that are associated with the L, R, and
RR stencils in equation (30), which leads to

λ1 =
(

ϕ −
1

20

)

O(∆x4) + O(∆x5) . (49)
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Applying the same procedure to λ3 yields

λ3 = 1
6

(

dLL − dRR
)

+ 1
6

[

(wLL
j+5/2 − dLL) − (wRR

j+1/2 − dRR)
]

= 1
6

(

1
10

− 2ϕ
)

+
(

ϕ − 1
20

)

O(∆x3) + O(∆x4) .
(50)

To evaluate each term in equation (43), we consider three cases: 1) |λi| � δi >
0, 2) λi = O(δi), and 3) |λi| � δi, i = 1, 2, 3. If we assume that |λi| � δi > 0,
then equation (44) can be expanded as follows:

λ̄i =
|λi| + λi

2
+

δ2
i

4|λi|
, (51)

which yields

λ̄i =



























λi , if λi > 0

δi , if λi = 0

δ2
i

4|λi|
, if λi < 0

, (52)

where the higher order terms have been omitted. Because equation (52) has
been derived under the assumption that |λi| � δi > 0, we can immediately

conclude that |λi| � δi �
δ2
i

4|λi|
. Therefore, we only need consider that

λ̄i = λi , (53)

which provides the lowest order of convergence for the term Di
iΛ̄i[D

i
1]

T f . If we
substitute equation (53) in equation (43) and use equations (47, 49, 50), then
the additional ESWENO dissipation term becomes

Dadf =
[(

ϕ − 1
20

)

O(∆x3) + O(∆x4)
]

D1[D1]
T f

+
[(

ϕ − 1
20

)

O(∆x2) + O(∆x3)
]

D2
1[D

2
1]

T f

+
[

1
10

−2ϕ

6∆x
+
(

ϕ − 1
20

)

O(∆x2) + O(∆x3)
]

D3
1[D

3
1]

T f

(54)

If we take into account that Di
1[D

i
1]

T f = O(∆x2i), then Dadf can be recast as

Dadf =
(

ϕ −
1

20

)

O(∆x5) + O(∆x6) . (55)

From equation (55) we see, that the additional dissipation term is at least
fifth-order accurate for all values of the parameter ϕ. The fifth-order term
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vanishes for ϕ = 1
20

; for this value the order increase by one to sixth-order.

The second case can be considered in a similar manner. Substituting λi =
O(δi), i = 1, 2, 3, in equation (43) yields

Dadf = O(δ1)
∆x

D1[D1]
T f + O(δ2)

∆x
D2

1[D
2
1]

T f + O(δ3)
∆x

D3
1[D

3
1]

T f

= O(δ1∆x) + O(δ2∆x3) + O(δ3∆x5) .
(56)

To guarantee that the ESWENO dissipation term is pth-order accurate, the
following constraints should be imposed on δi:

δ1 = O(∆xp−1)

δ2 = O(∆xp−3)

δ3 = O(∆xp−5) ,

(57)

where p is equal to 5 for ϕ 6= 1
20

or 6 for ϕ = 1
20

. Note that the constraints [eq.
(57)] are fully consistent with those that are given by equation (42). The third
case, |λi| � δi, is similar to the second one and results in the same constraints
[eq. (57)] on δi; therefore the third case is not presented here.

Remark 5 Note that δi, i = 1, 2, 3, are user-defined parameters; therefore,
the conditions [eq. (42)] can always be met.

Remark 6 Although only fifth- and sixth-order ESWENO schemes have been
analyzed in this section, the same procedure is directly applicable to the ad-
ditional ESWENO schemes presented in the appendix. Thus, we can conclude
that if equations (41) and (42) hold, then all the ESWENO schemes that are
considered in this paper are design-order accurate.

5.3 Consistency of the ESWENO scheme with New Weights

The new weight functions for the one-parameter family of pth-order WENO
and ESWENO schemes are given by

w(r) =
αr
∑

l
αl

, αr = d(r)

(

1 +
τp

ε + β(r)

)

, (58)
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where β(r) are the classical smoothness indicators:

β(r) =
s−1
∑

l=1

∆x2l−1

x
j+1

2
∫

x
j− 1

2

(

dlqr(x)

dlx

)2

dx , (59)

qr(x) is an (s − 1)th-degree reconstruction polynomial that is defined on a
stencil Sr, and ε is a small positive parameter that can depend on ∆x. In
equation (58), τp is defined by

τp = (V < xj−s+1, . . . , xj+s >)2 , for ϕ 6= 0 (60)

τp = (V < xj−s+1, . . . , xj+s−1 >)2 , for ϕ = 0 (61)

where V < xj−s+1, . . . , xj+s > is the pth-degree, undivided difference. Note
that for the original WENO schemes of Jiang and Shu [2], which correspond
to ϕ = 0, the entire stencil includes only (2s−1) points; therefore, the highest
degree of undivided differences that can be constructed on this stencil is 2s−2,
rather than 2s− 1, which is used for the other schemes in this one-parameter
family. In particular, w(r), β(r), and τ5 for the fifth- and sixth-order WENO
and ESWENO schemes are given by equations (17)–(20). Another scheme
that requires special consideration is the central ESWENO scheme, which is
obtained by setting ϕ = ϕc, so that it is one order higher than that of the
other schemes in the family.

First, we present a truncation error analysis for the entire one-parameter fam-
ily of pth-order ESWENO schemes, except for the two schemes that correspond
to ϕ = 0 and ϕ = ϕc. We demonstrate that the new weights that are defined
by equations (58)–(60) satisfy the sufficient condition [eq. (41)] for smooth
solutions with any number of vanishing derivatives if the following constraint
is imposed on the parameter ε in equation (58):

ε ≥ O(∆xp+s−1) > 0, (62)

where p is a design order of the scheme and (s − 1) is a degree of the corre-
sponding reconstruction polynomials.

