The HITRAN 2008 Molecular Spectroscopic Database

L.S. Rothmana,*, I.E. Gordona, A. Barbeb, D. Chris Bennerc, P.F. Bernathd, M. Birke, V. Boudonf, L.R. Browng, A. Campargueb, J.-P. Championh, K. Chancea, L.H. Couderti, V. Danai, V.M. Devii, S. Fallyb,i, J.-M. Flaudi, R.R. Gamachea, A. Goldmanm, D. Jacquemarti, I. Kleineri, N. Lacomen, W.J. Laffertyo, J.-Y. Mandini, S.T. Massiep, S. Mikhailenkoq, C.E. Millerb, N. Moazzen-Ahmadir, O.V. Naumenkoq, A. Nikitinq, J. Orphali, A. Predoi-Crosss, V. Perevalovq, A. Perrini, C.P. Rinslandt, M. Rotgerb,f, M. Šimečkováa†, M.A.H. Smitht, K. Sungg, S. Tashkunq, J. Tennysonu, R.A. Tothg, A.C. Vandaelev, J. Vander Auweraw,

aHarvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge MA 02138, USA

bUniversité de Reims-Champagne-Ardenne, Groupe de Spectrométrie Moléculaire et Atmosphérique, 51062 Reims, FRANCE

cThe College of William and Mary, Department of Physics, Williamsburg VA 23187, USA

dUniversity of York, Department of Chemistry, York, UK

eDLR – Remote Sensing Technology Institute, Wessling, GERMANY

fCNRS-Université de Bourgogne, Institut Carnot de Bourgogne, 21078 Dijon, France

gCalifornia Institute of Technology, Jet Propulsion Laboratory, Pasadena CA 91109, USA

hUniversité Joseph Fourier/CNRS, Laboratoire de Spectrométrie Physique, 38402 Saint-Martin-d’Hères, FRANCE

iCNRS et Universités Paris Est et Paris 7, Laboratoire Inter-Universitaire des Systèmes Atmosphériques, 94010 Créteil, FRANCE

jUPMC Univ Paris 06, UMR 7092, Laboratoire de Physique Moléculaire et Applications, 75252 Paris, FRANCE

kUniversité Libre de Bruxelles, Service de Chimie Quantique et Photophysique, C.P. 160/09, B-1050 Brussels, BELGIUM

lUniversity of Mass Lowell, Dept. of Environmental Earth & Atmospheric Sciences, Lowell MA 01854, USA

mUniversity of Denver, Department of Physics, Denver CO 80208, USA

nUPMC Univ Paris 06, UMR 7075, Laboratoire de Dynamique, Interactions et Réactivité, 75252 Paris, FRANCE

oNational Institute of Standards and Technology, Gaithersburg MD 20899 USA

pNational Center for Atmospheric Research, Boulder CO 80307, USA

qInstitute of Atmospheric Optics, Tomsk 634055, RUSSIA

rUniversity of Calgary, Department of Physics and Astronomy, Calgary, AB T2N 1N4, CANADA

sUniversity of Lethbridge, Department of Physics and Astronomy, Lethbridge, AB T1K 3M4, CANADA

tNASA Langley Research Center, Atmospheric Sciences, Hampton VA 23681, USA

uUniversity College London, Dept. of Physics and Astronomy, London WC1E 6BT, UK

vInstitut d’Aéronomie Spatiale de Belgique, B-1180 Brussels, BELGIUM

Received: __________________________

*Corresponding author: Tel.: +1 (617) 495-7474; fax: +1 (617) 496-7519. E-mail address: lrothman@cfa.harvard.edu (L.S. Rothman).

†Current address: J. Heyrovsky Institute of Physical Chemistry, Prague, Czech Republic

‡Current address: Institut d’Aéronomie Spatiale de Belgique, B-1180 Brussels, BELGIUM
Abstract

This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are not resolved; individual line parameters and absorption cross-sections for bands in the ultra-violet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for forty-two molecules including many of their isotopologues.

Keywords: HITRAN; Spectroscopic database; Molecular spectroscopy; Molecular absorption; Spectroscopic line parameters; Absorption cross-sections; Aerosols
1. Introduction

This article describes the data that have been added, modified, or enhanced in the HITRAN (High Resolution Transmission) compilation since the previous update of 2004 [1] (hereafter called HITRAN2004 in the text). The compilation encompasses the HITRAN line-transition parameters, infrared cross-sections, UV line-by-line parameters and cross-sections, aerosol refractive indices, and documentation. The file structure for the compilation remains the same as the previous edition and can be seen in Fig. 1 of Ref. [1]. The compilation is available on an anonymous ftp site. Instructions for accessing the database can be found in the HITRAN web site (http://www.cfa.harvard.edu/HITRAN).

The HITRAN database is the recognized international standard, used for a vast array of applications including terrestrial and planetary atmospheric remote sensing, transmission simulations, fundamental laboratory spectroscopy studies, industrial process monitoring, and pollution regulatory studies. An international HITRAN advisory committee, composed of a dozen experts in the field of spectroscopy, has been established under the auspices of NASA. This committee reviews and evaluates new data and makes recommendations for updates and replacements in the compilation.

Many recent developments have pushed the requirements of HITRAN in terms of accuracy and degree of completeness. Among these developments one can cite the retrievals that various satellite remote-sensing missions are now capable of due in part to the high signal-to-noise ratio of the spectra and to advances in retrieval algorithms. Notable satellite spectrometer instrumentation include MLS (Microwave Limb Sounder) [2] and TES (Tropospheric Emission Spectrometer) [3] on the Aura platform, MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) [4] on ENVISAT, ACE-FTS (Atmospheric Chemistry Experiment) [5]
on SCISAT, AIRS (Atmospheric Infrared Sounder) [6] on Aqua, IASI (Infrared Atmospheric Sounding Interferometer) [7] on MetOP-A, OCO (Orbiting Carbon Observatory) [8], and GOSAT (Greenhouse gases Observing SATellite) [9]. These satellite instruments have put demands on HITRAN that include increased accuracy (by almost an order of magnitude in some cases) for the basic parameters: line position in vacuum wavenumbers, \(\nu \) (in cm\(^{-1}\)), intensity of the line, \(S \) (in cm\(^{-1}\)/(molecule cm\(^{-2}\))), and line-shape parameters.\(^1\) They also require more species, additional molecular bands, and weak lines throughout the spectral region covered by HITRAN (microwave through UV). In fact, the remote-sensing experiments have demonstrated that the basic Lorentz line-shape parameter for collisional broadening used in HITRAN, from which it is possible to calculate the Voigt line profile, is not satisfactory in many cases. To reduce the residuals between observation and simulation, it has often been necessary to invoke more sophisticated non-Voigt line shape functions such as Rautian or Galatry [10] and line mixing.

Section 2 of this paper presents the most significant of the improvements featured in this newly updated edition of HITRAN as it relates to the line-by-line parameters. Note that the line lists described here either include or supersede intermediate updates that were placed on the HITRAN web site after HITRAN2004. The status of the infrared cross-sections, sets of ultraviolet data, and the aerosol refractive indices of aerosols, are discussed in sections 3 through 5.

\(^1\)The HITRAN database does not adhere to SI units for both historical and application-specific reasons. We also employ the symbol \(\nu \) throughout for line position in cm\(^{-1}\), thereby dropping the tilde (\(\tilde{\nu} \)) that is the official designation of wavenumber. We normally express the HITRAN unit for intensity as cm\(^{-1}\)/(molecule cm\(^{-2}\)) rather than simplifying to the equivalent cm/molecule. In this way we emphasize the quantity as wavenumber per column density, which is consistent with the viewpoint of atmospheric radiative-transfer codes.
2. Line-by-line parameters

This edition of *HITRAN* contains three new entries, methyl bromide (CH$_3$Br), methyl cyanide (CH$_3$CN), and tetrafluoromethane (CF$_4$). It is worth repeating that the number of transitions included in the database is limited by: (1) a reasonable minimum cutoff in absorption intensity (based on the sensitivity of instruments that observe absorption over extreme terrestrial atmospheric path lengths), (2) lack of sufficient experimental data, or (3) lack of calculated transitions.

The format for the line-by-line portion of the compilation remains the same as in the previous edition (see Table 1 of Ref. [1]), except that the self-broadened half-width parameter has now been written in a Fortran format of F5.3 rather than F5.4. The latter distinction is not significant unless the user employs the Fortran write function.

The molecules for which data are included in the line-by-line portion of *HITRAN* are mostly composed of small numbers of atoms and have low molecular weights. Large polyatomic molecules have many normal modes of vibration and “heavy” species have fundamentals at very low wavenumbers. For three of the molecules in this edition of *HITRAN*, SF$_6$, ClONO$_2$, and CF$_4$, we have kept the parameters for this edition in a supplemental folder (see Fig. 1 of Ref. [1]). The rationale for this is that the line-by-line parameters represent only a few bands, and neglect many significant hot bands for the “heavy” species. For most applications, the IR cross-sections of these molecules in the *HITRAN* compilation provide a better simulation.

The user of the HITRAN line-by-line data and the cross-section data is encouraged to consult and cite the original sources of the data. In the case of the line-by-line parameters, there are indices pointing to the sources of six parameters: the transition wavenumber, ν; the intensity, S; the air- and self-broadened half-width parameters, γ_{air} and γ_{self}; the exponent for the
temperature dependence of the air-broadened half-width parameter, \(n \); and the air-pressure shift parameter, \(\delta \). The sources are contained in a separate file in the compilation.

The following sub sections cover all molecules whose parameters have been updated since the last edition of \textit{HITRAN} [1]. The descriptions are generally ordered by increasing wavenumber region, and we have attempted to describe the improvements in the line positions and intensities prior to those in the other parameters, when feasible. Future improvements are also mentioned where necessary.

\textbf{2.1. \textit{H}_2\textit{O} (molecule 1)}

Water vapor spectroscopy is of paramount importance to many applications. Not only are the spectroscopic parameters needed for studies of the climate and energy budget of the Earth, but also for the atmospheres of stars (see for example Ref. [11]) and now even exoplanets [12]. The recommended line list for water remains in a state of continued evolution. Substantial changes to the half-width parameters for the main isotopologue \(\text{H}_2^{16}\text{O} \) and the addition of new data for isotopically-substituted species are among the prominent recent modifications.

The 2004 edition of \textit{HITRAN} [1] featured a major update in line positions and line intensities for all \textit{HITRAN} water-vapor isotopologues between 500 and 8000 cm\(^{-1}\) based on the work of Toth [13], with the exception of the principal isotopologue which had calculated values from Coudert [14] up to 800 cm\(^{-1}\). However, recently reported measurements of transitions in the \(\nu_2 \) band in the 1000 to 2000 cm\(^{-1}\) range [15] suggest that Toth's data systematically underestimated the intensities of the strongest transitions in this region by between 5 and 10\%. This conclusion is supported by independent \textit{ab initio} calculations [16]. The intensities of the unblended strong lines have therefore been replaced using the new measurements; for four blended strong lines, those located at 1512.30732, 1539.05857, 1539.06079, 1684.83515 cm\(^{-1}\), the theoretical results
are from variational calculations using an *ab initio* dipole surface [17]. There have been other recent measurements at shorter infrared wavelengths [15, 18, 19] as well as a comprehensive *ab initio* analysis of the line intensities [20]. The issue of whether or not adjustments are also needed for the line intensities at these wavelengths is currently being studied with a view to coming up with recommendations for a future edition of the database.

The region 9500 to 14500 cm\(^{-1}\) for the main isotopologue has been updated using the new analysis by Tolchenov and Tennyson [21] who employed a novel fitting technique to reanalyze a series of Fourier transform absorption spectra of pure water vapor recorded by Schermaul et al [22, 23]. However, any data attributed to Brown et al [24] that were in HITRAN2004 have been retained. Analogously, the 14500- to 26000-cm\(^{-1}\) region has been updated using the work of Tolchenov et al [25] replacing the data from Coheur et al [26] in HITRAN2004. Comparisons with previous studies on water-vapor absorption in this region suggest that the new parameters give a more consistent representation of the spectrum.

An update has also been made for the parameters of H\(_2\)\(^{17}\)O and H\(_2\)\(^{18}\)O isotopologues in the near-IR and visible region based on the work of Tanaka et al [27]. This work is a reanalysis of long-path length Fourier transform spectra originally recorded at Kitt Peak by Chevillard et al [28] and analyzed initially by Tanaka et al [29]. The lines listed previously in this region for both isotopologues have been removed and replaced by 1087 lines of H\(_2\)\(^{18}\)O spanning the range 12400 to 14520 cm\(^{-1}\) and 891 lines of H\(_2\)\(^{17}\)O in the range 11365 to 14475 cm\(^{-1}\). In addition, some misidentified lines that have now been attributed to oxygen, have been removed from the water-vapor line list.

A major addition has been made with 3528 monodeuterated water-vapor (HDO) transitions in the near infrared and visible, specifically 11600 to 23000 cm\(^{-1}\). Previous editions of the
database did not contain any HDO transitions in this region. The data are due to a re-analysis by Voronin et al [30] of the long-path Fourier transform spectrum recorded by Bach et al [31].

The pressure-broadened half-width parameters for the three most abundant isotopologues of water, H$_2^{16}$O, H$_2^{18}$O, and H$_2^{17}$O, have been completely updated. Air-broadened half-widths were updated in 2006 (an interim update) using an algorithm based on physical principles and statistics developed by Gordon et al [32], which set a new criterion for the best available air-broadened half-width parameters using a mixture of measurements, calculated, and semi-empirical data. These new parameters have been tested for different remote-sensing applications and were found to give improved profiles for atmospheric constituents. The algorithm has been improved for the current release of HITRAN: additional measurements of γ_{air} and δ [18, 33-39] and γ_{self} [18, 38-45] have been added to the measurement databases. Additional data [46, 47] have been added to the theoretical database of γ_{air}, n, and δ. The database of calculations of γ_{self} for water vapor now contains the data of Antony et al [48, 49] and Cazzoli et al [44].

The temperature dependence of the air-broadened half-widths has now been added to all water-vapor transitions via an algorithm that first seeks values from CRB (Complex Robert-Bonamy) calculations [46, 47, 50]. If a CRB value for a transition is not found, the n values as a function of rotational quantum numbers from Table 7 of Ref. [1] are used.