If we assume that all of the required derivatives are continuous and use the
properties of the Newton divided differences, then the Taylor series expansions
of β(r) and τp (ϕ 6= 0) at xj are given by

β(r) = f ′2∆x2 + O(∆x3) , (63)

τp = (f (p))2∆x2p + O(∆x2p+1) , (64)
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where f ′ and f (p) are the first- and pth-order derivatives of f at xj. For ex-
ample, for the family of fifth-order WENO schemes, these expansions are

βLL = f ′2∆x2 +
(

13
12

f ′′2 − 2
3
f ′f ′′′

)

∆x4 +
(

−13
6
f ′′f ′′′ + 1

2
f ′f ′′′′

)

∆x5 + O(∆x6)

βL = f ′2∆x2 +
(

13
12

f ′′2 + 1
3
f ′f ′′′

)

∆x4 + O(∆x6)

βR = f ′2∆x2 +
(

13
12

f ′′2 − 2
3
f ′f ′′′

)

∆x4 +
(

13
6
f ′′f ′′′ − 1

2
f ′f ′′′′

)

∆x5 + O(∆x6)

βRR = f ′2∆x2 +
(

13
12

f ′′2 − 11
3
f ′f ′′′

)

∆x4 +
(

13
3
f ′′f ′′′ − 5f ′f ′′′′

)

∆x5 + O(∆x6)

(65)

τ5 =
(

f (5)
)2

∆x10 + O(∆x11) , for ϕ 6= 0 . (66)

We first consider a case with f ′(xj) 6= 0. Substituting equations (63) and (64)
in equation (58) and accounting for equation (62) yields

τp

ε + β(r)
= O(∆x2p−2)

(

1 − O(∆xp+s−3)
)

, (67)

which leads to

w(r) = d(r) + O(∆x2p−1) . (68)

Note that the order of convergence of w(r) to its preferred value is 2p−1 rather
than 2p − 2. The main reason for such “superconvergence” is the additional
cancellation that occurs because the leading truncation error terms of all of
the smoothness indicators are identical to each other if f ′ 6= 0, as can be
seen in equation (63). Equations (67) and (68) are valid only for p ≥ 3 and
are not applicable to the third-order WENO and ESWENO schemes that
correspond to ϕ = 0. The detailed analysis of these third-order schemes (ϕ =
0) is presented in reference [1]. By comparing equation (68) with equation
(41), we can immediately conclude that the new weights satisfy the sufficient
condition [eq. (41)], ensuring that both the WENO and ESWENO schemes are
design-order accurate. Furthermore, for schemes of order 3 (ϕ 6= 0) or higher,
the weights converge to their preferred values at a rate that is significantly
faster than that given by the sufficient condition (41). The result is a much
faster rate of convergence for both the ESWENO and WENO schemes to the
corresponding target linear schemes, even on coarse and moderate grids.

The next issue that is addressed is the convergence of the ESWENO schemes
near the critical points at which the first-order and higher order derivatives of
the flux approach zero. Let xc be a critical point at which the flux function is
sufficiently smooth and at which its derivatives of order up to nvdth are equal
to zero. That is,

f ′(xc) = . . . = f (nvd)(xc) = 0 , f (nvd+1)(xc) 6= 0 .
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In contrast to the previous case for which f ′ 6= 0, the leading truncation error
terms of the smoothness indicators at the critical point are not equal to each
other; thus, no additional cancellation occurs. For any number of vanishing
derivatives, the following inequalities always hold:

ε ≥ O(∆xp+s−1) � O(∆x2p) ≥ τp ,

which yields

τp

ε + β(r)
� 1 . (69)

By using equation (69), the weights can be recast as

w(r) =
d(r) + d(r) τp

ε+β(r)

1 +
∑

l

τp

ε+β(l)

= d(r) + O

(

τp

ε + β(r)

)

, (70)

where we use
∑

r d(r) = 1. For any number of vanishing derivatives, we have

τp

ε + β(r)
≤

τp

ε
≤

O(∆x2p)

O(∆xp+s−1)
= O(∆xp−s+1) . (71)

From equation (71) we see that w(r) converges to d(r) at the rate of O(∆xp−s+1)
or higher and satisfies the sufficient condition (41).

As mentioned at the beginning of this section, the two schemes that correspond
to ϕ = 0 and ϕ = ϕc require special consideration. Using the same procedure
that is outlined above, we can easily show that if the parameter ε satisfies the
constraints

ε ≥ O(∆x3s−4) , for ϕ = 0

ε ≥ O(∆x3s−3) , for ϕ = ϕc ,
(72)

then the corresponding ESWENO schemes are design-order accurate regard-
less of the number of vanishing derivatives of the solution. The constraints [eq.
(72)] are derived using the following relations between the order of the scheme
and the degree of the reconstruction polynomials:

p = 2s − 1, for ϕ = 0

p = 2s, for ϕ = ϕc .
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Also, note that if no constraint is imposed on ε except that it must be strictly
positive, then the order of convergence of the pth-order WENO and ESWENO
schemes with the new weights may deteriorate from p to s. Indeed, for a
sufficiently large number of vanishing derivatives nvd, β(r) and τp may become
of the same order. For example, for the family of fifth-order schemes (ϕ 6= 0),
this type of degeneration occurs at nvd = 4. If f ′ = f ′′ = f ′′′ = f ′′′′ = 0,
f (5) 6= 0, and ε ≤ O(∆x10), which does not satisfy the condition given in
equation (62), then equations (65) and (66) lead to

τ5

ε + β(r)
=

O(∆x10)

O(∆x10) + O(∆x10)
= O(1) . (73)

As a result, the weights are of order O(1) and the fifth-order WENO and
ESWENO schemes locally degenerate to third order.

Remark 7 In reference [8], the following modification of the weight functions
given in equations (17)–(19), and (22) is proposed to recover the fifth-order
rate of convergence if nvd ≤ 2:

w(r) =
αr
∑

l
αl

, αr = d(r)

[

1 +

(

τ5

ε + β(r)

)m]

, (74)

where m = 2. However, the modified weights [eq. (74)] still experience the
same degeneration in accuracy near critical points for any choice of the pa-
rameter m if nvd ≤ 6. We demonstrate this with the following “thought”
experiment. First, build a polynomial of degree 7 (or higher) such that at
least 6 derivatives vanish at a single point. Next, connect this polynomial to a
constant polynomial at the point where the derivatives of the first polymonial
vanish. The solution to equation (1) is then a six times continuously differen-
tiable function everywhere on the combined piecewise polynomials. Note that
the underlying linear scheme is fifth-order accurate in this case. If we assume
that the LL stencil is located completely in the constant part of the solution
(i.e. fj−2 = fj−1 = fj) while the other two stencils include points from the
polynomial part of the solution, then we have βLL = 0, βL 6= 0, and βR 6= 0.
As a result, τ5 =

∣

∣

∣βLL − βR
∣

∣

∣ = βR. If no constraint is imposed on ε, then we

can always choose ε such that βR � ε → 0 on any given grid, which yields

w(R) − d(R) = O

(

τ5

ε + βR

)m

= O

(

βR

ε + βR

)m

= O(1) − O

(

ε

βR

)

→ O(1),

This leads to wR = O(1) and, consequently, to a loss of the design order
of accuracy. Note that this problem persists regardless of the choice of m in
equation (74).
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Remark 8 The parameter ε is user-defined, and therefore, the sufficient con-
ditions [eqs. (62) and (72)] can always be satisfied.

Remark 9 Equations (62) and (72) do not provide sharp estimates for the
parameter ε, which can be weakened if additional information regarding the
number of vanishing derivatives is available a priori. Note, however, that the
constraints [eqs. (62) and (72)] guarantee the design order of convergence of
the corresponding WENO and ESWENO schemes for smooth solutions with
an arbitrary number of vanishing derivatives.

The last issue that we discuss in this section concerns discontinuous and unre-
solved solutions. To successfully emulate the ENO strategy, a stencil for which
the solution is discontinuous is eliminated from the approximation by effec-
tively nullifying the corresponding weight that is associated with this stencil.
Let a discontinuity be located inside a stencil Sr, while the solution is smooth
in all other stencils. We can easily verify that τp = O(1), because τp involves
all points of the entire stencil including those that contain the discontinuity.
Therefore, the weight w(r) can be evaluated as

w(r) =
d(r)

[

1 + O(1)
ε+O(1)

]

O(1) +
∑

l 6=r

O(1)
ε+O(∆x2)

=
O(1)

O(1) + O(1)
ε+O(∆x2)

= O(1)
[

ε + O(∆x2]
)

(75)

Based on the above equation, to reduce the influence of ε on the solution near
the discontinuity, the parameter ε should satisfy the following constraint:

ε ≤ O(∆x2) . (76)

Indeed, if equation (76) is met, then w(r) is of the order O(∆x2) and has the
same order of magnitude as it would have if ε = 0. Hence, the parameter ε
must be bounded not only from below by equations (62) and (72), but also
from above by equation (76).

Another consideration that can help us optimally select the parameter ε is the
manner in which the WENO and ESWENO schemes handle small-amplitude
oscillations. Consider a solution that contains small-amplitude spurious oscil-
lations

f = fs + δf, (77)

where fs is a smooth component and δf is a nonsmooth, high-frequency com-
ponent of the solution. By substituting equation (77) in equation (59) and
assuming that the contribution of the smooth component is negligibly small,
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we have
β(r) = O(δf 2) .

As follows from equation (58), if ε � O(δf 2), then the denominator ε + β(r)

is dominated by ε, and these spurious oscillations cannot be detected by the
ESWENO dissipation mechanism. However, if ε ≤ O(δf 2), then the weights
begin to deviate from their preferred values, which increases dissipation in
those stencils containing spurious oscillations.

From these considerations it follows that the lower bound of the constraints on
ε given by equations (62), (72), and (76) should be used (1) to obtain the design
order of convergence at the smooth parts of the solutions, (2) to effectively
damp high-frequency spurious oscillations, and (3) to provide good shock-
capturing capabilities near strong discontinuities. Therefore, in our numerical
experiments, we use

ε =



























O(∆x3s−4) , for ϕ = 0

O(∆x3s−3) , for ϕ = ϕc

O(∆x3s−2) , otherwise

(78)

where s − 1 is the degree of the reconstruction polynomials. With the above
selection of ε, all spurious oscillations of amplitude O(ε1/2) and higher are
suppressed by the ESWENO dissipation mechanism. The same conclusions
can be drawn for the WENO schemes with the new weights given by equations
(58)–(61).

6 Numerical Results

We now assess the performance of the fourth-, fifth-, and sixth-order ESWENO
schemes with the new weights and compare them with the conventional WENO
counterparts. For all of the numerical experiments that are presented, the pa-
rameters ε of the ESWENO weight functions and the parameters δi of the
additional artificial dissipation operator are chosen based on equations (78)
and (42) with two minor modifications. First, to preserve the scale invariance
of the original WENO schemes, the physical grid spacing ∆x in equations (42)
and (78) is replaced with ∆ξ, where ∆ξ = 1/J and J is the total number of grid
cells. Second, as follows from equation (58), the parameter ε should be scaled
consistently with β(r). In regions where the solution is smooth, for the third-
and fourth-order WENO and ESWENO schemes, β(r) approximates f ′2∆ξ2.
For the fifth- and sixth-order schemes, β(r) approximates the linear combi-
nation of the same first-order derivative term and a second-order derivative
term that is proportional to f ′′2. The same pattern persists for higher order
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Fig. 2. Solutions obtained with fourth-order WENO and ESWENO schemes on
101-point grid for linear wave equation with initial condition [eq. (81)] at t = 0.04.

schemes as well. In the vicinity of discontinuities, β(r) is of the order O(f 2). If
we take into account the above considerations, for all test problems considered
the parameter ε is set to

ε =



























C∆ξ3s−4 , for ϕ = 0

C∆ξ3s−3 , for ϕ = ϕc

C∆ξ3s−2 , otherwise

C = max
ξ 6=ξd

(

‖f 2
0 ‖, ‖f

′
0
2‖, . . . , ‖

(

f
(s−1)
0

)2
‖
)

,

(79)

where f0 = f [u0(ξ)] is the initial flux, u0(ξ) is the initial condition, f
(s−1)
0 is

the (s − 1)th-order derivative of f0 with respect to ξ, s − 1 is the degree of
the reconstruction polynomials, ξd is a set of points at which the solution is
discontinuous, and ‖ · ‖ is a norm in which the solution is sought. The scaling
factor C in equation (79) can easily be evaluated because it depends only on
the initial condition for which the locations of all discontinuities are known
a priori. Note that the parameter ε is calculated once and the same value is
used over the entire time interval of integration; thus the computational cost
does not increase.

In accordance with equation (23), the parameter δi should be scaled consis-
tently with λi. Because λi is a linear combination of the weights with each
being of the order O(1), the scaling factor of δi is set equal to one, which leads
to

δi = ∆ξp−2i+1 . (80)
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Equations (79) and (80) eliminate the ambiguity in determining the parame-
ters ε and δi for the ESWENO schemes; thus, the equations for ε and δi are free
of tuning parameters. Furthermore, equations (79) and (80) are fully consis-
tent with the sufficient conditions [eqs. (42) and (78)] and allow the ESWENO
schemes to be invariant when the spatial and time variables are scaled by the
same factor. Note that the parameter ε for the conventional WENO schemes
of Jiang and Shu is set to 10−6 as recommended in [2]. In accordance with
the recommendations of Borges et al. [8], the parameter ε for the fifth-order
WENO scheme with the weights given by equations (17)–(19), and (22), which
is referred as WENO-Z, is set to 10−40.