2.2. CO$_2$ (molecule 2)

High-resolution spectroscopic monitoring of the evolution of carbon dioxide in the terrestrial atmosphere is obviously one of great importance for policy makers. Carbon dioxide is also prevalent in the atmospheres of some rocky planets, such as Venus and Mars. With its many bands of very different intensity throughout the spectrum, carbon dioxide is also an excellent tool for probing atmospheres to different depths.
Since the last edition of the *HITRAN* database [1], there have been a large number of experimental and theoretical investigations of carbon dioxide spectra. A notable effort is the set of extensive Fourier transform spectroscopy (FTS) experiments carried out by the Jet Propulsion Laboratory (JPL) [51-58] in order to support the upcoming Orbiting Carbon Observatory (OCO) mission [8]. The results of these efforts for the 4300 to 7000 cm\(^{-1}\) region have been compiled into a HITRAN-like database [57] with parameters for nine different isotopologues (including \(^{13}\text{C}^{18}\text{O}_2\) which was not previously tabulated in *HITRAN*). The parameters listed in Ref. [57] cover a wide dynamic range (\(4\times10^{-30}\) to \(1.29\times10^{-21}\) cm\(^{-1}\)/(molecule cm\(^{-2}\)) at 296 K) which is substantially larger than the FTS experimental detection limit, i.e. parameters for some high-\(J\) lines as well as for lines of weak unobserved bands were theoretically extrapolated. Parallel experiments featuring the cavity ring down spectroscopy (CRDS) technique [59-64] in the 5851 to 7045 cm\(^{-1}\) region have shown that theoretical extrapolations of the FTS data in Ref. [57] deviate seriously from the CRDS line positions and line intensities for some of the higher-\(J\) lines, while some of the weaker bands, observed to be above \(4\times10^{-30}\) cm\(^{-1}\)/(molecule cm\(^{-2}\)) are missing completely from the predicted line list (see discussion in Refs. [62, 65, 66]). These discrepancies are thought to have a reliable basis because the CRDS technique allows the detection of lines with much weaker intensities than those with the FTS, although CRDS spectra are inferior to FTS spectra in terms of overall accuracy of determining line positions.

Simultaneously, great progress has been made in the global effective Hamiltonian (EH) model developed at the Université Pierre et Marie Curie (Paris, France) and the Institute of Atmospheric Optics (Tomsk, Russia) [67-70], which was used in the calculation of the theoretical Carbon Dioxide Spectroscopic Databank (CDSD) [71], significantly improving and extending the previous version [72] and achieving a pronounced agreement with the CRDS
experiments. The improvement and extension of the CDSD databank have been achieved due to incorporating new measurements performed during the last five years into the global modeling. The above mentioned CRDS measurements in Grenoble and FTS measurements at JPL have had an especially strong impact on the quality of the modeling.

The present atmospheric version of CDSD consists of 419610 lines belonging to $^{12}\text{C}^{16}\text{O}_2$, $^{13}\text{C}^{16}\text{O}_2$, $^{16}\text{O}^{12}\text{C}^{18}\text{O}$, $^{16}\text{O}^{13}\text{C}^{17}\text{O}$, $^{16}\text{O}^{13}\text{C}^{18}\text{O}$, $^{16}\text{O}^{13}\text{C}^{17}\text{O}$, and $^{12}\text{C}^{18}\text{O}_2$ covering a wavenumber range of 5 to 12784 cm$^{-1}$. The intensity cutoff of CDSD was set to 10^{-30} cm$^{-1}$/ (molecule cm$^{-2}$). On average, the residuals between CDSD calculated line positions and those observed are two times larger than measurement uncertainties. CDSD calculated line intensities are almost always within their measurement uncertainties.

The current atmospheric version of the databank is available via an anonymous ftp site ftp.ioa.ru in the folder /pub/CDSD-2008/296. The same site also contains two other dedicated versions of the databank: a version for high-temperature applications (/pub/CDSD-2008/1000) and a version for studying the atmospheres of Venus and Mars (/pub/CDSD-2008/Venus).

The need for a sensible mixing of the experimental and theoretical data is obviously required in the 4300 to 7000 cm$^{-1}$ region in order to support atmospheric remote sensing of the earth-like planets (Earth, Mars and Venus). In order to do that one has to consider the following caveats:

1. The database [57] (hereafter referred to as the OCO dataset) is based on FTS measurements that are very accurate and, besides line positions and intensities, allow measurements of collision broadening parameters. However, theoretical extrapolations applied in the OCO dataset for transitions weaker than 10^{-26} cm$^{-1}$/ (molecule cm$^{-2}$) for the principal isotopologue and 10^{-27} cm$^{-1}$/ (molecule cm$^{-2}$) for the other isotopologues have led to some very large deviations from subsequent observations in predicting line positions and especially intensities.
2. The data collected in the cavity ring down laser experiments (hereafter referred as CRDS data) is nearly complete for the lines stronger than 5×10^{-29} cm$^{-1}$(molecule cm$^{-2}$). However, the typical accuracy of these line positions (1×10^{-3} cm$^{-1}$) is inferior to that of FTS experiments (4×10^{-5} cm$^{-1}$). Finally, CRDS measurements do not provide data below 5851 cm$^{-1}$ and do not provide pressure-induced parameters. Note that the dataset for 13C16O$_2$, 16O13C18O, 16O13C17O, 13C18O$_2$ and 18O13C17O compiled in Ref. [65] provide experimental line positions supplemented with intensities calculated using the Effective Hamiltonian model and effective dipole moment parameters for completeness (13C18O$_2$ and 18O13C17O isotopologues have not been tabulated in HITRAN before). For 12C16O$_2$, 16O12C17O and 16O12C18O [62] only line positions are provided, although parameters for 12C16O$_2$ are also tabulated in Ref. [61] where the experimental line positions and intensities are supplemented with the CDSD intensities.

3. The theoretical CDSD databank is quite complete, with intensities down to 1×10^{-30} cm$^{-1}$(molecule cm$^{-2}$), at least for the majority of the HITRAN isotopologues. It has excellent predictive capabilities for line positions and intensities, although it is, of course, not as good as the accuracy achieved by experiment. In addition, a minor limitation of the EH method occurs when there are interpolyad anharmonic couplings. Four such occurrences have been observed for the asymmetric isotopologues, namely 16O12C18O [62], 16O13C17O [65] and 16O13C18O [64, 65]. Although these resonance interactions are not common for carbon dioxide, small deviations in the values of predicted line positions and line intensities values from their real values cannot be ruled out completely.

With this information in mind, a procedure, shown in a schematic diagram in Fig. 1, was developed in order to keep only the best parameters from the OCO, CRDS and CDSD datasets for compiling the HITRAN2008 CO$_2$ line list in the 4300 to 7000 cm$^{-1}$ region, which completely
replaces HITRAN2004 data in this wavenumber range. In this procedure, the CO$_2$ transitions that are critical for the OCO mission are always assumed to have superior quality within the FTS detection limit (lines stronger than 10^{-26} cm$^{-1}$/molecule cm$^{-2}$) for the principal isotopologue and 10^{-27} cm$^{-1}$/molecule cm$^{-2}$) for the other isotopologues. For the weaker lines in the 5851 to 7045 cm$^{-1}$ region, the CRDS line positions are taken, wherever available, and supplemented with CDSD intensities. For the weak lines not present in the CRDS dataset (this especially concerns lines below 5851 cm$^{-1}$ and blended lines unobserved by CRDS due to overlapping with stronger lines), the CDSD line parameters were taken. The line positions and intensities for two rare isotopologues, 17O12C18O and 18O13C18O, which are absent in CDSD, have been taken from the CO$_2$ list generated for OCO.

Finally, the γ_{air}, γ_{self}, n, and δ parameters, available in the OCO dataset, have been included in this combined line list. Note that these parameters are slightly different from those listed in the supplementary file of Ref. [57], due to improvements accomplished through the newer work of Predoi-Cross et al [73].

All combined (mixed) datasets are relatively new. The procedure suggested above is a temporary but necessary solution that has to be tested against atmospheric retrievals. As new, highly-accurate measurement datasets become available, this procedure will have to be refined for future updates of the HITRAN database.

For the spectral regions below 4300 cm$^{-1}$ and above 7000 cm$^{-1}$ the following improvements have been made to the HITRAN database: (1) The four bands above 9650 cm$^{-1}$ that were added to HITRAN2004 were found to have an error associated with an incorrect account of nuclear spin statistics. These bands have now been replaced with the lines from the CDSD databank above 9650 cm$^{-1}$, which includes several other additional bands. These data are important for the
studies of the Venus atmosphere [74]. (2) In HITRAN2004 some of the bands of the principal isotopologue in the 2.8-\mu m region were based on extrapolations of limited experimental data. For example, the 23301-02201 band (centered at 3555 cm\(^{-1}\)) contained 188 lines which were extrapolated from 16 measured lines and the interaction between the vibrational levels 23301 and 12212 was not well accounted for at higher-\(J\) values. An analogous problem occurs in the 40012-11102 band (centered at 5802 cm\(^{-1}\)). Thus, the line positions and intensities for these bands were replaced with the ones from the CDSD databank. (3) Recent FTS measurements [75] of the line intensities for the 11112-01101 band of the \(^{13}\)C\(^{16}\)O\(_2\) isotopologue (centered at 3499 cm\(^{-1}\)) have shown differences up to 100% compared to HITRAN2004 (the error code in the former HITRAN indeed indicated problems for this band). The intensities of this band were previously calculated by the DND method of Wattson and Rothman [76], which did not fully account for perturbations. Therefore, the parameters for this band have been replaced with the ones from CDSD. (4) As was noted by Wang et al [77], the HITRAN2004 line positions of the 30003-00001 band (at 3857 cm\(^{-1}\)) for \(^{16}\)O\(^{12}\)C\(^{18}\)O differ from new experimental ones by -0.1 to 0.1 cm\(^{-1}\), while positions of the 21112e-01101e subband (at 4965 cm\(^{-1}\)) differ in the range of 0.002 to 0.257 cm\(^{-1}\). These line positions have now been replaced with line positions calculated using the EH method. (5) Although at this point the high-quality experimental data from Toth et al [58] have not yet been included into HITRAN, we note the remark in that work that experimental line intensities of the 10012-00001 band for \(^{16}\)O\(^{13}\)C\(^{18}\)O (at 3490 cm\(^{-1}\)) differ from those in HITRAN2004 by amounts from -8% to 31%. Now the intensities of these lines have been replaced with those from CDSD, which agree very well with Ref. [58]. (6) In the 11112-11102 band of the principal isotopologue (at 2315 cm\(^{-1}\)), all HITRAN2004 line positions with uncertainty code 0 were replaced with the line positions and intensities from CDSD. (7) The
intensity cutoff that was applied to earlier editions of the *HITRAN* database for CO$_2$ has been lowered and is now 4×10^{-30} cm$^{-1}$. Therefore weak bands from the CDSD databank that did not appear previously in *HITRAN* [1] have been included in the new edition.

Finally, the parameters for broadening coefficients available from the OCO dataset have been applied to all the bands, even outside the OCO spectral region. Although the line-shape parameters have been improved throughout the database, the improvements are only within the formalism of the Voigt line-shape profile, which is known to be inadequate to model the line shape given the precision of modern instruments used in atmospheric retrievals. In addition, the line mixing parameters have not been updated or extended in *HITRAN*, and this is one of the major issues that will be addressed in future updates.

2.3. O$_3$ (molecule 3)

Monitoring ozone in the atmosphere has been a major issue for two different respects: its deleterious effects in the troposphere as a pollutant and its protective effect in the upper-atmosphere layer. Furthermore, detection of ozone in the atmospheres of exosolar planets might be an indicator of oxygen, which is more difficult to observe spectroscopically.

A major update has been made for the first three isotopologues of ozone, 16O16O16O, 16O16O18O, and 16O18O16O. The line positions, intensities, and lower-state energies correspond to the S&MPO (Spectroscopy and Molecular Properties of Ozone) databank [78]. These results are based on the analyses of the absorption spectra recorded by the GSMA (Groupe de Spectrométrie Moléculaire et Atmosphérique) using the FTS of Reims University [79]. All these data have been published previously and are briefly described below. The list of the bands included in *HITRAN* for the first time is shown in Table 1. The updated bands are listed in Table 2.
Calculation of the line positions of all bands was made by using Hamiltonian parameters for the lower energy levels from Ref. [96] for the (000), (100) and (001) vibrational states, from Ref. [87] for the (010) state, and from Ref. [88] for the (020) state.

The references for the newly included bands are given in Table 1 for the line positions (column 5) and for the line intensities (column 6). An additional detailed description of the improvements in the 2550 to 2900 cm\(^{-1}\) spectral region is given in a recent paper [100].

The upper-state energies of 24 bands listed in Table 2 (except \(2\nu_2 + 2\nu_3 - 2\nu_2\) and \(\nu_1 + 2\nu_2 + \nu_3 - 2\nu_2\)) were calculated using Hamiltonian parameters [89]. The transition moment parameters for the cold bands listed in this table (2590 - 3400 cm\(^{-1}\) spectral range) are given in Ref. [89]. Calculation of the hot-band line intensities was made with the transition moments of Refs. [92] and [95]. The main term of the dipole transition moment of the \(3\nu_3 - \nu_1\) band was estimated to be \(\mu_1^{(003)-(100)} = -1\times10^{-3}\) Debye [97]. The upper-state energies and line intensities of the \(2\nu_2 + 2\nu_3 - 2\nu_2\) and \(\nu_1 + 2\nu_2 + \nu_3 - 2\nu_2\) bands were calculated using Hamiltonian parameters from Ref. [90] and transition moments from Ref. [95].

The least known part of the mid-infrared ozone (\(^{16}\)O\(_3\)) absorption spectrum is now in the range of 2.45 - 2.78 \(\mu\)m (3600 - 4080 cm\(^{-1}\)). First of all, the \(\nu_2 + 3\nu_3\) and, especially, \(\nu_1 + \nu_2 + 2\nu_3\) bands must be updated in a future edition by the data reported by Bouazza et al [94] for the 3600 - 3830 cm\(^{-1}\) region. Secondly, the \(\nu_1 + 4\nu_3 - \nu_3\) hot band must be taken into account for the 3865 - 3895 cm\(^{-1}\) region. The line positions of this band have been used by Flaud et al [112] for determination of the rotational energies of the (104) vibrational state, but the line intensities have not been analyzed. According to an estimate of Barbe and Mikhailenko, the total band intensity \(S_\nu(\nu_1 + 4\nu_3 - \nu_3)\) can be of the order of 20% of \(S_\nu(2\nu_1 + \nu_2 + \nu_3)\) (see Table 1).
Thirdly, the region of the $v_1 + 3v_3$, $4v_3$, and $3v_1 + v_2$ bands (3900 - 4080 cm$^{-1}$) analyzed by Perrin et al [108] must be revisited. In particular, the R_R branch of the $4v_3$ band (4033 - 4065 cm$^{-1}$) is not reproduced by current data.

The lower-state energies of both 18O enriched species have been calculated using the Hamiltonian parameters of Ref. [117]. The upper-state energies were calculated with Hamiltonian parameters of Refs. [118] and [119] for 16O16O18O and 16O18O16O, respectively. Transition moment parameters reported by Barbe and De Backer-Barilly [120] were used for calculations of the line intensities of both species. Tables 3 and 4 list the updates for 16O16O18O and 16O18O16O, respectively.