The time derivative for all steady test problems is approximated by using a
third-order total variation diminishing (TVD) Runge-Kutta method that is
developed in reference [11], while unsteady problems are integrated by using a
fourth-order low-storage Runge-Kutta method (ref. [12]). To reduce the fourth-
order temporal error component and make it consistent with the spatial error
of fifth- and sixth-order schemes, the time step in global grid refinement studies
is reduced by a factor of 26/4 for each doubling of the number of grid points
in space. The Courant-Friedrich-Levy (CFL) number has been set to 0.3 and
0.6 for the steady and unsteady test problems, respectively.

6.1 Scalar Linear Wave Equation

We begin by verifying that the new class of ESWENO schemes provide the
design order of convergence for smooth problems, including local extrema. To
check this property, we consider equation (1) with a = 1 and the following
initial condition:

u0(x) = e−300(x−xc)2 , (81)

where xc is 0.5. The computational domain for this test problem is set to
0 ≤ x ≤ 1. Numerical solutions are calculated on a sequence of globally
refined uniform grids and advanced in time up to t = 1, which corresponds to
one period in time.

First, we show that the conventional fourth-order WENO scheme is unsta-
ble for this smooth problem; however, the corresponding ESWENO is stable,
and its solution is in excellent agreement with the exact solution, as shown
in Figure 2. To make the conventional fourth-order WENO scheme stable,
a smoothness indicator that corresponds to the downwind stencil has been

26



Log10(N)

Lo
g 10

||
Er

ro
r|

| m
ax

1.5 2 2.5 3 3.5-7

-6

-5

-4

-3

-2

-1

0

4th-order linear
4th-order WENO
4th-order ESWENO
4th-order WENO, Eq. (57)

Fig. 3. L∞ error norms obtained with the fourth-order linear, WENO, and
ESWENO schemes for linear wave equation with initial condition given in equa-
tion (81).

modified as follows:

β̄R =

[

(βL)k + (βC)k + (βR)k

3

]1/k

, (82)

where k is a constant that is greater than 1. Note that β̄R is a C∞ function
of its arguments and approaches max(βL, βC, βR) as k → ∞. In contrast to
equation (82), a modified smoothness indicator β̄R = max(βL, βC , βR) that is
proposed in reference [6] is a nonsmooth function of βL, βC and βR, which may
lead to the degeneration of the design order of accuracy and is more prone
to spurious oscillations near unresolved features and strong discontinuities.
For k → ∞, the downwind smoothness indicator that is given by equation
(82) prevents the corresponding weight wR from being larger than the lesser
of the other two weight functions; thus, the stencil is biased in the upwind
direction near unresolved features. In smooth regions, all three smoothness
indicators are of the same order, and the weights approach their preferred
values of wL = 1

6
, wC = 2

3
, and wR = 1

6
, which provides the design order of

accuracy. For all of the numerical experiments that are presented herein, the
parameter k in equation (82) is equal to 4.

Figure 3 shows the L∞ error norms that are obtained with the fourth-order
WENO and ESWENO schemes, and the corresponding underlying linear schemes.
As shown in Figure 3, the fourth-order ESWENO scheme is significantly more
accurate than the conventional fourth-order WENO scheme. The L∞ error
that is obtained with the fourth-order ESWENO scheme is slightly higher
than that obtained with the corresponding linear scheme on coarse meshes
and reaches its theoretical limit starting at J = 201 grid points. The max-
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Fig. 4. L∞ error norms obtained with the fifth- (left) and sixth-order (right) linear,
WENO, WENO-Z, and ESWENO schemes for linear wave equation with initial
condition given in equation (82).

imum error occurs at the peak of the Gaussian pulse indicating that the
ESWENO scheme is design-order accurate at the smooth extrema. In con-
trast to the ESWENO scheme, the conventional WENO scheme demonstrates
only a third-order convergence rate, even on the finest mesh with J = 1601,
and is two to three orders of magnitude less accurate on moderate and fine
meshes.

If the new weights [eqs. (58) and (59)] are used instead of their conventional
counterparts, then the design order of convergence of the fourth-order central
WENO scheme is recovered, as shown in figure 3. Moreover, the fourth-order
WENO scheme with the new weights provides slightly better accuracy on
coarse meshes than the corresponding ESWENO scheme. This result is not
surprising because the ESWENO scheme has the additional dissipation term
[eq. (24)], which guarantees the stability. In general, if a WENO scheme with
the new weights is stable, then it is slightly less dissipative than the corre-
sponding ESWENO counterpart. For all of the problems that are considered,
however, the results obtained with the conventional WENO schemes with the
weights given by equations (58) and (59) are practically indistinguishable from
those of the corresponding ESWENO schemes; therefore these results are not
presented hereafter.

The L∞ error norms that are obtained with the fifth-order WENO-Z scheme
and the fifth- and sixth-order WENO and ESWENO schemes for the same
test problem are depicted in figure 4. Similar to the fourth-order case, the
conventional sixth-order central WENO scheme is unstable. This problem is
avoided by using the same upwinding technique that is outlined earlier. For
the sixth-order central WENO scheme, the modified smoothness indicator that
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corresponds to the most downwind stencil is given by

β̄RR =

[

(βLL)k + (βL)k + (βR)k + (βRR)k

4

]1/k

. (83)

Both the fifth-order WENO-Z and fifth- and sixth-order ESWENO schemes
are equal in accuracy to the corresponding underlying linear schemes, as shown
in Figure 4. Although the fifth-order WENO scheme exhibits the design-order
convergence rate, its L∞ error norm is nearly an order of magnitude larger
than those of the corresponding fifth-order WENO-Z and ESWENO schemes.
In contrast to that of the sixth-order ESWENO scheme, the L∞ error that is
obtained with the conventional sixth-order WENO scheme shows only fifth-
order convergence and is quite far from the theoretical limit (represented by
the corresponding sixth-order central linear scheme). Note that the WENO-Z
schemes of fourth- and sixth-order are currently unavailable in the published
literature and therefore are not presented herein.
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Fig. 5. Time histories of rightmost eigenvalue of symmetric part of fifth-order WENO
and ESWENO operators for Gaussian pulse problem.