The new data cover bands in the spectral range 593 to 5786 cm$^{-1}$, thereby extending the short wavelength coverage of HITRAN as well (from 2.5 µm to 1.7 µm). The total number of transitions has increased significantly, from 311481 to 409686. In addition, an improved algorithm for incorporating the ozone line-shape parameters has been used for all ozone bands throughout the compilation.

The majority of HITRAN2004 air-broadened half-width parameters of ozone lines and their temperature dependences were calculated using polynomials derived by Wagner et al [121] separately for the v_1/v_2 and v_3 bands. The polynomials derived for the v_3 band were applied for all the bands in the database except the v_1 and v_2 bands. This has been revised now and the v_1/v_2 polynomials from Wagner et al [121] were used for all B-type bands and the ones from the v_3 band were used for all A-type bands. For instance, the pure rotational band is a B-type band and the coefficients derived from the v_1/v_2 polynomials agree better with the values measured in the pure rotational band (for example with measurements in Ref. [122]) than those from v_3.

polynomials. In addition, a new polynomial was derived for γ_{air} in the B-type bands for the cases where $J = K_a$ by fitting the data from Refs [123, 124]. This polynomial was applied to B-type transitions with $J'' \leq 12$. In HITRAN2004 a polynomial derived by Flaud et al [125] was used to calculate γ_{air} for the transitions outside the range of applicability of the Wagner et al polynomials [121]. These coefficients have been scaled by a factor of 1.05, as it was found that they are underestimated at higher J.

There is still a long way to go in order to improve the broadening parameters of ozone. This especially concerns the temperature exponents where the experimental measurements rarely agree with each other or with the theoretical calculations.

2.4. N$_2$O (molecule 4)

Concerning nitrous oxide, it was discovered that two strong P(1) lines (at 578.5261 and 1167.2943 cm$^{-1}$) were absent from the HITRAN2004 edition. These lines have been restored. In addition, 6 lines of a weak, highly perturbed band (0600-1000) around 4.6 μm have been added. Energy levels as well as the lower state levels of the perturbed state, 0600, were computed from the coefficients given in Ref. [126] and the interaction parameters for intensities are presented in Ref. [127]. Only the strongly perturbed transitions were considered around and including $J = 47$.

2.5. CO (molecule 5)

The line parameters of carbon monoxide have not undergone a revision and remain the same as in HITRAN2004.

2.6. CH$_4$ (molecule 6)

The need for reliable high-resolution methane parameters throughout the spectrum is driven by many applications. Besides being a major greenhouse gas and absorber in the terrestrial
atmosphere, it is a major component of the giant gas planets, (Jupiter, Saturn, Uranus, Neptune) and of the atmosphere of Saturn's main satellite, Titan [128]. It is also prominent in the atmospheres of brown dwarf stars, and has recently been identified by Swain et al [129] in the atmosphere of an exosolar planet.

The parameters of $^{12}\text{CH}_4$ have been updated, and a few new bands of CH$_3$D were added, but no changes were made in the $^{13}\text{CH}_4$ parameters. The minimum intensity limit was set to 10^{-29} cm$^{-1}$/(molecule cm$^{-2}$) at 296 K to account for increasing sensitivity in remote-sensing instrumentation. Significant changes were made for γ_{air} between 5800 and 6180 cm$^{-1}$.

The $^{12}\text{CH}_4$ line positions and intensities were revised from 0 to 3300 cm$^{-1}$ using calculated values from the new global analysis by Albert et al [130] for the three lowest polyads (ground state, dyad from 900 to 1900 cm$^{-1}$ and pentad from 1900 to 3400 cm$^{-1}$). Figure 2 shows the polyad scheme for $^{12}\text{CH}_4$ and also demonstrates the increasing complexity as one progresses to higher wavenumber. In the far-IR, the intensities of ground-state transitions were adjusted by 16% to match the results of Wishnow et al [131], but no change was required for the dyad-dyad hotbands. Some predicted pentad positions were replaced by semi-empirical upper-state energy levels obtained by adding calculated lower-state energies to observed positions. Because further intensity analyses are needed to meet required atmospheric remote-sensing accuracies, the semi-empirical HITRAN [1] parameters were retained for the hot bands in the dyad and pentad regions (900 to 3500 cm$^{-1}$); in the latter interval, a minimum intensity limit of hot bands was 10^{-27} cm$^{-1}$/(molecule cm$^{-2}$) at 296 K. For similar reasons, no change was made for the octad (3200 to 4900 cm$^{-1}$).

A number of improvements were made to the empirical linelist near 6000 cm$^{-1}$. First, the intensities and half-widths retrieved by Frankenberg et al [132] replaced existing values for the
5860 to 6180 cm\(^{-1}\) region. During the format conversion for \textit{HITRAN} 2004 [1], the empirical lower-state energies of Margolis [133, 134] given previously were corrupted. These values have been restored, and additional values from Gao et al [135] were added. Misaligned fields in the near-IR quantum numbers were corrected, but only a few new assignments were entered to existing entries. However, weak lines with intensities less than \(10^{-24}\) cm\(^{-1}\)/(molecule cm\(^{-2}\)) at 296 K are still missing between 5500 and 6180 cm\(^{-1}\).

For broadening parameters, if there were no direct measurements of half-widths and pressure shifts [136, 137], then estimated default values for \(\gamma_{\text{air}}, \gamma_{\text{self}}, n,\) and \(\delta\) (similar to those used in \textit{HITRAN} 2000 [138] and 2004 [139]) were used for most of the transitions up to 5860 cm\(^{-1}\); the exceptions were approximately 4000 measured or theoretically-predicted broadening coefficients inserted on a line-by-line basis. For the dyad, new measurements of \(\gamma_{\text{air}}, \gamma_{\text{self}}, n,\) and \(\delta\) of about 500 transitions were taken from Smith et al [140, 141]. For the pentad, about 500 prior measurements [138] were used along with approximately 3800 predicted values for \(\gamma_{\text{air}}, n,\) and \(\delta\) of the \(\nu_3\) transitions from Antony et al [142]. Scaled N\(_2\)-broadening from Frankenberg et al [132] were inserted from 5860 to 6184 cm\(^{-1}\) and a few hundred values for \(\gamma_{\text{air}}\), were entered between 5560 to 5860 cm\(^{-1}\) [143]. The value for the parameter \(n\) was set either to a default constant (0.75 below 5860 cm\(^{-1}\) or 0.85 above 5860 cm\(^{-1}\)) unless direct measurements were available (Lyulin et al [143]).

There are a number of ongoing and recent studies [143, 144] which can further improve the near-IR parameters (4800 to 7700 cm\(^{-1}\)). It is expected that an interim update of this region and a new semi-empirical list of the octad will be available within one year. Finally, the list described here is tailored for Earth remote sensing and will be inadequate to interpret high-temperature spectra (e.g. Thievin et al [145]). More extensive calculation of weaker transitions and partition
functions [146] can be found at http://icb.u-bourgogne.fr/OMR/SMA/SHTDS. As usual, the predicted values beyond the range of measurements are expected to become very inaccurate because of extensive ro-vibrational interactions.

Most of the parameters for the monodeuterated form of methane, CH$_3$D, were retained from HITRAN2004. For the 2008 modifications, the positions and intensities of the far-IR (rotational) transitions were replaced with improved predictions, and a total of nine new bands were added at three different wavelengths (8, 2.9 and 1.56 μm). The far-IR prediction, based on the frequency analysis of Lattanzi et al [147], was obtained from the JPL and Cologne Molecular Spectroscopy databases [82, 148, 149]. Because 13CH$_3$D was detected in Titan’s atmosphere [150], this species was added to the database for the first time. The prediction of the 13CH$_3$D triad (v_6, v_3 and v_5) near 8 μm used a program written for C$_3$v molecules by Tarrago and Delaveau [151]. This prediction was based on the position analysis by Ulenikov et al [152] and employed the transition-moment parameters of the 12CH$_3$D isotopologue from Brown et al [153]. Six new 12CH$_3$D vibrational bands were also added in the near-IR, using the analyzed positions and line intensities of $v_2 + v_3$, $v_2 + v_5$, $v_2 + v_6$, $v_3 + 2v_6$ and $3v_6$ at 2.9 μm by Nikitin et al [154] and empirical measurements of $3v_2$ at 1.56 μm reported by Boussin et al [155]. The values for γ_{air} and γ_{self} were generally obtained using empirical formulae obtained from 12CH$_3$D triad measurements [1, 156]. However, γ_{air}, γ_{self}, and δ values observed by Boussin et al [155] were used for $3v_2$. The temperature dependence of the half-widths, n, was crudely estimated in all bands using CH$_4$ values averaged by J [1]. The new mid- and near-IR parameters are considered to be preliminary and so rather conservative accuracies were set; this certainly indicates that additional laboratory and theoretical studies are needed.

2.7. O$_2$ (molecule 7)
The line positions, intensities, and pressure-broadening parameters (γ_{air}, γ_{air}, and δ) of the oxygen A-band ($b^3\Sigma_g^+ \leftarrow X^3\Sigma_g^-$) near 13100 cm$^{-1}$ were modified for all three isotopologues ($^{16}\text{O}_2$, $^{16}\text{O}^{18}\text{O}$, and $^{16}\text{O}^{17}\text{O}$). The $^{16}\text{O}_2$ line positions and pressure shifts in HITRAN2004 in this region were replaced with values from Robichaud et al [157] and intensities and the self- and air-broadened half-widths from Robichaud et al [158]; these measurements obtained for the P branch using cavity ringdown spectroscopy [159] were extrapolated to the R branch. The value of the temperature dependence of half-widths from Brown and Plymate [160] was retained, however. The positions and intensities of the two minor oxygen species were taken from Robichaud et al [161]. For all three species, the half-widths were computed with the empirical formula derived from Yang et al [162],

$$\gamma = A + \frac{B}{1 + c_1 J' + c_2 J'^2 + c_3 J'^4} \quad (1)$$

using the $^{16}\text{O}_2$ constants from Table 6 of Robichaud et al [158]. The measured values of δ of the $b^3\Sigma_g^+ \leftarrow X^3\Sigma_g^-$ band were taken from Robichaud et al [157] for the P Branch, but averages of shifts from Predoi-Cross et al [163] were used for the R branch.

These modifications improve the accuracies of the parameters in several different aspects. The positions are now referenced to atomic potassium calibration standards [164], resulting in accuracies of 0.00006 cm$^{-1}$ or better for $^{16}\text{O}_2$ and $^{16}\text{O}^{18}\text{O}$, and 0.0005 cm$^{-1}$ for $^{16}\text{O}^{17}\text{O}$. The differences between HITRAN2004 and new positions are relatively small for the main and least abundant species (0.0007 cm$^{-1}$ for $^{16}\text{O}_2$ and 0.002 cm$^{-1}$ for $^{16}\text{O}^{17}\text{O}$), but much larger for $^{16}\text{O}^{18}\text{O}$ (up to 0.20 cm$^{-1}$); counter to the description given for HITRAN2004, the $^{16}\text{O}^{18}\text{O}$ positions were not updated in that edition, and the $^{16}\text{O}^{18}\text{O}$ upper-state levels were still based on results from 1948 [165]. Line intensities are only slightly different: -0.8\% for $^{16}\text{O}_2$, +1\% for $^{16}\text{O}^{18}\text{O}$, and
± 5% for $^{16}\text{O}^{17}\text{O}$ (depending on the rotational quanta) [161]. The accuracies for intensities are thought to be ± 1% or better for the first two species, but more analysis is needed for $^{16}\text{O}^{17}\text{O}$. For the half-widths, the values at high quantum numbers ($J > 22$), previously in error by more than 40% near $J = 30$, are now thought to be accurate to ±2%. Pressure shifts, however, are still rather uncertain (± 0.003 cm$^{-1}$) because values from different studies do not agree (e.g. see Fig. 4 in Robichaud et al [157] and the discussions in Predoi-Cross et al [163, 166]).

It should be emphasized that even with these improvements, the line parameters are not sufficient to reproduce atmospheric observations at 13100 cm$^{-1}$ because Voigt line shapes are inadequate. Tran and Hartmann [167] and Predoi-Cross et al [163, 166] have demonstrated the need to apply line mixing (and perhaps speed dependence) to the A-band. It is thus recommended that these improved line parameters be combined and tested with line-mixing results from Refs. [163, 166, 167].

The $a^1\Delta_g \leftarrow X^3\Sigma_g^+$ band at 1.27 μm has not been updated in some time. This band is very important partly because it is being used as a benchmark in some remote-sensing applications. A new line list is described in Washenfelder et al [168] which is based on laboratory measurements published by Newman et al [169, 170]. These data will be considered for an impending update.

Finally, it was discovered that due to a programming error, the Einstein A-coefficients and statistical weights in HITRAN2004 were in error; they have been recalculated for the entire oxygen line list.

2.8. NO (molecule 8)

The Einstein A-coefficients and statistical weights were recalculated for the three isotopologues in HITRAN, due to a programming error in HITRAN2004. In the process, it was
noted that hyperfine splitting for the microwave and far infrared lines was not included in the HITRAN2004 edition. To include hyperfine spitting for the principal isotopologue, $^{14}\text{N}^{16}\text{O}$, we have adapted data generated in the course of work summarized in Goldman et al [171]. These data also include magnetic-dipole transitions between spin components of the ground electronic state, previously absent in HITRAN. The magnetic-dipole transitions obey different parity selection rules and have been identified by the letter “m” in the first field for upper-state rotational quantum numbers in the HITRAN database.

In addition, we included lines with resolved hyperfine structure from the JPL catalog [148] if these lines were not available from Ref. [171].

2.9. SO_2 (molecule 9)

Because of its presence in interstellar clouds and in the atmosphere of Venus, sulfur dioxide is well known to be both of astrophysical and planetary importance. In the terrestrial atmosphere, SO$_2$ is produced by both anthropogenic and natural sources, and is responsible for the production of acid rain. Strong volcanic eruptions, such as the Mount Pinatubo eruption in the Philippines in June 1991, can deposit a large amount of SO$_2$ in the atmosphere. Once in the stratosphere, sulfur dioxide is converted into sulphate aerosols which affect both stratospheric chemistry and climate. The HITRAN2004 database [1] provided SO$_2$ parameters in seven different spectral regions, which correspond to transitions within the ground vibrational state, and the 19.3-, 8.6-, 7.3-, 4-, 3.7- and 2.5-μm spectral regions. However, as stated in Ref [1], there were considerable differences in the 19.3-, 8.6- and 7.3-μm spectral regions between HITRAN2004 and published papers [172-175]. The 8.6- and 7.3-μm regions are important for atmospheric detection of SO$_2$. The 7.3-μm region corresponds indeed to the strongest SO$_2$ infrared band but unfortunately it has the disadvantage of being overlapped with the strong ν_3
band of water vapor, preventing measurements of SO$_2$ in this infrared region from the ground.

On the other hand, the v_1 band, although about nine times weaker than v_3, corresponds to a rather clear atmospheric window. Finally the 19.3-µm region can be used for retrieving SO$_2$ in the atmosphere of planets.