As we have proven in sections 2 and 4.1, for the linear convection equation (1)
with piecewise continuous initial conditions, the family of ESWENO schemes
is stable in the energy norm. The sufficient condition for stability is the neg-
ative semidefiniteness of − 1

2
(D̄ + D̄T ), where D̄ is the ESWENO discrete op-

erator. This property implies that all eigenvalues of the symmetric portion of
the ESWENO operator are nonpositive. In contradistinction to the ESWENO
scheme, the symmetric portion of the WENO operator may have positive
eigenvalues. (See section 4.1.) Note that the same conclusion can be drawn for
the fifth-order WENO-Z scheme (ref. [8]), whose derivative operator is identi-
cal to that of the conventional WENO scheme with the modified weights [eqs.
(17)–(19), and (22)] which vary in the interval from 0 to 1 near the unresolved

29



features. These properties of the WENO, WENO-Z, and ESWENO schemes
are shown in figure 5, which gives the time histories of the rightmost eigen-
value of the symmetric portion of the operators computed on a 201-point grid.
The rightmost eigenvalue of the ESWENO operator − 1

2
(D̄ + D̄T ) is equal to

zero up to the order of the round-off error, while the symmetric part of the
conventional fifth-order WENO and WENO-Z operators have positive eigen-
values of order O(10−1) and O(10), respectively. (See figure 5.) This results
from the fact that the symmetric portion of these WENO-type operators is
not negative semidefinite, if unresolved features exist in the computational do-
main. Note that the presence of the positive eigenvalues does not imply that
the fifth-order WENO and WENO-Z schemes are globally unstable because
these eigenvalues correspond to different grid points at different moments of
time.
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Fig. 6. L∞ error norms obtained with fifth-order linear, WENO, WENO-Z, and
ESWENO schemes for linear wave equation with initial conditions given in equation
(84) at t = 1.

The superiority of the ESWENO schemes with the new weights compared
with the conventional and modified WENO counterparts, becomes evident
when a more challenging problem is considered. In the previous test problem,
the initial condition [eq. (81)] has the critical point at which f ′ = 0 and f ′′ 6= 0
(i.e., the number of vanishing derivatives is nvd = 1). As shown in section 5.3,
the fifth-order WENO-Z scheme that was developed by Borges et al. [8] fails
to recover the design order of convergence if nvd ≥ 6 for an arbitrary choice
of the parameter m in equation (74). We now demonstrate this property for

30



nvd ≥ 3. Consider equation (1) with the following initial condition:

u0(x) =



























z18 − 14z16 + 69z14 − 175z12 + 259z10

−231z8 + 119z6 − 29z4 + 1, for |z| ≤ 1

0 otherwise

(84)

where z = 5(x− 0.5) and 0 ≤ x ≤ 1. The above function is six times continu-
ously differentiable and has three critical points: one at x = 0.5 with nvd = 3
(i.e., f ′(0.5) = f ′′(0.5) = f ′′′(0.5) = 0 and f ′′′′(0.5) 6= 0) and the remaining
two at x = 0.3 and 0.7 with nvd = 6. If we compare the L∞ error norms com-
puted with the fifth-order linear, WENO, WENO-Z, and ESWENO schemes
at t = 1, (see fig. 6), we see that the situation changes dramatically as com-
pared with the previous test problem. As expected, the WENO-Z scheme fails
to deliver fifth order convergence, while the ESWENO scheme is fifth-order
accurate and provides practically the same error convergence as the underly-
ing linear scheme. This result is not surprising because the parameter ε for
the WENO-Z scheme is set to 10−40, as suggested in reference [8]. As a result,
at a point x = 0.5 + ∆x the weights become of order O(1). Thus, if we use
equations [(65), (22), and (74)] with ε = 0 and take into account that for the
polynomial in equation (84), f ′ = O(∆x3), f ′′ = O(∆x2), f ′′′ = O(∆x), and
f ′′′′ = O(1) at x = 0.5 + ∆x, then we have

w(r) − d(r) = O

([

|13
3
f ′′f ′′′ − f ′f ′′′′|∆x5

f ′2∆x2 + (13
3
f ′2 − f ′f ′′′)∆x4

]m)

=

(

O(∆x8)

O(∆x8)

)m

= O(1) .(85)

As follows from the above estimate, the WENO-Z scheme fails to recover fifth
order convergence regardless of the choice of the parameter m in equation
(74). Our numerical results corroborate this conclusion. Figure 6 shows that
increasing the exponent m in equation (74) results in an even larger dete-
rioration in accuracy. In contrast to the WENO-Z scheme, the conventional
fifth-order scheme of Jiang and Shu[2] converges at the design order and be-
gins to approach the theoretical limit on the finest meshes. The main reason
for such a behavior is the choice of the parameter ε, which is set to 10−6. As
the grid is refined, β(r) → 0, the denominator in equation (21) is dominated
by ε, and the weights approach their preferred values.

6.2 The 1-D Euler Equations

In reference [1], the third-order ESWENO scheme is proved to be energy-stable
for a system of linear hyperbolic equations with periodic boundary conditions.
This result can be directly extended to the class of higher order ESWENO
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schemes that are presented in this paper. For nonlinear conservation laws with
nonperiodic boundary conditions, a similar proof for the high-order ESWENO
schemes is not currently available. Nevertheless, we would like to test how the
new schemes perform for the system of the quasi-1-D Euler equations, which
are given by

∂U

∂t
+ ∂F

∂x
= G

U =















ρ

ρu

E















, F =















ρu

ρu2 + P

(E + P )u















, G = −Ax

A















ρu

ρu2

(E + P )u















P = (γ − 1)
(

E + ρu2

2

)

,

(86)

where A = A(x) is the cross-sectional area of a quasi-1-D nozzle and γ = 1.4.
As has been shown in reference [1], the ESWENO reconstruction must be
implemented in local characteristic fields to guarantee the stability of the
ESWENO scheme for systems of hyperbolic conservation laws. In the present
analysis, both the WENO and ESWENO reconstructions are based on the
Lax-Friedrichs flux splitting. See reference [1] for further details.
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Fig. 7. L∞ error norms obtained with the third- and fourth-order (left) and fifth-
and sixth-order linear, WENO, and ESWENO schemes for the subsonic quasi-1-D
nozzle problem.