For all these reasons it was decided to generate a new line list based on the recent published results. It includes not only the cold bands v_2, v_1, and v_3 but also the corresponding hot bands $2v_2 - v_2$, $3v_2 - 2v_2$, $v_1 + v_2 - v_2$ and $v_3 + v_2 - v_2$ as well as the v_3 band of 34SO$_2$.

As far as the air-broadened parameters are concerned, a survey of the literature [176-178] has shown that it was only possible to estimate an average value for this parameter. In fact no variation of this parameter with respect to the lower quantum numbers J or K_a of the transitions could be determined. As an example, Fig. 3 shows the measured parameters with respect to the lower quantum numbers K_a of the transitions. It is clearly difficult to derive any clear variation (the same is true when these parameters are plotted versus the quantum number J) so only an average value of 0.1025 cm$^{-1}$atm$^{-1}$ could be determined.

The situation is completely different for the self-broadening parameters since many measurements spanning a wide range of quantum numbers J and K_a are available [176, 177, 179-182]. While no variation with respect to the quantum number J could be determined, a clear variation with respect to the quantum number K_a could be observed as shown in Fig. 4. Following these results, it was decided to include in the database the following values for γ_{self} (in HITRAN2004 in general a fixed value of 0.4 cm$^{-1}$atm$^{-1}$ was used): $\gamma_{\text{self}} = 0.4$ cm$^{-1}$atm$^{-1}$ for $K_a \leq 5$, $\gamma_{\text{self}} = 0.156$ cm$^{-1}$atm$^{-1}$ for $K_a \geq 21$, and γ_{self} calculated through a linear interpolation for $6 \leq K_a \leq 20$.

24
The accuracy for line positions is estimated to be better than 0.001 cm\(^{-1}\). For line intensities, it is estimated to be on the order of 2 to 3%, degrading up to about 15% for high \(J\) or \(K_a\) transitions. Finally, an accuracy of 10 to 15% for \(\gamma_{\text{air}}\) and \(\gamma_{\text{self}}\) seems a reasonable estimate. Note that for consistency the new broadening parameters have been used for all the SO\(_2\) lines included in the HITRAN database since in the previous version different values, the origin of which is not immediately transparent, were used. Also a “standard” value of 0.75 has been used for the temperature-dependence of the air-broadened half-width parameter, \(n\).

It is worth noticing that recently a series of papers [183-185] has been devoted to the high-resolution study of the absorption of the \(^{34}\text{SO}_2\) isotopologue in the infrared. They will provide in the future much better spectral parameters which should be included in a future HITRAN database.

\subsection*{2.10. NO\(_2\) (molecule 10)}

Unchanged.

\subsection*{2.11. NH\(_3\) (molecule 11)}

Unchanged.

\subsection*{2.12. HNO\(_3\) (molecule 12)}

Using new and accurate experimental results concerning line positions and line intensities as well as sophisticated theoretical methods, it has been possible to generate an improved set of line positions, line intensities, and line-shape parameters for the nitric acid molecule in the infrared spectral region. The present update was performed in two steps described in Refs. [186] and [187], respectively.
The first study [186] was performed in the 820 to 1770 cm\(^{-1}\) spectral range covered by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument and the results of this first update are summarized in Table 5 of Ref. [186]. The line positions have been improved for the \(v_5\) and \(2v_9\) cold bands and the \(v_5 + v_9 - v_9\) hot band around 11.2 \(\mu\)m, and for the \(v_8 + v_9\) and \(v_6 + v_7\) bands around 8.3 \(\mu\)m (see details in Refs. [186, 188] and in the references therein). In addition, the line intensities were updated in the 11.3-, 8.3- and 7.6-\(\mu\)m spectral ranges by making use of the cross-section measurements performed in Ref. [189]. Finally the air-broadened half-width parameters were updated using an empirical law describing the rotational dependence of these parameters.

The results of the second update are described in Table 1 of Ref. [187]. At 11.3 \(\mu\)m, approximate parameters for the \(v_5 + v_7 - v_7\) and \(v_5 + v_6 - v_6\) hot bands have been added for the first time to the line list. The intensities for the \(v_6\) and \(v_8\) bands centered at 646.826 and 763.154 cm\(^{-1}\) respectively were decreased by about 20–30% as compared to the previous HITRAN version [1]. Also following recent line-broadening calculations [190], a complete update of the \(\gamma_{air}\) parameters was performed in the 11-\(\mu\)m region. It is to be noticed that the \(\gamma_{air}\) parameters implemented in the narrow Q branches of the \(v_8\) and \(v_5 + v_9 - v_9\) bands at 763.154 and 885.425 cm\(^{-1}\) respectively account empirically for line-mixing effects as evidenced by laboratory measurements.

The validation of these updates in the new line list was performed during several satellite, ground-based or balloon-borne measurement of atmospheric HNO\(_3\) [186, 191, 192]. Furthermore, the microwave line intensities, which were overestimated by \(\sim\)30\% [191], have been updated using the newer HNO\(_3\) listing in the JPL catalog [148].
Future studies should concentrate on the improvements of HNO$_3$ line parameters in several spectral regions:

1. The far infrared region needs a revision. Indeed the present line list which is derived from a 2004 version of the JPL catalog includes only transitions within the ground vibrational state. The updated line list should also include rotational transitions within the first vibrational states of HNO$_3$ [193, 194].

2. In HITRAN2004 [1], the v_5-v_9 and $2v_9$-v_9 hot bands were added to the existing v_9 line list in the 22-μm region. In Ref. [194], the hot bands intensities were scaled with respect to the v_9 intensity from Sirota et al [195]. The net result is that there could be an inconsistency between the intensities of these two hot bands and the intensity of the v_9 band since this last band intensity was scaled using the work of Goldman et al [196]. Indeed, the v_9 intensities in Ref. [195] are about 28% weaker than the intensity reported in Ref. [196]. Therefore it is clear that new line intensity data are needed for HNO$_3$ in the 22-μm region.

3. The 7.6-μm region, which corresponds to the v_3 and v_4 bands located at 1325.7354 and 1303.5182 cm$^{-1}$ respectively, needs significant updates in term of line positions and intensities. The previous studies in this region [197] did not consider resonances due to several dark states which perturb the 3^1 and 4^1 energy levels.

Future updates in the 11-μm region should include the linelist for the H15NO$_3$ isotopologue of nitric acid [198], which is the second-most abundant isotopic variant with a concentration of 3.7 \% in relative concentration. This isotopologue was first detected in MIPAS/ENVISAT atmospheric spectra [199]; it has significance in the determination of the atmospheric profile of the nitrogen isotopes.
2.13. OH (molecule 13)

Following the work of Colin et al [200], Bernath and Colin [201] have reanalyzed all the published experimental data for the electronic ground state of the hydroxyl radical, to which they added a pure rotational constants of the $v = 4$ level determined from a solar spectrum [201]. They produced a new set of term values for $v = 0, ..., 10$, extrapolated to five J values above the last observed one.

These results were used to revise all the OH transitions (where hyperfine structure was not resolved) in the HITRAN database with updated positions and ground-state energy values. However, the line list has been reduced to lower J_{max} values, thus eliminating high-J extrapolations used in the work [202] upon which HITRAN was previously based (see Table 5). The new (unextrapolated) term values [201] agree with the observed data within the experimental error. All the other line parameters were kept the same.

A small format change for the quantum numbers has been made that now shows both the upper and lower A-doubling e and f parity labels instead of only the lower label (we found that in some publications only the upper state is listed, not the lower state as used in HITRAN). The lines with hyperfine splitting listed in HITRAN remain unchanged.

Due to a programming error in HITRAN2004, the Einstein A-coefficients and statistical weights have been recalculated for all OH lines in the new database. Also, it was found that there were mistakes in parity assignments (e and f) in the pure-rotation bands in HITRAN2004; these have now been corrected.

2.14. HF (molecule 14)

Unchanged.
2.15. HCl (molecule 15)

It was mentioned quite some time ago by Rinsland et al [203] that the hydrochloric acid line positions in previous editions of HITRAN were lacking accuracy, especially when compared to experiments at higher rotational lines. The line positions of all HCl bands in HITRAN have now been recalculated using the most recent complete set of constants from Coxon and Hajigeorgiu [204]. The new line positions are in excellent agreement with available experimental measurements. An effort is planned to extend the number of bands of HCl in HITRAN and increase the coverage in J.

2.16. HBr (molecule 16)

Unchanged.

2.17. HI (molecule 17)

Unchanged.

2.18. ClO (molecule 18)

The Einstein A-coefficients in the HITRAN2004 dataset for chlorine monoxide were found to be $\frac{1}{4}$ of the correct values; this is now corrected.

The microwave region has been updated with the latest data from the JPL catalog [148], which includes rotational transitions within the first vibrational state, $v = 1$, for both isotopes of chlorine, previously unavailable in HITRAN. The total number of lines of ClO is now 11,501, as compared to 7230 in HITRAN2004.

The parameters γ_{air} and n for the pure-rotational transitions have been revisited. In HITRAN2004, the default values of 0.085 cm$^{-1}$atm$^{-1}$ for γ_{air} and 0.5 for n were used for all pure rotational transitions. We have now adopted values based on the $J' = 5.5 \leftarrow J'' = 4.5$,
\(J' = 13.5 \rightarrow J'' = 12.5 \), and \(J' = 17.5 \rightarrow J'' = 16.5 \) transitions measured by Oh and Cohen [205] and Bauer et al [206]. For all other transitions with \(J'' < 20.5 \), we used linear extrapolation of the above measurements:

\[
\gamma_{\text{air}} = 0.09206 - 0.00111 J'' \quad (2)
\]

\[
n = 0.5259 + 0.01768 J'' \quad (3)
\]

Although this represents a rough approximation, it was deemed better than a constant value, especially for the case of temperature dependence where the previous default value of 0.5 was somewhat low. For all transitions with \(J'' \geq 20.5 \), default values of 0.075 cm\(^{-1}\)atm\(^{-1}\) and 0.6 were used for \(\gamma_{\text{air}} \) and \(n \), respectively.

2.19. OCS (molecule 19)

In the HITRAN2004 edition, the intensities of the \(\nu_3 \) band of the principal isotopologue (the region around 5 \(\mu \)m) were increased by 15.79 \% to match the average of the measurements reported by Régalia-Jarlot et al [207] and Vander Auwera and Fayt [208]. However, for the sake of consistency, such a scaling should also have been applied to the other \(\Delta \nu_3 = 1 \) transitions. They are the hot bands of \(\nu_3 \) involving \(\nu_1 \), \(\nu_2 \) and \(2\nu_2 \) of the \(^{16}O^{12}C^{32}S \), \(^{16}O^{12}C^{34}S \), \(^{16}O^{12}C^{33}S \), and \(^{18}O^{12}C^{32}S \) isotopologues (622, 624, 623, and 822 in the old AFGL abbreviation), and the \(\nu_3 \) band of \(^{16}O^{12}C^{34}S \), \(^{16}O^{12}C^{33}S \), and \(^{18}O^{12}C^{32}S \). This situation has been corrected in the current edition. The line intensities of the \(\nu_3 \) fundamental of \(^{16}O^{13}C^{32}S \) in HITRAN2004 were found to agree within 5\% with the measurements of Vander Auwera and Fayt [208]. They were therefore not changed.

Compared to the HITRAN2004 database, which gave about 1100 OCS transitions in the 3800 to 4200 cm\(^{-1}\) region for seven bands (\(2\nu_3 \) of the five isotopologues and the \(\nu_2 + 2\nu_3 - \nu_2 \) of \(^{16}O^{12}C^{32}S \) and \(^{16}O^{12}C^{34}S \)), substantial updates were made for 2008. The new database now
includes 10,425 transitions of 51 bands involving the five isotopologues $^{16}\text{O}^{12}\text{C}^{32}\text{S}$, $^{16}\text{O}^{12}\text{C}^{34}\text{S}$, $^{16}\text{O}^{13}\text{C}^{32}\text{S}$, $^{16}\text{O}^{12}\text{C}^{33}\text{S}$, and $^{18}\text{O}^{12}\text{C}^{32}\text{S}$. Of these, two are forbidden bands, 15 are allowed cold bands arising from the ground state, and the remaining 34 are hot bands arising from various vibrational states.

The line positions in this region were calculated using the effective rovibrational energy constants based on the global analysis [209-213]. Although the accuracy in line position was reported to be 5×10^{-5} cm$^{-1}$ [209], conservative values for the HITRAN uncertainty criteria were assigned, depending on J value and line intensity.

Intensities were taken from new FTIR measurements [214, 215] performed at JPL to support Venus studies. Sung et al. [214] measured line intensities of the $2\nu_3$ band at 4101.387 cm$^{-1}$, $\nu_1 + 2\nu_2 + \nu_3$ at 3897.421 cm$^{-1}$, and $4\nu_2 + \nu_3$ at 4141.212 cm$^{-1}$ of $^{16}\text{O}^{12}\text{C}^{32}\text{S}$. The new $2\nu_3$ band intensity of $6.315(13) \times 10^{-19}$ cm$^{-1}$/molecule-cm$^{-2}$ for 100% abundance of $^{16}\text{O}^{12}\text{C}^{32}\text{S}$ was within 1.3% of the average of two earlier measurements, $6.528(96) \times 10^{-19}$ and 6.27×10^{-19} cm$^{-1}$/molecule-cm$^{-2}$, respectively, by Bermejo et al. [216] and Näim et al [209]. The band intensities corresponding to 100% abundance of isotopologue $^{16}\text{O}^{12}\text{C}^{32}\text{S}$ for the $\nu_1 + 2\nu_2 + \nu_3$ and $4\nu_2 + \nu_3$ bands were also in similar agreement (1%) with those from Näim et al [209]. Intensities of all the other 43 bands of the five isotopologues in this region were taken from the exhaustive work by Toth et al [215], in which many bands were measured for the first time. Uncertainties of the line intensities in this region were adopted from measurement precisions, which range from 1 to 6% depending on the bands. However, conservative values coupled with evaluation depending on the line intensities were assigned for the HITRAN uncertainty criteria. The line intensities vary through five orders of magnitude, but very weak unassigned features were omitted from the database pending further analysis.
The γ_{self} in the pure-rotation band have been updated using a recent improvement [217] to the work of Matton et al [218], while γ_{air} and γ_{self} in the rest of the database have been updated using a Padé approximation from Ref. [219]. Air-pressure induced frequency shifts, δ, for OCS were given for the first time based on the $2v_3$ work of Domenech et al [220].

A separate file, with CO$_2$-broadened half-widths rather than γ_{air}, based on the measurements of Bouanich et al [221] in the v_1 band of OCS, is available from the authors [214, 215] on request. This second database is intended to support remote sensing of Venus at 2.5 μm.