For the 1-D Euler equations, the preferred biasing of the stencil in the upwind
direction, given by equations (82) and (83), is used for the central fourth- and
sixth-order WENO and ESWENO schemes to suppress spurious oscillations
near strong discontinuities. In the ESWENO case, these oscillations can also
be eliminated by increasing the coefficient in front of the D1Λ1D

T
1 term in the
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artificial dissipation operator. However, this approach is more dissipative and
also reduces the maximum CFL number for which the scheme remains stable.
For the test problems that are presented in this section, the results obtained
with the fifth-order WENO-Z scheme are practically indistinguishable from
those of the fifth-order ESWENO scheme; therefore the WENO-Z results are
not presented hereafter.

To verify that the new ESWENO schemes are design-order accurate for hyper-
bolic systems, we consider the steady-state isentropic flow through a quasi-
1-D nozzle with the following cross-sectional area: A(x) = 1 − 0.8x(1 − x),
0 ≤ x ≤ 1, as a test problem. The inflow Mach number is set to 0.5 and
the pressure at x = 1 is assumed to be equal to that at x = 0. Under these
conditions, the flow is fully subsonic, and the solution is smooth. Global grid-
refinement studies for the third-, fourth-, fifth-, and sixth-order WENO and
ESWENO schemes are presented in figure 7.

The L∞ error norms that are obtained with the third- and fourth-order ESWENO
schemes exhibit the design order of convergence. On the finest mesh with J =
801, the fourth-order ESWENO solution is approximately three and four or-
ders of magnitude more accurate than those of the third-order ESWENO and
WENO schemes, respectively. As shown in figure 7, the fifth-order ESWENO
scheme provides the same accuracy as its underlying linear scheme, thereby
exhibiting the perfect error convergence for this test problem. Although the
conventional fifth-order WENO scheme exhibits the design order of conver-
gence, its L∞ error norm is larger by a factor of 3 than that obtained with
ESWENO counterpart. Similar to the fourth-order case, the central sixth-
order ESWENO scheme converges at the design-order rate on both coarse
and fine meshes, thus providing significantly more accurate solutions than
both fifth-order schemes.

Remark 10 For this problem, the conventional central fourth- and sixth-
order WENO schemes do not converge to a steady-state solution even with
the upwinding mechanisms [eqs. (82) and (83)] turned on. The primary reason
for this tendency is the presence of positive eigenvalues in the spectrum of the
symmetric part of the conventional WENO operator.

The next test problem is the steady transonic flow through a quasi-1-D nozzle
with the following cross-sectional area:

A(x) = 1.398 + 0.347 tanh(0.8x − 4), 0 ≤ x ≤ 10.

The Mach number at x = 0 is 1.5, and the outflow conditions have been
chosen so that the shock is located at x = 5. Density profiles are calculated
using the fifth-order WENO and fifth- and sixth-order ESWENO schemes on
a 51-point grid and are compared with the exact solution in figure 8. For all
schemes, the captured shock is smeared over two grid cells, and the numerical
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Fig. 8. Comparison of fifth-order WENO and ESWENO schemes for steady tran-
sonic flow through quasi-1-D nozzle.

solutions are essentially nonoscillatory and agree quite well with the exact
solution. Note that the fifth- and sixth-order ESWENO schemes converge to
the steady-state solution an order of magnitude faster than the conventional
fifth-order WENO scheme; this result again indicates the presence of unstable
modes that are generated by the positive eigenvalues of the WENO dissipation
operator.
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Fig. 9. Density profiles computed with the fourth-order (left) and sixth-order (right)
WENO and ESWENO schemes on a uniform grid with 201 points for the Sod
problem at t = 0.16.

The last two problems considered are standard unsteady problems for testing
shock-capturing schemes. The first problem is the Riemann problem with the
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initial conditions proposed by Sod[13]:

(ρ, u, P ) =











(1, 0, 1) if − 0.5 ≤ x < 0

(0.125, 0, 0.1) if 0 ≤ x ≤ 0.5
.

The numerical solutions that are computed with both fourth- and sixth-order
WENO and ESWENO schemes are essentially nonoscillatory, as one can see
in figure 9. Note, however, that the fourth- and sixth-order ESWENO schemes
provide better resolution near the contact discontinuity and the shock as com-
pared with the conventional WENO schemes.

We conclude this section by presenting the numerical results that are obtained
with WENO and ESWENO schemes for the shock entropy-wave interaction
problem. The solution of this benchmark problem contains both strong dis-
continuities and smooth structures, and is well suited for testing high-order
shock-capturing schemes. The governing equations are the time-dependent
1-D Euler equations [eq. (86)] with G = 0, subject to the following initial
conditions:

(ρ, u, p) =











(3.857134, 2.629369, 10.33333) , if − 5 ≤ x < −4

(1 + 0.2 sin 5x, 0, 1) , if − 4 ≤ x ≤ 5 .
(87)

The governing equations are integrated in time up to t = 1.8. The exact
solution to this problem is not available. Therefore, a numerical solution that
is obtained with the conventional fifth-order WENO scheme on a uniform grid
with J = 4001 grid points is used as a reference solution.

Numerical solutions that are computed with the fourth-, fifth-, and sixth-
order WENO and ESWENO schemes on a 301-point grid at t = 1.8 are com-
pared with the “exact” reference solution in figure 10. Both the WENO and
ESWENO solutions are free of spurious oscillations. The fourth-order WENO
scheme is the most dissipative among the considered schemes and has the
worst resolution in a region just upstream of the moving shock. The fourth-
order ESWENO scheme provides better resolution of the high-frequency oscil-
lations behind the shock. However, the wave amplitudes are much lower than
those that are computed with the fifth- and sixth-order schemes. Again, the
fifth- and sixth-order ESWENO solutions are more accurate than those of the
corresponding WENO schemes. Both ESWENO schemes resolve the smooth
extrema quite well, and the solutions are essentially nonoscillatory near the
captured shock.
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Fig. 10. Density profiles computed with the fourth-order (top left), fifth-order (top
right), and sixth-order (bottom) WENO and ESWENO schemes on uniform grid
with 301 grid points for density sine wave/shock-interaction problem.

7 Conclusions

A systematic methodology is developed to construct Energy Stable weighted
essentially nonoscillatory (ESWENO) finite-difference schemes of arbitrary or-
der, and is used to construct ESWENO schemes based on the WENO schemes
that are presented in references [2] and [6]. The new ESWENO schemes differ
from the conventional WENO schemes by the addition of a nonlinear artificial
dissipation term of special form. The additional term is design-order accu-
rate for smooth solutions, including smooth extrema, and guarantees that the
ESWENO scheme is stable in the L2-energy norm for both continuous and
discontinuous solutions of hyperbolic systems; for the conventional WENO
scheme, an energy estimate is not available. The distinctive feature of the new
class of ESWENO schemes is that the spectrum of the symmetric part of the
ESWENO operator is always located in the left half-plane, while the symmet-
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ric part of the WENO operator has positive eigenvalues; thus, the conventional
WENO schemes may become locally unstable.