2.20. H$_2$CO (molecule 20)

For formaldehyde, the major update in the infrared region for the line positions and line parameters involved the complete replacement of the line list at 3.6 μm and the addition of a list at 5.7 μm [222]. Indeed both spectral regions are now used for the infrared measurements of this molecule in the atmosphere [223, 224]. The 5.7-μm region corresponds to the v_2 band together with three dark bands. In the 3.6-μm region, the lines belong to the v_1 and v_3 bands together with nine dark bands.

The line positions were generated using the models and the parameters described in detail in Refs. [225-227] for the 5.7-μm and 3.6-μm regions, respectively. In addition, a consistent set of line intensity parameters was generated [222] for both the 5.7- and 3.6-μm spectral regions using high-resolution Fourier transform spectra recorded for the whole 1600 to 3200 cm$^{-1}$ spectral range. The calculated band intensities derived for the 5.7- and 3.6-μm bands are in excellent agreement with the values achieved recently by medium resolution band intensity measurements [228-230].
Details giving the description of the new database which involves 3713 and 31796 transitions at 5.7 and 3.6 µm, respectively, are given in Table 9 of the accompanying paper [222]. As compared to the HITRAN2004 line list, which involves only 1161 lines at 3.6 µm, the quality of the line parameters is significantly improved in terms of the positions and intensities.

A subsequent and complementary study dealing with measurements and calculations of formaldehyde self- and N₂-broadened half-width parameters is in progress.

2.21. HOCl (molecule 21)

Unchanged.

2.22. N₂ (molecule 22)

Improvements to the HITRAN molecular nitrogen line parameters include intensities and half-widths. The new intensities are based on the work of Goldman et al [231], which used a semi-empirical Herman-Wallis formulation of the vibration-rotation effects on the intensities with a final scaling based on observed spectra, and the work by Li and LeRoy [232] who used ab initio methods. The values derived by Li and LeRoy [232] are very similar to those of Goldman et al [231]. However, it can be expected that the Herman-Wallis formulation of Goldman et al yields less accurate values with increasing J, and thus the ab initio matrix elements of Ref. [232] have been adopted for the HITRAN line listing. It should also be noted that the HITRAN database is presently limited to only the (1 - 0) N₂ band; Li and LeRoy [232] can provide line parameters for other bands that may be of atmospheric importance. Li and LeRoy estimate that their intensities have an absolute accuracy of about 1% and their new values are still being validated.
The new half-widths are based on available experimental and theoretical studies as described in Ref. [231]. Further extensions are anticipated in the near future [231].

2.23. HCN (molecule 23)

The air-broadened half-width parameters have been recalculated using a polynomial expression derived in Ref. [233] by fitting together parameters from \(\nu_1 \) [234], \(\nu_2 \) [235] and pure rotational [233] bands. This polynomial provides better prediction of \(\gamma_{\text{air}} \) for the lines involving higher-lying rotational states. The new polynomial was applied for all the lines with \(|m| \leq 40 \) (the previous polynomial used in HITRAN2004 was applicable only up to \(m = 29 \)). The lines with \(|m| > 40 \) were assigned a constant half-width parameter of 0.0518 cm\(^{-1}\) atm\(^{-1}\), which corresponds to the new polynomial value at \(|m| = 40 \).

2.24. CH\(_3\)Cl (molecule 24)

In the region from 650 to 2650 cm\(^{-1}\) HITRAN2004 data have been completely replaced with lines from the work of Nikitin et al [236]. The line positions in this list are based on the significantly larger (than previously used) experimental information from cold and hot bands. The standard deviation of about \(3 \times 10^{-4} \) cm\(^{-1}\) is close to the experimental precision including perturbed series which were treated separately in previous works. The use of monoisotopic samples synthesized in Ref. [236] was a major advantage. The line intensities are based on the approximate dipole moment parameters as no precise analyses on the transition intensities have been carried out yet. Further intensity work is desirable. However, the most pressing need for ground-based observations is a complete analysis of the 3.3 \(\mu \)m region where weak CH\(_3\)Cl features are routinely encountered.
Note that there are four duplicate lines present in the new dataset. These are in fact different lines but in some cases (perturbed hot-band levels) the traditional quantum assignments based on approximate quantum numbers become ambiguous. The line-shape parameters were filled in the same way as in HITRAN2004.

2.25. \(\text{H}_2\text{O}_2 \) (molecule 25)

The earlier hydrogen peroxide data previously reported in \textit{HITRAN} for the \(\nu_6 \) band in the 7.9-\(\mu \)m region have been completely replaced, leading to improved line positions and intensities. The previous version of the \(\text{H}_2\text{O}_2 \) line list in the spectral range of the \(\nu_6 \) band involved only the two main torsional components of the \(\nu_6 \) band (in the \(n = 0, \tau = 1 \) and \(n = 0, \tau = 3 \) torsional quantum numbers), and the line positions were not always accurate. The new list is more precise in terms of line positions because the numerous resonances coupling the energy levels from the \(\nu_6 \leftrightarrow \nu_2, \nu_6 \leftrightarrow \nu_3, \) and \(\nu_6 \leftrightarrow \) ground interacting torsion-vibrational states have now been taken into account [237]. The present linelist is also more complete since it includes several hot torsion-vibration subbands of the \(\nu_6 \) band (up to the \(n = 2 \) torsional quantum numbers), together with contributing lines from the dark \(\nu_2 \) and \(\nu_3 \) torsion-vibration bands. As a result, the new linelist contains many more lines (126983 instead of 100781) than the previous one.

In addition, the line intensities of the \(\nu_6 \) band have been determined more accurately than the torsion-rotation bands [238].

2.26. \(\text{C}_2\text{H}_2 \) (molecule 26)

In the period after the release of \textit{HITRAN2004}, new bands of acetylene were added to \textit{HITRAN} in the 2.5- and 3.8-\(\mu \)m regions. The parameters (line positions and intensities) are from the work of Lyulin et al [239] and Jacquemart et al [240], respectively.
Updates have also been included for the 12C$_2$H$_2$ isotopologue: spectroscopic data have been noticeably enhanced in nine spectral regions, namely, in the regions around 3, 2.2, 1.9, 1.7, 1.5, 1.4, 1.3, 1.2, and 1 µm. Among these regions, only those data at 3 and 1.5 µm were partially reported in the HITRAN database. The new line lists are described in detail in Refs. [241, 242]. Corrections of the updates of HITRAN for the 2.5- and 3.8-µm spectral regions of 12C$_2$H$_2$ have also been performed and described in Ref. [241]. Table 6 summarizes the number of bands and transitions of the spectral regions now available in the new HITRAN database, together with the intensity ranges and spectral domains. Figure 5 is a plot of the 12C$_2$H$_2$ lines now available in HITRAN and illustrates the noticeable improvement the new data bring to the database, especially in extending the coverage of the database towards shorter wavelengths.

These data summarize the improvements in current experimental spectroscopic knowledge on acetylene. Several of the spectral regions involved are of atmospheric, planetary, astrophysical, and metrology interest (e.g., at 3, 2.2, 1.5, and 1 µm). A study of the 7.7-µm region, very useful for astrophysics applications, is in progress. For example, the acetylene molecule has been observed in the circumstellar envelopes of carbon-rich stars. Using the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope (SST), Matsuura et al [243] detected acetylene bands at 7 and 14 µm in carbon-rich asymptotic giant branch stars in the Large Magellanic Cloud. Around 7 µm, HITRAN only contains line positions and intensities that Vander Auwera calculated from his absolute measurements in the $(v_4 + v_5)^0_+$ band [244], for the rotational quantum number J up to 35. But intensities measured in Ref. [244] for some lines of the $(v_4 + v_5)^2$ band are not reported in the database. The temperature of interest for applications being around 500 K [243], the knowledge of intensities in the remaining hot bands is also
important. In the quoted paper [243], Matsuura et al could not reproduce the spectra that they observed in their IRS-SST observations around 7 µm because of the lack of data in HITRAN.

In addition, some values of the temperature-dependence exponents that were inadvertently set to zero in HITRAN2004 have been set to a default value of 0.75. The total number of lines for C₂H₂ has more than tripled, increasing from 3517 to 11340.

2.27. C₂H₆ (molecule 27)

The data for the ν₉ fundamental band of ^{12}C₂H₆ in the 12-µm region, introduced with the 1982 edition of HITRAN [245], have been completely replaced with a new line list including the ν₉, 3ν₄, ν₉ + ν₄ - ν₄, and ν₀ + 2ν₄ - 2ν₄ bands. It was generated by Vander Auwera et al [246] using a spectrum of the ν₉ band recorded at the Pacific Northwest National Laboratory [228], and results from a global analysis of data involving the four lowest vibrational states of ethane [247] and measurements of pressure-broadening parameters [248, 249]. Note that the quantum number notation for representing rotation-torsion states has been converted to HITRAN formalism. In Ref. [246], the levels are identified by the quantum numbers J, associated with the total angular momentum of the molecule, K, its projection along the top 3-fold symmetry axis, ℓ, the vibrational angular momentum associated with the degenerate mode ν₉, and σ = 0–3, the torsional index. In HITRAN, the latter is replaced by the symmetry species A₁s (6), A₂s (10), A₃s (6), A₄s (10), E₁s (4), E₂s (4), E₃s (2), E₄s (6), and Gₛ (16) in the G₃₆⁺ extended permutation-inversion group (the nuclear-spin statistical weights are given in parentheses). Because the symmetry occupies 3 characters only, the letter ‘s’ is omitted (all the allowed species are s-species): for instance, E₁s symmetry is given as ‘ E1’, and A₁s+A₂s is given as ‘A12’.
With this edition, estimated line parameters for the v_{12} band of 13C12CH$_6$ have also been added. The line positions, intensities and assignments (J, K, ℓ, and symmetry in the G_{18}^+ extended permutation-inversion group; see above) are from the work of Kurtz et al [250] and Weber et al [251-253]. Since no line-shape parameter measurements have been reported for this isotopologue, γ_{air}, γ_{self}, and n have been set to the values used for the main isotopologue [246].

In the HITRAN2004 edition, the empirical parameters for a number of Q branches were inadvertently excluded from the v_7 band around 3.3 μm while updating one of the branches. The missing Q branches have now been restored. In addition, in this update numerous multiplets (due to internal rotation tunneling) have been uniquely identified. Note that this band is sorely in need of improvement, especially since the incorporation of the one Q branch in the v_7 band around 3.3 μm in HITRAN2004 was inconsistent with the intensities of the rest of the band. However, similar to the situation for CH$_3$Cl, there are weak C$_2$H$_6$ features of P and R branch lines that should be included in future updates to support tropospheric monitoring.

2.28. PH$_3$ (molecule 28)

Phosphine is a constituent of the lower troposphere at very low and highly variable concentrations. Its sources could be bacterial reduction of phosphate in decaying organic matter, its use as a fumigant, and processes related to corrosion of metals containing phosphorus impurities. It is a significant contributor to the continuum opacity in the 5-μm window in the atmosphere of Jupiter, which can be used as a means of probing the deeper atmospheric structure [254].

Spectral line parameters for new bands of PH$_3$ have been added in the region from 2724 to 3602 cm$^{-1}$, based on the work of Butler et al [255]. In addition, the collision-broadened
parameters of the previously existing data in *HITRAN* from 770 to 2472 cm\(^{-1}\) have been updated using Ref. [255]. A recent global study of PH\(_3\) [256] has confirmed the need to improve and normalize the calculated intensities for the bands at 5 and 3 \(\mu\)m.

2.29. COF\(_2\) (molecule 29)

Unchanged.

2.30. SF\(_6\) (molecule 30)

A totally new line list for sulfur hexafluoride has been created. This line list not only replaces the former \(v_3\) band that was in *HITRAN*, but includes the \(v_4\) band and the \(v_4 + v_6 - v_6\) hot band.

The new \(^{32}\)SF\(_6\) line list has been calculated based upon the effective Hamiltonian parameters resulting from the latest analyses. The intense \(v_3\) stretching fundamental has been the subject of numerous studies (see Ref. [257] for a review). The best fit results are from the simultaneous analysis of various high-precision data (FTIR but also saturated absorption and IR–IR double resonance). The resulting accuracy for line positions is estimated to be better than 0.001 cm\(^{-1}\) up to \(J = 100\). Measurements of hot bands in this region, although of great importance to atmospheric applications, are still to be investigated. The high line density and only partial knowledge of the inactive \(v_6\) fundamental have thus far prevented a reliable analysis of the main hot band, namely \(v_3 + v_6 - v_6\). The \(v_4\) and \(v_4 + v_6 - v_6\) bending region has been investigated in detail in Ref. [258]. Its much lower line density allows an easier analysis compared to the crowded \(v_3\) region. For the \(v_4\) fundamental, the accuracy for line positions is \(\sim 0.001\) cm\(^{-1}\) up to \(J = 100\) and for the \(v_4 + v_6 - v_6\) hot band it is \(\sim 0.002\) cm\(^{-1}\) up to \(J = 65\) (highest assigned lines).
The accuracy may decrease quickly when extrapolating to higher J values, although this is difficult to estimate quantitatively.

The determination of reliable dipole-moment parameters, allowing an accurate calculation of line intensities, is a difficult problem in the case of heavy molecules like sulfur hexafluoride. In fact, most spectra do not show any isolated lines but rather unresolved clusters of many transitions (up to several tens for high J values). The present calculation uses the best known, although rather old, dipole-moment derivatives for the v_3 and v_4 fundamentals taken from Refs. [259, 260]. In the case of the v_3 fundamental, the intensities of those lines that were listed in the previous HITRAN edition have been checked and confirmed to be the same. The new calculation extends the measurements to somewhat higher J values for v_3 and also includes the v_4 and $v_4 + v_6 - v_6$ bands and clearly represents a significant improvement. However, the accuracy in intensities should be considered with some caution and may not be better than 20 %, especially for the high-J regions.

Analyses and calculations have been performed with the Highly-Spherical Top Data System (HTDS) software [261]. The new line list for SF$_6$ contains 2,889,065 transitions (actually reasonably reduced from the University of Burgundy original list by applying an intensity cutoff of 10^{-30} cm$^{-1}$/molecule cm$^{-2}$ at 296 K), and covers the spectral range 580 to 996 cm$^{-1}$. Since SF$_6$ has low-lying vibrational modes, most applications will require hot bands that are not present in this list. Therefore it is the HITRAN policy to relegate this list to a supplemental folder, similar to what was done for SF$_6$ and ClONO$_2$ in the 2004 edition of HITRAN.