New weight functions are also developed, guided by newly derived sufficient
conditions guaranteeing design order accuracy for arbitrary WENO schemes;
sufficient conditions that are valid regardless of the number of vanishing so-
lution derivatives. A truncation error analysis is used to optimize the weight
functions, so that the new ESWENO schemes satisfy the sufficient condi-
tions for accuracy and provide essentially nonoscillatory solutions for problems
with strong discontinuities. Numerical experiments confirm that the high-order
ESWENO schemes with the new weights are significantly more accurate than
conventional WENO schemes of the same order, and demonstrate excellent
shock-capturing capabilities.

8 Appendix

8.1 Existence of Symmetric Decomposition

The following lemma establishes the existence of the decomposition Dsym =
∑s

i=0[D1
i]Λi[D1

i]
T
. The lemma provides an algorithm to decompose a matrix

of arbitrary bandwidth 2s + 1 into the sum of two matrices: one that can be
expressed as one term of the desired symmetric form, and one of bandwidth
2(s − 1) + 1.

Lemma 11 Define Es to be an N -dimensional, symmetric, bidiagonal matrix
with the subdiagonal elements es+1,1, es+2,2, · · · , eN−1,N−s−1, eN,N−s. The
parameter s is the offset from the main diagonal. Further, define Bs−1 to be
an N -dimensional, symmetric, banded matrix of bandwidth 2(s − 1) + 1 with
elements that are functions of the matrix Es. The matrices Es and Bs−1 satisfy
the following relationship:

Es = (−1)s[D1
s]Λs[D1

s]T + Bs−1 .

with Λs = diag[es+1,1, es+2,2, · · · , eN−1,N−s−1, eN,N−s, 0s
T ] and 0s is a zero

vector of dimension s.

Proof: A proof by induction is not included herein. One step of the algorithm
can be verified immediately by inspection.

A simple example illustrates Lemma 11. Define the 5 × 5 matrices E2, D15,

and B1 such that E2 = (−1)2[D15
2]Λ2[D15

2]
T

+ B1 and
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E2 =





























0 0 a 0 0

0 0 0 b 0

a 0 0 0 c

0 b 0 0 0

0 0 c 0 0





























; D15 =





























1 0 0 0 −1

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1





























Λ2 =





























a 0 0 0 0

0 b 0 0 0

0 0 c 0 0

0 0 0 0 0

0 0 0 0 0





























; B1 =





























a −2a 0 0 0

−2a 4a + b −2(a + b) 0 0

0 −2(a + b) a + 4b + c −2(b + c) 0

0 0 −2(b + c) b + 4c −2c

0 0 0 −2c c





























Remark 12 Lemma 11 can be used recursively, beginning with the outermost

s diagonal and working inward, to establish that Dsym =
∑s

i=0[D1
i]Λi[D1

i]
T
.

Each step generates a new symmetric matrix with a bandwidth that is equal
to 2 less than the previous value until only a diagonal matrix remains. Thus,
the algorithm terminates after s + 1 steps with the desired decomposition.

Remark 13 This recursive algorithm works for nonperiodic matrices in mul-
tiple spatial dimensions.

8.2 ESWENO Schemes of Third- and Fourth-Order

Based on equation (13), f̂j+ 1
2

defined for a third- or fourth-order WENO
scheme is

f̂j+ 1
2

= wL
j+1/2f

L
j+1/2 + wC

j+1/2f
C
j+1/2 + wR

j+1/2f
R
j+1/2

(88)

where wL , wC , and wR are weight functions that are assigned to each respec-
tive stencil. The second-order linear fluxes: f

(r)
j+1/2, defined in equation (88) for
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r = {L, C, R}, are















fL(uj+1/2)

fC(uj+1/2)

fR(uj+1/2)















= 1
2















−1 3 0 0

0 1 1 0

0 0 3 −1



































f(uj−1)

f(uj)

f(uj+1)

f(uj+2)





















(89)

The terms wL , wC , and wR are the nonlinear weight functions that are given
by equations (58) and (59) with

τ3 =











(−fj−1 + 3fj − 3fj+1 + fj+2)
2, for ϕ 6= 0

(fj−1 − 2fj + fj+1)
2, for ϕ = 0

(See ref. [1] for further details). These weight functions have preferred values
that are derived from underlying linear schemes, as well as solution-dependent
components. The preferred values are given by the formulae

dL
: = 1

3
− ϕ ; dC

: = 2
3

; dR
: = ϕ , (90)

where ϕ is a parameter. The convergence rate of equation (13), with the pre-
ferred weight values that are given in equation (88), is equal to 3 for all values
of the parameter ϕ except ϕc = 1

6
, for which the convergence rate is 4.

Combining equation (89) with equation (88) and substituting the resulting
WENO flux f̂j+ 1

2
into equation (13) produces a stencil for the jth grid point

of the form

D3
j,k = 1

2∆x



































0 −wL
j+1/2 3wL

j+1/2 0 0

0 0 wC
j+1/2 wC

j+1/2 0

0 0 0 3wR
j+1/2 −wR

j+1/2

wL
j−1/2 −3wL

j−1/2 0 0 0

0 −wC
j−1/2 −wC

j−1/2 0 0

0 0 −3wR
j−1/2 wR

j−1/2 0































































f(uj−2)

f(uj−1)

f(uj )

f(uj+1)

f(uj+2)





























(91)

with k on the interval j − 2 le k ≤ j + 2.

Simplifying D3 using the expression

wC
: = 1 − wL

: − wR
:
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yields expressions for a single row of the D3 matrix of the following form

D3
j,k =

1

2∆x

























































...

0

wL
j−1/2

−2wL
j−1/2 − wL

j+1/2 + wR
j−1/2 − 1

wL
j−1/2 + 2wL

j+1/2 − 2wR
j−1/2 − wR

j+1/2

−wL
j+1/2 + wR

j−1/2 + 2wR
j+1/2 + 1

−wR
j+1/2

0
...

























































T

(92)

The derivative matrix D3 is now decomposed into symmetric and skew-symmetric
parts

D3 = D3
skew + D3

sym .