2.31. H_2S (molecule 31)

Unchanged.
2.32. HCOOH (molecule 32)

This edition of HITRAN constitutes a major update of the information provided for formic acid: the 9-µm region has been completely replaced [262, 263], and there is the first inclusion of the 5.6-µm region [264]. These regions correspond to the strong \(\nu_6 \) and \(\nu_3 \) bands, respectively. They are both used to probe this species in the troposphere [265, 266]. The line parameters for the \(\nu_6 \) band of H\(^{12}\)C\(^{16}\)O\(^{16}\)OH near 1105 cm\(^{-1}\) available in the editions of HITRAN earlier than 2004 [1] originate from the work of Goldman and Gillis [267]. The sum of the line intensities was equal to \(1.757 \times 10^{-17} \) cm\(^{-1}\)/(molecule cm\(^{-2}\)) at 296 K, determined using a Fourier transform laboratory spectrum recorded at the University of Denver [267]. With the 2004 edition of HITRAN, the \(\nu_6 \) band line positions and intensities were improved according to the work of Perrin et al [268]. However, absolute line intensities were still derived by scaling the calculated total band intensity to the sum of line intensities obtained in Ref. [267]. Recently, Vander Auwera et al [262] reported absolute line intensities measurements for the \(\nu_6 \) and \(\nu_8 \) bands using Fourier transform spectroscopy, taking the dimer (HCOOH\(_2\)) into account in the analysis. They showed that the intensities reported by Goldman and Gillis [267], and therefore in HITRAN, were a factor of about 2 lower than the average of the other existing laboratory measurements, and also lower than theoretical calculations. Relying on results of that work, Perrin and Vander Auwera generated a new list of line parameters and showed that it provides a vastly improved modeling of the 9-µm spectral region of formic acid [263]. In the present edition of HITRAN, this list completely replaces previous information for that spectral range of HCOOH.

Using high-resolution Fourier transform spectra of trans-HCOOH recorded at 5.6 µm, Perrin et al [264] carried out an extensive analysis of the strong \(\nu_3 \) fundamental band at 1776.83 cm\(^{-1}\), significantly perturbed by resonances due to numerous dark bands. That work also involved the
determination of absolute line intensities with an accuracy estimated to 15%. A list of line parameters was generated for the first time for this spectral region of trans-formic acid. Details can be found in the accompanying article [264]. This line list has been incorporated into the present edition of HITRAN, constituting the first inclusion of the 5.6-μm spectral region of formic acid into the database.

2.33. HO₂ (molecule 33)

Unchanged.

2.34. O (“molecule” 34)

Unchanged.

2.35. ClONO₂ (molecule 35)

Unchanged.

2.36. NO⁺ (molecule 36)

As was pointed out in López-Puertas et al [269], there were significant inaccuracies in the line positions in HITRAN2004 when compared against MIPAS spectra.

Therefore new line positions corresponding to \(J'' \leq 40 \) for all vibration bands of the nitric oxide ion in the database have been generated using constants derived from a global fit of microwave [270], infrared [269, 271, 272], and UV spectra [273]. The excited electronic state in the UV data was fit to individual term values because of the perturbations. The resultant Dunham constants are given in Table 7. The fit was performed using the DParFit program of LeRoy [274].
Lines with J'' greater than 40 were left untouched as the new constants cannot predict accurate frequencies for high-J values. One should keep in mind that the HITRAN data above $J''=40$ will still be of mediocre accuracy. Note that the spectrum of this molecule is often used for upper atmospheric research and hence there is a large dynamic range in intensities in the line list.

2.37. HOBr (molecule 37)

Hypobromous acid is formed in the Earth’s atmosphere by gas-phase reactions (e.g. HO$_2$+BrO) [275] and also by heterogeneous chemistry on aerosol particles (e.g. BrONO$_2$+H$_2$O) [276, 277]. It is an important reservoir for active bromine and is particularly important in the lower stratosphere where it can contain a significant part of the total bromine [277, 278]. It also plays an important role in the marine troposphere [279, 280]. For atmospheric detection of HOBr, the far-infrared is probably the most promising spectral region [281]. HOBr exists in two main isotopic species (HO79Br and HO81Br) with nearly the same natural abundance and mass.

Recent high-resolution studies in the far- and mid-infrared [282, 283] have been used to produce a new line list, including (for the far-infrared region) the rotational dependence of the molecular dipole moment and also the rotational transitions in the $v_3=1$ state. This line list was not available in time for the new edition of HITRAN; it will be included as an update. A high-resolution line-by-line analysis of the near-infrared $2v_1$ bands of HO79Br and HO81Br is currently in progress [284].

2.38. C$_2$H$_4$ (molecule 38)

Spectral line parameters for two isotopologues of ethylene, 12C$_2$H$_4$ and 13C12CH$_4$, have been included in HITRAN as of the 2000 edition [285]. Recently, Rotger et al [286] carried out an experimental and theoretical study of the v_{12} band of 12C$_2$H$_4$ near 6.93 μm. Experimental line
positions and intensites obtained using Fourier transform spectroscopy were analyzed with a
tensorial formalism developed in Dijon, and a list of line parameters was generated for that band.
The line positions, intensities, and lower state energies are calculated using the results of that
work. The values of γ_{air}, γ_{self}, and n are based on Refs. [287-290] (see [286] for details). This v_{12}
band line list has been added to the present edition.

2.39. CH$_3$OH (molecule 39)

A misassignment of the vibrational levels for the pure-rotation lines of methanol has been
fixed (the levels previously labeled as v_1 are now correctly assigned to v_{12}). At the same time,
some corrections were made to the list by Xu [291]. These corrections include deleting two
duplicate lines, and updating two unresolved doublets.

2.40. CH$_3$Br (molecule 40)

Methyl bromide is the major contributor to bromine in the stratosphere and the main
organobromide in the lower atmosphere. This molecule contributes significantly to ozone
depletion since it is dissociated by UV radiation producing Br radicals that catalyze the
destruction of ozone [292]. These bromine atoms are 50-60 times more destructive of ozone
than the chlorine atoms coming from the chlorofluorocarbon compounds (CFCs) [293]. For this
reason, since 2005 the use of CH$_3$Br is being phased out under the Montreal protocol.

CH$_3$Br spectroscopic line parameters have been included for the first time in the 2008
HITRAN edition. Methyl bromide is composed of 50.099% of 12CH$_3$$_{79}$Br and 48.743% of
12CH$_3$$_{81}$Br in natural abundance. Isotopologue numbers 1 and 2 have been assigned for these two
isotopologues, respectively. Two line lists of both isotopologues have been generated, one
around 10 µm for the v_6 band, and the other around 7 µm for the interacting v_2 and v_5 bands.
Several works published recently for this molecule have been used to build these line lists. The works of Kwabia Tchana et al have been used for the line positions [294] and intensities [295] in the 7-µm spectral region. In the 10-µm spectral region, line positions, intensities, self- and N₂-broadened half-width parameters have been studied in Ref. [296]. The line list now present in HITRAN is the one provided as supplementary material of Ref. [296]. The model for self- and N₂-broadened half-width parameters obtained in Ref. [296], showing a \(J \) and \(K \) rotational dependence, has been used both for the 10- and 7-µm spectral regions. Because atmospheric needs are concerned with air-broadened half-width parameters, we deduced \(\gamma_{\text{air}} \) by scaling \(\gamma_{\text{N}_2} \) by a factor of 0.96. Similar approximations have been done for many molecules in the various editions of the HITRAN database. For the H₂O molecule, air-broadened half-width parameters could be estimated by multiplying N₂-broadened half-width parameters by the value 0.9 as suggested in Refs. [297-299]. For CH₃Cl, the ratio is found to be around 0.96 due to the ratio \(\gamma_{\text{N}_2}/\gamma_{\text{O}_2} = 1.25 \) obtained by averaging measurements of CH₃Cl from Refs. [300, 301]. Note that this result is quite similar to what has been proposed for ozone in Ref. [302]. Because CH₃Br is similar to CH₃Cl, the scaling factor \(\gamma_{\text{air}}/\gamma_{\text{N}_2} = 0.96 \) has been used. This procedure, although approximate since \(\gamma_{\text{N}_2}/\gamma_{\text{O}_2} \) varies from line to line, is expected to be precise within a few percent. Also, the temperature-dependence parameter \(n \) has been added in both spectral regions, based on the N₂-width temperature dependence measurements of Jacquemart and Tran [303] (see Eq. (5) of Ref. [303]). Accuracies or details for the line-parameter calculation can be found in Refs. [294-296, 303]. Note also that line mixing has been observed and analyzed in the strong \(Q \)-branches between 220 and 300 K [304, 305]; line mixing parameters are available on request to the authors [304, 3054].

2.4.1. CH₃CN (molecule 41)
Line parameters of methyl cyanide (also called acetonitrile) have been included in *HITRAN* for the first time. A total of 3572 features between 890 and 946 cm\(^{-1}\) has been given for the \(\nu_4\) region near 920 cm\(^{-1}\). Published line positions and intensities from Rinsland et al [306] have been supplemented by unpublished measurements from the same dataset, as well as selected values from preliminary Hamiltonian calculations. Only lines with intensities greater than 10\(^{-24}\) cm\(^{-1}\)/(molecule cm\(^{-2}\)) at 296 K have been included. The spectral region from 918.5 to 920.3 cm\(^{-1}\) (containing the Q branch and the P1 and P2 manifolds) proved too dense to measure directly and so these parameters are represented by 326 calculated transitions of \(\nu_4\). Some 2243 lines are given without quantum identifications; many are thought to be hot band lines involving as yet unanalyzed upper-state levels of \(\nu_4 + \nu_8\). The lower state energy of these unidentified lines is set to 410,000 cm\(^{-1}\). It should be noted that a number of hot-band lines are not included in the list; this is most noticeable at the hot band Q branch near 924 cm\(^{-1}\).

Measured self-broadened half-width parameters were available [306], and identified lines with the same \(K\) quantum number and the same or very close \(m\) were assigned approximately the same or interpolated values. The total number of lines with self broadening assigned in this manner is 2185. The air-broadened half-width parameters were estimated using the reported N\(_2\) broadening [306] and extension to unmeasured identified lines in the same manner as self broadening for a total of 2279. Previously, Fabian et al [307] reported N\(_2\) and O\(_2\) broadening of 11 microwave lines and the mean ratio of their O\(_2\)-broadened to the N\(_2\)-broadened half-width parameters was 0.67. Assuming the standard 79% N\(_2\) and 20% O\(_2\) in air, this implies that \(\gamma_{\text{air}}\) is 0.93 times the corresponding N\(_2\)-broadened value, and so this factor was applied for the database. For the lines lacking measured Lorentz half-width parameters for air and self broadening, default values of 0.14 and 1.5 cm\(^{-1}\)atm\(^{-1}\) at 296 K were used, respectively (obtained as an approximate
average of measured values).

The measured N_2 shifts [306], where available, were inserted for air shifts. Unmeasured pressure shifts have been set to zero, the approximate average of the measured values. There are no measurements of the temperature dependence of the Lorentz half-width in air and only one in N_2 [308], so the default n was set to the single measured N_2 value of 0.72.

The error codes have been set based upon an uncertainty of five times the formal fitting uncertainty. The one exception is the air-broadened Lorentz half-width parameter for which an additional 2% was added to account for the uncertainty in the air-to-N_2 ratio of these parameters. Furthermore, a calculation of the total internal partition function sum has been performed for four isotopologues, $\text{^{12}CH}_3\text{^{12}CN}$, $\text{^{13}CH}_3\text{^{12}CN}$, $\text{^{12}CH}_3\text{^{13}CN}$, and $\text{^{13}CH}_3\text{^{13}CN}$, and those results have been made available for the HITRAN compilation.

2.42. CF_4 (molecule 42)

Tetrafluorocarbon (CFC-14) is a strong greenhouse gas of both anthropogenic and natural origin [309, 310]. It has been increasing in the atmosphere [311, 312]. Its infrared spectrum is dominated by the intense ν_3 band at 1282 cm$^{-1}$ [313]. However, high-resolution infrared spectroscopy of this molecule has received only a limited interest up to now with its atmospheric identification first reported from balloon-borne measurements [313]. The previous editions of the HITRAN database for CF_4 were only represented by cross-sections (referenced as CFC 14) [314], but contained no line list.

The strongly absorbing ν_4 (around 15.8 μm) and $2\nu_4/\nu_3$ regions (around 7.3 μm) have been recently reinvestigated, thanks to several new Fourier transform infrared spectra recorded at a resolution of 0.003 cm$^{-1}$. Following the previous work of Gabard et al [315], a simultaneous analysis of the ground state, ν_4, ν_3, $2\nu_4$ and $\nu_3 - \nu_3$ bands was performed, making use of the
XTDS and SPVIEW programs [316] developed by the Dijon group. Compared to Ref. [310], the present work extends the analysis to much higher J values (70 instead of 40 for v_4 and 63 instead of 32 for the $2v_4/v_3$ dyad). Absorption intensities were used to fit the v_4 and v_3 dipole-moment derivatives and the results compare very well to the calculated values of Papoušek et al [317]. The details of this new analysis will be given in a forthcoming paper [318].

The analysis allowed for the first time the generation of a reliable line list for 12CF$_4$ that is included in the present HITRAN edition, tetrafluorocarbon becoming molecule number 42. The estimated precision for line positions is 0.001 cm$^{-1}$, up to $J = 60$. The accuracy of intensities, however, should be considered with some care and may not be better than 20 %, especially for the high-J regions. The list covers the spectral ranges 600 to 670 cm$^{-1}$ (v_4) and 1276 to 1290 cm$^{-1}$ ($2v_4/v_3$).

The γ_{air} parameter was fixed to a constant value 0.078 cm$^{-1}$atm$^{-1}$ (at 296 K) based on the averaged value from tunable diode laser experiments [319]. Note that at higher J values the air-broadened half-width parameters will most likely be lower than this fixed value; further experiments are desirable. The temperature dependence of the air-broadened half-width parameter, n, was set to 0.66 also based on Ref [319]. There is no experimental (or theoretical) information about the self-broadened half-width parameter; this parameter was estimated to be 0.08 cm$^{-1}$atm$^{-1}$.

Just as for SF$_6$ (Section 2.30 above), CF$_4$ has low-lying vibrational modes and, as most applications will require hot bands that are not present in this list, this line list has been placed into the supplemental folder.
3. Infrared cross-sections

Infrared cross-sections for this edition of the HITRAN compilation are listed in Table 8. This portion of the database supplies cross-sections of molecules for which line-by-line spectral parameters are not yet available or are incomplete. With the exception of the HFC-143a and HFC-125 cross-sections, all of the cross-sections are similar to those discussed by Rothman et al [1] and Massie and Goldman [320]. The cross-sections of each molecule are specified in separate files, labeled with the chemical symbol of the molecule followed by an underscore and IRxx, where xx stands for the edition that the data was introduced or updated. A file extension of .xsc is used. Files may have many temperature-pressure sets for different spectral regions, as indicated by headers throughout the file. Headers indicate the molecule name, the range of wavenumber for the band, number of data points, temperature (K) and pressure (torr) of the laboratory measurements, the maximum cross-section in the band (cm2), and the resolution (cm$^{-1}$) of the measurements.

In previous editions, the cross-sections from the original laboratory data sets were set to zero if they were negative. Wavelength ranges were chosen such that there are positive valued cross-sections in the far wings of the various bands at all of the measurement temperatures. In HITRAN2008 we also provide complete original laboratory data. Original files of HFC125 and HFC143a (discussed below) are included in a new subdirectory called “Original Data”. Using these data requires special care since there are instrumental distortions and wide intervals of oscillating values near zero that are present in the data files.

Di Lonardo and Masciarelli [321] measured HFC-143a cross-sections at six temperatures between 203 and 293 K, similar to those of Smith et al [322], and at a similar resolution of 0.03 cm$^{-1}$. Integrated band intensities at room temperature and at 203 K differ by 6 and 16%,
respectively, while the maximum cross-sections near the 1281 cm\(^{-1}\) Q branch differ by 30\%.
This difference points out the need for additional measurements, especially of the strong Q-
branch features of molecules that play a predominant role in atmospheric remote sensing. The
data of Smith et al \[322\] are currently in the main directory, while those of Di Lonardo and
Masciarelli \[321\] are in the Original Data subdirectory. Both data sets should be consulted until
the differences are resolved.

Di Lonardo and Masciarelli \[321\] also measured HFC-125 cross-sections at six temperatures
between 203 and 293 K and pressures between 50 and 800 hPa at a resolution of 0.03 cm\(^{-1}\).
Integrated band intensities of the Clerbaux et al \[323\] and Di Lonardo and Masciarelli \[321\]
measurements agree to 3.4\% when the same molecular bands are intercompared.

Infrared cross-section data for methyl cyanide (CH\(_3\)CN) became available soon after the
release of HITRAN2004, and were first placed in the update section of the \textit{HITRAN} web site.
The source of the data is Rinsland et al \[324\]. This molecule is emitted from incomplete
combustion of plant matter, for example in forest fires. It is relatively nonreactive in the
troposphere and is thus a tracer of troposphere-stratosphere transport.

Infrared cross-section data for peroxyacetyl nitrate - PAN (CH\(_3\)C(O)OONO\(_2\)) also became
available after the release of the HITRAN2004 database. The source of the data is Allen et al
\[325, 326\]. This organic compound is formed in photochemical smog, for example. It is
thermally quite stable, and can contribute to pollution in areas away from its source. It is an
irritant to the eyes and breathing. \textit{HITRAN} cross-sections have been used for measurements of
short-lived organic compounds including PAN and acetone in a biomass burning upper
tropospheric plume measured by \textit{MIPAS}-B limb emission spectra \[327\] and in \textit{ACE} Fourier
transform spectrometer solar occultation spectra as reported by Coheur et al. \[265\].
Pressure-broadened (1 atm N$_2$) laboratory spectra of benzene vapor (in natural abundance) were recorded at 278, 298, and 323 K, covering 600-6500 cm$^{-1}$ [328] and added to HITRAN. The spectra were recorded at a resolution of 0.112 cm$^{-1}$ using a commercial Fourier transform spectrometer. The pressure of each benzene vapor sample was measured using high precision capacitance manometers, and a minimum of nine sample pressures were recorded for each temperature. The samples were introduced into a temperature-stabilized static cell (19.94(1) cm pathlength) that was hard-mounted into the spectrometer. From these data, a fitted composite spectrum was calculated for each temperature. The number density for the three composite spectra was normalized to 296 K. The spectra give the absorption coefficient (cm2 molecule$^{-1}$, naperian units) as a function of wavenumber. From these spectra, integrated band intensities (cm molecule$^{-1}$ and atm$^{-1}$ cm$^{-2}$) for intervals corresponding to the stronger benzene bands were calculated and were compared with previously reported values. Error sources and estimated systematic (NIST Type-B) errors were found to be 3% for the stronger bands. The measured absorption coefficients and integrated band intensities are useful for remote sensing applications such as measurements of planetary atmospheres and assessment of the environmental impact of terrestrial oil fire emissions.
4. Ultraviolet data sets

4.1. Line-by-line data

4.1.1. \(\text{O}_2 \)

A new line list has been created for the oxygen Herzberg bands. Corrections have also been made to the Schumann-Runge line list.

The line list for the Herzberg bands (\(A^3\Sigma_u^+ \leftarrow X^3\Sigma_g^- \), \(c^3\Sigma_u^- \leftarrow X^3\Sigma_g^- \), \(A'\ 3\Delta_u \leftarrow X^3\Sigma_g^- \)) is based on the data from Mérienne et al [329]. Figure 6 shows an overall view of the bands. The file was created in a format different from former oxygen line lists in \textit{HITRAN} in order to distinguish different spin-components of the \(A'\ 3\Delta_u \) state of the Herzberg III band. The only difference is in the presentation of the “global” quanta identification which is closer now to Class 3 of Table 3 in Ref. [1]. The new format (in FORTRAN descriptors) is shown in the bottom of Table 9. The description of all the oxygen electronic energy levels that are now in \textit{HITRAN}, and their presentation in the new format, is also illustrated in Table 9.

In addition, the assignments of lines in the Schumann-Runge bands (\(B^3\Sigma_u^- \leftarrow X^3\Sigma_g^- \)) have been corrected from previous editions of \textit{HITRAN}. The associated parameters such as Einstein \(A \)-coefficients and statistical weights were recalculated. The uncertainty and reference indices were fixed as well. The self-broadened half-width parameter field is used for predissociation widths at zero pressure. In the previous editions of \textit{HITRAN}, FWHM (full width at half maximum) was listed for the Schumann-Runge bands, where now it has been changed to HWHM (half width at half maximum) to make it consistent with the rest of \textit{HITRAN}. The Schumann-Runge bands employ the new format for the “global” quanta identifications.
The spectral range covered by the Herzberg bands is 34014 to 41261 cm\(^{-1}\), while the Schumann-Runge bands cover 44606 to 57028 cm\(^{-1}\). The total number of lines in the combined UV file is 15466.

4.2. **UV cross-sections**

UV cross-sections for a number of molecules were introduced in the 2004 edition of HITRAN [1]. They were intended to represent the most useful data for analysis of atmospheric measurements, including ground-based and satellite-based spectroscopic measurements of the atmosphere [330]. Several updates are included in the present version of HITRAN, as presented here. Several current studies with potential implications for near-future updates are also discussed.

4.2.1. \(\text{O}_3\)

The Hartley-Huggins bands of ozone, adopted from Bass and Paur [331], with wavelength correction as discussed in [1] remain the HITRAN2008 choice. There is now substantial indication that shifting to new cross-sections will soon be warranted [332], with the likely choice being those from Ref. [333].

4.2.2. \(\text{BrO}\)

Bromine oxide cross-sections have been re-measured in the ultraviolet at five different temperatures between 203 and 298 K [334]. At present, these are being evaluated by research groups analyzing satellite spectra to see whether they present an improvement over those currently used [335].

4.2.3. \(\text{H}_2\text{CO}\)
It has recently been demonstrated [229] that the ultraviolet cross-sections for H\textsubscript{2}CO implemented in \textit{HITRAN} may be as much as 20\% too low, leading to overestimates of atmospheric H\textsubscript{2}CO by up to 20\%. Other cross-section measurements currently in use include those of Meller and Moortgat [336]. These data, however, are at lower spectral resolution and in air wavelengths. For the present, corrections may be made to fitted atmospheric concentrations when the cross-sections of Ref. [337] are used. We recommend, however, that the cross-sections be systematically re-measured, simultaneously with infrared line parameters using Fourier transform spectroscopy.

4.2.4. \textit{IO}

Cross-sections for iodine oxide [338], which have recently been successfully measured in the visible in both ground-based and satellite spectra [339], have now been added to \textit{HITRAN}.

4.2.5. \textit{SO\textsubscript{2}}

Sulfur dioxide absorption cross-sections have already been extensively investigated in the 250 to 345 nm region at room temperature [340-354]. The temperature dependence was mainly investigated by looking at temperatures lower than room temperature [349, 350, 353]. Only a couple of measurements have been performed at higher temperatures [343, 344]. Recently, Danielache et al. [355] investigated the effect of the isotopes of S on the absorption cross-sections of \textit{SO\textsubscript{2}}. Measurements of the \textit{SO\textsubscript{2}} absorption cross-sections above 345 nm are scarce: Manatt and Lane [348], who did a compilation of absorption cross-sections existing in the literature, have digitalized the data of Sidebottom et al [356] from the figures in their paper. However they introduced some modifications to the original data by shifting them by 0.67 nm to the red after comparison with peak positions from measurements performed by Clements [357] and by correcting for the sinking baseline at the short wavelength side of the Sidebottom et al
data [356]. Sprague and Joens [358] report measurements of SO$_2$ in the 320 to 405 nm region at a temperature of 298 K and a resolution of 0.1 nm.

Recently, the SO$_2$ absorption cross-sections were investigated in the 225 to 425 nm region with Fourier transform spectroscopy [359, 360]. This study provides cross-sections at relatively high spectral resolution (2 cm$^{-1}$) with high wavelength accuracy at several temperatures (298, 318, 338, and 358 K). At room temperature, these data compare fairly well with the previous measurements of Vandaele et al [341], Bogumil et al [353] and of Rufus et al [347]. At higher temperatures, there are very few literature data to compare with. These data, which cover a wide spectral interval and include temperature dependence, have now been included in HITRAN.

4.2.6. Aromatic species

Aromatic hydrocarbons in the atmosphere are mainly of anthropogenic origin with major emissions due to motor vehicles and solvent use. Minor sources are biomass burning and biogenic emissions. They play an important role in the chemistry of tropospheric ozone and in urban air pollution problems because of their carcinogenic and mutagenic properties [361, 362]. However, the quality of atmospheric detections is not very good and is partly attributed to the poor spectral resolution of reference absorption cross-sections [363]. These species are also of importance for astronomical studies: Benzene has been detected in the north polar auroral region of Jupiter [364] and in the stratospheres of Jupiter and Saturn [365] as well as in Titan’s atmosphere [366]. The need for laboratory spectroscopic data to study organic chemistry in planetary atmospheres was highlighted in Refs. [367-369], in particular the low-temperature dependence in the UV range.

Benzene (C$_6$H$_6$) is a planar oblate symmetric top molecule with D$_{6h}$ point group symmetry. Such a high symmetry allows a total of thirty normal modes of vibration among which ten are
doubly degenerate. The UV absorption spectrum of benzene is attributed to the S_1 ($^1B_{2u} \leftarrow S_0$ ($^1A_{1g}$)) electronic transition which is electronically forbidden but vibrationally induced, and it is dominated by the 6^1_0 vibronic progression involving the symmetrical ring-breathing vibration v_1. This band system becomes more allowed and therefore more intense as the D$_{6h}$ symmetry is broken in methyl and dimethyl-substituted benzene, i.e toluene and xylene respectively. The UV bands of benzene have been studied in the past by high-resolution spectroscopy and their rotational structure has been completely analyzed by Okruss et al [370].

Measurements of the absorption cross-sections of gaseous benzene (C$_6$H$_6$), toluene (C$_7$H$_8$), ortho-, meta-, and para-xylene (or the 3 isomers of dimethyl-benzene C$_6$H$_4$(CH$_3$)$_2$) have been performed with a Fourier transform spectrometer at the resolution of 1 cm$^{-1}$ (MOPD = 0.9 cm) over the 30 000-42 000 cm$^{-1}$ spectral range (238-333 nm) and at temperatures ranging from 253 to 293 K. This systematic study of five organic molecules is presented in detail in Fally et al [371]. The complete dataset comprises the absorption cross-sections of (i) benzene at 253, 263, 273, 283 and 293 K, (ii) toluene at 263, 273, 283 and 293 K, (iii) the 3 isomers of xylene at 273, 283 and 293 K. Wavenumbers are given by increments of 0.2 cm$^{-1}$ and the non-systematic error of the absorption cross-section (to which a total systematic uncertainty of 8% must be added) is also reported in a separate column.

Compared to recent studies in the same UV region [372-374], this work provides absorption cross-sections (cm2 molecule$^{-1}$) at several atmospheric temperatures with a better spectral resolution and an accurate wavelength scale. It also proposes a parameterization for the temperature effect in support of tropospheric and astronomical studies. These data, which appear in HITRAN for the first time, are also available in digital form from the web site of the Belgian Institute for Space Aeronomy (http://www.aeronomie.be/spectrolab/).
5. Aerosol refractive indices

Refractive indices of water, ice, aqueous sulfuric and nitric acid, solid hydrates (i.e. nitric acid mono-, di-, and tri- hydrate), organic nonvolatile aerosol, and crustal material (e.g. quartz, hematite, and sand) in the previous version of HITRAN are discussed by Rothman et al [1] and Massie and Goldman [320]. There is a separate ASCII file for each refractive-index data set. The header of each file describes the data, cites a journal reference, specifies an email contact, and provides the format specification of the tabulation. Additions to HITRAN2008 include indices of supercooled water, ice, and ternary $\text{H}_2\text{SO}_4/\text{HNO}_3/\text{H}_2\text{O}$ droplets at low temperatures.

Real and imaginary indices of supercooled water at 238, 252, 258, and 269 K from 1101 to 4503 cm$^{-1}$ are tabulated by Wagner et al [375]. These data are based upon expansion experiments conducted in the Karlsruhe AIDA coolable aerosol chamber, followed by a Mie inversion technique. The influence of temperature on the optical constants was analyzed previously only down to 274 K. The supercooled optical constants are notably different from room temperature indices. Figure 7 compares room temperature indices of Downing and Williams [376] and the supercooled indices. Notable differences are apparent in the O-H stretching mode near 3400 cm$^{-1}$. These indices will help to improve retrievals of the ratio of supercooled water droplets to ice crystals in mixed phase clouds.

Warren and Brandt [377] have updated the 1984 Warren [378] compilation of ice indices. Indices from 0.044 to 2×10^6 μm at 266 K are specified. There are notable differences in the two data sets. Imaginary indices in the 1.4- to 5-μm range are larger or smaller than those in Ref. [378] by a factor up to two, depending upon the specific wavelength. In the 7- to 10-μm range, the new imaginary indices are 30% lower than those in Warren [378]. Temperature dependence is strong in the 15 to 30 μm range. While HITRAN includes the Clapp et al [379] indices of ice
from 2.5- to 12.5-µm in 10 K steps from 130 to 210 K, there is a need for new measurements in the 8 to 30 µm range from 200 to 273 K. The far-infrared 45 µm peak in Ref. [377] is stronger than in the 1984 compilation. Warren [377] recommends that researchers should consult the formulas of Matzler [380] if they require microwave indices at temperatures other than 266 K.