As with the fifth-order case, the skew-symmetric component and the norm of
D3 take the forms

D3
skew = P−1Q3 ; Q3 + QT

3 = 0 ; P = ∆xI .

while the matrix D3
sym is expressed as

D3
sym = P−1

(

D1
2 Λ3

2 [D1
2]

T
+ D1

1 Λ3
1 [D1

1]
T

+ D1
0 Λ3

0 [D1
0]

T
)

(93)

where Λ3
j is a diagonal matrix with the expressions for the jth element defined

by

(λ3
2)j,j =

1

4

[

wL
j+3/2 − wR

j+1/2

]

(94)

(λ3
1)j,j =

1

4

[

−wL
j+3/2 + wL

j+1/2 − wR
j+1/2 + wR

j−1/2

]

(95)

(λ3
0)j,j = 1

2
[ −wL

j−1/2 − wC
j−1/2 − wR

j−1/2

+wL
j+1/2 + wC

j+1/2 + wR
j+1/2

]

= 0 .
(96)

If we define (λ̄3
i )j,j, i = 1, 2, to be smoothly positive, then

(λ̄3
i )j,j =

1

2
[

√

(λ3
i )

2
j,j + δ2

i − (λ3
i )j,j] ,
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and the additional artificial dissipation operator is given by

D̄3
ad = P−1

2
∑

i=1

[D1
i](Λ̄3

i )[D1
i]

T
,

The resulting energy-stable scheme is obtained by adding the additional dis-
sipation term to the corresponding conventional WENO scheme as

D̄3 = D3 + D̄3
ad .

8.3 ESWENO Schemes of Seventh- and Eighth-order

The f̂j+ 1
2
, defined for the seventh- and eighth-order WENO schemes, is

f̂j+ 1
2

= wLL
j+1/2f

LL
j+1/2 + wL

j+1/2f
L
j+1/2 + wC

j+1/2f
C
j+1/2

+ wR
j+1/2f

R
j+1/2 + wRR

j+1/2f
RR
j+1/2,

(97)

where wLL, wL , wC , wR , and wRR are weight functions that are assigned to
each respective stencil, and are given by equations (58) and (59) with

τ7 =











(fj−3 − 7fj−2 + 21fj−1 − 35fj + 35fj+1 − 21fj+2 + 7fj+3 − fj+4)
2 , for ϕ 6= 0

(−fj−3 + 6fj−2 − 15fj−1 + 20fj − 15fj+1 + 6fj+2 − fj+3)
2 , for ϕ = 0

The fourth-order linear fluxes f
(r)
j+1/2 for r = {LL, L, C, R, RR}, which are used

in equation (97) are defined as





























fLL(uj+1/2)

fL(uj+1/2)

fC(uj+1/2)

fR(uj+1/2)

fRR(uj+1/2)





























= 1
12





























−3 13 −23 25 0 0 0 0

0 1 −5 13 3 0 0 0

0 0 −1 7 7 −1 0 0

0 0 0 3 13 −5 1 0

0 0 0 0 25 −23 13 −3















































































f(uj−3)

f(uj−2)

f(uj−1)

f(uj)

f(uj+1)

f(uj+2)

f(uj+3)

f(uj+4)



















































(98)

The derivative matrix D7 is now decomposed into symmetric and skew-symmetric
parts as

D7 = D7
skew + D7

sym .
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As with the fifth-order case, the skew-symmetric component of D7 takes the
form

D7
skew = P−1Q7 ; Q7 + QT

7 = 0 ; P = ∆xI .

The scheme converges with seventh-order accuracy if the weights are equal to
their preferred values

dLL
: = 1

35
− ϕ , dL

: = 12
35

− 8ϕ , dC
: = 18

35
, dR

: = 4
35

+ 8ϕ , dRR
: = ϕ (99)

and with eighth-order accuracy for the specific value ϕc = 1
70

.

The D7
sym can be simplified into the form

D7
sym = P−1

(

D1
4 Λ7

4 [D1
4]

T
+ D1

3 Λ7
3 [D1

3]
T

+ D1
2 Λ7

2 [D1
2]

T

+ D1
1 Λ7

1 [D1
1]

T
+ D1

0 Λ7
0 [D1

0]
T
)

(100)

where Λ7
j is a diagonal matrix with expressions for the jth element defined by

(λ7
4)j,j =

1

8

[

wLL
j+7/2 − wRR

j+1/2

]

(101)

(λ7
3)j,j = 1

24
[ +wLL

j+5/2 − 9wLL
j+7/2 + wL

j+5/2

−wR
j+1/2 + 9wRR

j−1/2 − wRR
j+1/2

]
(102)

(λ7
2)j,j = 1

24
[ +2wLL

j+3/2 − 11wLL
j+5/2 + 9wLL

j+7/2

+2wL
j+3/2 − 2wL

j+5/2

−wC
j+1/2 + wC

j+3/2

+2wR
j−1/2 − 2wR

j+1/2

−9wRR
j−3/2 + 11wRR

j−1/2 − 2wRR
j+1/2

]

(103)

(λ7
1)j,j = 1

24
[ +6wLL

i+1/2 − 13wLL
i+3/2 + 10wLL

i+5/2 − 3wLL
i+7/2

+3wL
i+1/2 − 4wL

i+3/2 + wL
i+5/2

+wC
i−1/2 − wC

i+3/2

−wR
i−3/2 + 4wR

i−1/2 − 3wR
i+1/2

+3wRR
i−5/2 − 10wRR

i−3/2 + 13wRR
i−1/2 − 6wRR

i+1/2

]

(104)
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(λ7
0)j,j = 1

2
[ −wLL

i−1/2 − wL
i−1/2 − wC

i−1/2 − wR
i−1/2 − wRR

i−1/2

+wLL
i+1/2 + wL

i+1/2 + wC
i+1/2 + wR

i+1/2 + wRR
i+1/2

]

= 0 .
(105)

If we Define (λ̄7
i )j,j, i = 1, 4, to be smoothly positive as

(λ̄7
i )j,j =

1

2
[

√

(λ7
i )

2
j,j + δ2

i − (λ7
i )j,j] ,

the additional artificial dissipation operator is given by

D̄7
ad = P−1

4
∑

i=1

[D1
i](Λ̄7

i )[D1
i]

T
,

and the resulting energy-stable scheme is obtained by adding the additional
dissipation term to the corresponding conventional WENO scheme as

D̄7 = D7 + D̄7
ad .
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