Ternary H$_2$SO$_4$/HNO$_3$/H$_2$O indices at low temperature are important in the interpretation of infrared spectra of Polar Stratospheric Clouds (PSCs) since ternary solution droplets are observed in PSCs. Lund Myhre et al [381] measured indices between 12 and 81 weight percent H$_2$SO$_4$ from 220 to 300 K. Lund Myhre et al [382] measured indices of HNO$_3$/H$_2$O (at 30, 54, and 64 weight percent HNO$_3$) and three mixtures of H$_2$SO$_4$/HNO$_3$/H$_2$O between 183 and 293 K. Prior to Ref. [381], only two other sets of measurements of the ternary indices, Norman et al [383] and Biermann et al [384], have been made, both of which are included in the HITRAN database. HITRAN2008 contains all of these data sets since the measurement temperatures differ, and because there are important differences in the indices of the various data sets. The specification of the indices of the ternary mixture is considered incomplete, since there is not yet available a definitive way to combine (i.e. mix) the binary HNO$_3$/H$_2$O and H$_2$SO$_4$/H$_2$O indices to derive ternary indices for PSC studies.

6. Global data and software

There are some data that are needed to accompany HITRAN that are of a global nature. One such file, called molparam.txt, is included with the compilation. It is a table listing the abundances, partition sum at 296 K, and the molecular weight of each of the isotopologues contained in HITRAN. There is also a file of all the sources used for the parameters in HITRAN, as well as a file giving the partition sums at temperatures from 70 to 3000 K.
As in previous editions, there is software, called JavaHAWKS, included in the compilation that provides a functional and flexible set of tools for managing the database. This software can be installed on a wide set of platforms, running for example Windows, UNIX, Solaris, LINUX, and Mac OS. However, the JavaHAWKS software has not yet been updated to be able to completely work on the newest additional molecules (beyond molecule 39). Likewise there are some new bands of molecules that have not been implemented in the band selection feature.

In the future we plan to restructure the whole of the HITRAN compilation into an internet-based browsing platform. A possible prototype for this system is the W@DIS database being produced by the IUPAC (International Union of Pure and Applied Chemistry) Water Vapor task group [385].

7. Conclusions

The details of the updates and enhancements of the new HITRAN2008 compilation have been described. The compilation consists of several parts: (1) the traditional high-resolution, line-by-line portion where fundamental spectroscopic parameters required for calculation of radiative transfer are archived; (2) files of infrared cross-sections primarily for large or heavy polyatomic molecules; (3) UV line-by-line parameters and cross-sections; (4) tables of aerosol refractive indices; and (5) generalized tables and references that relate to HITRAN.

In addition to adding some new molecules, many vibration-rotation bands for the previously included species have been updated or extended. One can highlight the vast improvement for H\textsubscript{2}O, CO\textsubscript{2}, O\textsubscript{3}, CH\textsubscript{4}, O\textsubscript{2}, and most of the trace-gas species. Emphasis has been on increased accuracy and completeness of line positions, intensities, and line-shape parameters. Recent atmospheric remote-sensing experiments have placed very demanding requirements on the accuracy of intensities and broadening parameters. Indeed, various field experiments have now
demonstrated the need (by lowering the residuals between observed and simulated spectra) for more sophisticated models of line shape beyond the Voigt profile currently accessible through HITRAN. This extension will be the topic of future editions of HITRAN.

Continuing efforts to improve and extend the database are ongoing. As critical new data become available, they will be evaluated by the international HITRAN committee. These approved data will be posted as interim updates on the internet before a total new edition is released. The compilation is free; access instructions can be obtained at http://www.cfa.harvard.edu/HITRAN.
Acknowledgments

The *HITRAN* molecular database has been a project with strong international cooperation during its development. Laboratories throughout the world have contributed both experimental data and theoretical calculations. We greatly appreciate the major efforts of S. Albert, M. Barber, S. Bauerecker, C. Boone, S.A. Clough, R. Colin, M.R. DeBacker-Barilly, L. Daumont, B.J. Drouin, C. Frankenberg, J.-M. Hartmann, F. Hindle, J.T. Hodges, K. Jucks, A. Laraia, R.J. Le Roy, M. Loëte, O. Lyulin, H.S.P. Müller, M. Okumura, B. Perevalov, M. Quack, L. Régalia-Jarlot, D.J. Robichaud, F. Rohart, M.W. Shephard, R. Tolchenov, V.G. Tyuterev, G. Wagner, C. Wenger, L.-H. Xu, and L.Y. Yeung in support of this new edition. The constructive suggestions by G. Toon of JPL for improving the manuscript are also gratefully acknowledged.
Appendix A. Converting Intensities from the JPL or CDMS Catalogs to HITRAN

Intensities

This appendix provides users with the steps needed for the conversion of intensities between the \textit{HITRAN} database [1] and the Jet Propulsion Laboratory (\textit{JPL}) [148] or Cologne Database for Molecular Spectroscopy (\textit{CDMS}) [149] spectral databases. The \textit{JPL} and \textit{CDMS} lists, which are identical in their intensity formalisms, provide base-10 logarithms of the integrated intensity at 300 K (in \text{nm}^2\text{MHz}), while \textit{HITRAN} gives the intensity at 296 K (in \text{cm}^{-1}/(\text{molecule cm}^{-2})) Apart from these differences, there are certain differences in the formalism of intensities and this appendix provides steps for the most accurate conversion. If accuracy better than 2\% is not required, it is fairly safe to use an approximation given in Section A.5 below. Some other intensity unit conversions are described in the textbook of Bernath [386]. Appendix B gives definitions of some of the quantities in the databases.

A.1 Unit conversion

The \textit{JPL} [148] and \textit{CDMS} [149] catalogs use \text{nm}^2\text{MHz} as units of intensity. In order to convert to \textit{HITRAN} [1] units (\text{cm}^{-1}/(\text{molecule cm}^{-2})), one has to divide the \textit{JPL} intensity (\textit{not its logarithm}) by a factor related to the speed of light, namely $2.99792458 \times 10^{10}$ \text{cm/s}. It should be recalled that the \textit{HITRAN} units were constructed with application to atmospheric transmission calculations in mind, hence the emphasis on writing the units as \textit{wavenumber per column density} and not simplifying it to the equivalent \text{cm/molecule}:

\begin{equation}
I_{\text{JPL}} \left(\text{cm}^{-1}/\text{molecule} \times \text{cm}^{-2} \right) = \frac{I_{\text{JPL}} \text{(nm}^2\text{MHz)}}{2.99792458 \times 10^{18}}. \tag{A.1}
\end{equation}

A.2 Isotopic abundance
The JPL and CDMS catalogs assume 100% abundance of every isotopologue, whereas the HITRAN database incorporates a terrestrial abundance scaling. Therefore one has to multiply the JPL (CDMS) intensity by the isotopologue abundance value \(I_a \) adopted by HITRAN. For the isotopic abundances used in HITRAN, see for example Table 1 in Ref. [387].

\[
S_{JPL} = I_a \left(\frac{I_{JPL} \,(mm^2\,MHz)}{2.99792458 \times 10^{18}} \right). \tag{A.2}
\]

A.3 Scaling of the partition sum

After conversion to cm\(^{-1}\)/(molecule cm\(^{-2}\)) and scaling by isotopic abundance, one needs to consider the intensity defined in the JPL catalog, \(S_{JPL} \), which is given by:

\[
S_{JPL}(T) = \frac{g'_{JPL}}{Q_{JPL}(T)} \frac{A}{8\pi c v_0} e^{\frac{hcE}{k_B T}} \left(1 - e^{\frac{hc\gamma_0}{k_B T}}\right), \tag{A.3}
\]

where \(g' \) is a statistical weight of the upper level and \(Q(T) \) is a total partition sum. The other terms in Eq. (A.3) are defined in the appendix of Ref. [388]. The labels “JPL” refer to the fact that in some cases in the JPL and CDMS catalogs the common factors are factored out in \(g' \) and \(Q(T) \). This common factor is a state-independent statistical weight \(g_i \), which is not ignored in the HITRAN database. Nevertheless it is obvious that

\[
\frac{g'_{JPL}}{Q_{JPL}(T)} \approx \frac{g'_{HIT}}{Q_{HIT}(T)}. \tag{A.4}
\]

The use of the “\(\approx \)” refers to the fact that partition sums are not calculated exactly the same way in the JPL catalog and HITRAN. Unlike HITRAN, the partition sums in the JPL catalog do not include the “vibrational” contribution in most cases. However this contribution may be significant for molecules possessing low vibrational modes. Therefore it is recommended that one should scale the intensities obtained at JPL to HITRAN formalism in the following manner:
\[S_{JPL}(T) = S_{HIT}(T) \frac{Q_{JPL}(T)}{Q_{HIT}(T)} \frac{g'_{HIT}}{g'_{JPL}}. \]

(A.5)

Since 300 K is the reference temperature in both the JPL and CDMS databases,

\[S_{HIT}(300) = I_a \frac{I_{JPL}(\text{nm}^2 \text{MHz})}{2.99792458 \times 10^3} \frac{Q_{JPL}(300)}{Q_{HIT}(300)} \frac{g'_{HIT}}{g'_{JPL}}. \]

(A.6)

It is not always immediately obvious whether or not \(g'_{JPL} \approx g'_{HIT} \). Therefore it is always useful to obtain a ratio between partition sums in JPL and HITRAN at the same temperature and then round that ratio to an integer, which will be the ratio between statistical weights in HITRAN and JPL.

The partition sums for HITRAN database are available in the file parsum.dat that is distributed with the database. The partition sums for 296 K are also listed in Table 1 of Ref. [387]. The partition sums (or their logarithms) for the JPL and CDMS catalogs are provided in the following websites:

http://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.cat

and

http://www.ph1.uni-koeln.de/vorhersagen/catalog/partition_function.html

A.4. Temperature adjustment

All intensities in the JPL and CDMS catalogs are calculated at 300 K, whereas HITRAN gives intensities at 296 K. By definition:

\[S_{HIT}(300) = \frac{g'_{HIT}}{Q_{HIT}(300)} \frac{A}{8 \pi c v_0} e^{-\frac{h c E^*}{k_b 300}} \left(1 - e^{-\frac{h c v_0}{k_b 300}} \right) \]

(A.7)

and

\[S_{HIT}(296) = \frac{g'_{HIT}}{Q_{HIT}(296)} \frac{A}{8 \pi c v_0} e^{-\frac{h c E^*}{k_b 296}} \left(1 - e^{-\frac{h c v_0}{k_b 296}} \right). \]

(A.8)
Combining the last two equations one obtains

\[
S_{HIT}(296) = S_{HIT}(300) \exp \left[\frac{\hbar E^*}{k_B} \left(\frac{1}{300} - \frac{1}{296} \right) \right] \frac{1 - e^{-\frac{\hbar \nu_0}{k_B 296}}}{1 - e^{-\frac{\hbar \nu_0}{k_B 300}}} \frac{Q_{HIT}(300)}{Q_{HIT}(296)}, \quad (A.9)
\]

or using Eq. (A.5):

\[
S_{HIT}(296) = I_a \frac{I_{jpl} \text{(nm}^2\text{MHz)}}{2.99792458 \times 10^{18}} \frac{Q_{JPL}(300) g'_{HIT}}{Q_{HIT}(300) g'_{JPL}} \exp \left[\frac{\hbar E^*}{k_B} \left(\frac{1}{300} - \frac{1}{296} \right) \right] \frac{1 - e^{-\frac{\hbar \nu_0}{k_B 296}}}{1 - e^{-\frac{\hbar \nu_0}{k_B 300}}} \frac{Q_{JPL}(300) g'_{HIT}}{Q_{HIT}(296) g'_{JPL}}. \quad (A.10)
\]

A.5. Approximate temperature adjustment

It should be noted that in the majority of cases in the literature, step 3 is omitted and the last equation in step 4 can be approximated by

\[
S_{HIT}(296) \approx I_a \frac{I_{jpl} \text{(nm}^2\text{MHz)}}{2.99792458 \times 10^{18}} \exp \left[\frac{\hbar E^*}{k_B} \left(\frac{1}{300} - \frac{1}{296} \right) \right] \frac{1 - e^{-\frac{\hbar \nu_0}{k_B 296}}}{1 - e^{-\frac{\hbar \nu_0}{k_B 300}}} \left(\frac{300}{296} \right)^n, \quad (A.11)
\]

where \(n = 1 \) for linear molecules and \(n = 3/2 \) for nonlinear molecules. Sometimes an even coarser approximation is used:

\[
S_{HIT}(296) \approx I_a \frac{I_{jpl} \text{(nm}^2\text{MHz)}}{2.99792458 \times 10^{18}} \exp \left[\frac{\hbar E^*}{k_B} \left(\frac{1}{300} - \frac{1}{296} \right) \right] \left(\frac{300}{296} \right)^{n+1}. \quad (A.12)
\]
Appendix B. Definitions and Units used in HITRAN

The HITRAN database does not strictly use the International System of Units (SI). The units have been chosen for historical, transmission-algorithm structure, and/or instrument-related reasons. Table 10 gives the units for the spectroscopic parameters and related constants in HITRAN.
References

[28] Chevillard JP, Mandin JY, Flaud JM, Camy-Peyret C. H$_2^{18}$O line positions and intensities between 9500 and 11 500 cm$^{-1}$. The (041), (220), (121), (300), (201), (102), and (003) interacting states. Can J Phys 1987;65:777-89.

[42] Ibrahim N, Chelin P, Orphal J, Baranov YI. Line parameters of H$_2$O around 0.8 μm studied by tuneable diode laser spectroscopy. JQSRT 2008;109:2523-36.

[47] Lynch R, Gamache RR, Neshyba SP. N$_2$ and O$_2$ induced halfwidths and line shifts of water vapor transitions in the (301) ← (000) and (221) ← (000) bands. JQSRT 1998;59:595-613.

[53] Toth RA, Miller CE, Brown LR, Devi VM, Benner DC. Line positions and strengths of 16O12C18O, 18O12C18O and 17O12C18O between 2200 and 7000 cm$^{-1}$. J Mol Spectrosc 2007;243:43-61.

[64] Perevalov BV, Kassi S, Romanini D, Perevalov VI, Tashkun SA, Campargue A. Global effective Hamiltonians of 16O13C17O and 16O13C18O improved from CW-CRDS observations in the 5900-7000 cm$^{-1}$ region. J Mol Spectrosc 2007;241:90-100.

[65] Perevalov BV, Perevalov VI, Campargue A. A (nearly) complete experimental linelist for 13C16O$_2$, 16O13C18O, 16O13C17O, 13C18O$_2$ and 17O13C18O by high-sensitivity CW-CRDS spectroscopy between 5851 and 7045 cm$^{-1}$. JQSRT 2008;109:2437-62.

72

[77] Wang L, Perevalov VI, Tashkun SA, Song KF, Hu SM. Fourier transform spectroscopy of 12C18O$_2$ and 16O12C18O in the 3800-8500 cm$^{-1}$ region and the global modeling of the absorption spectrum of 12C18O$_2$. J Mol Spectrosc 2008;247:64-75.

[82] Pickett HM, Cohen EA, Brown LR, Rinsland CP, Smith MAH, Devi VM, et al. The Vibrational and Rotational Spectra for Ozone for (0,1,0) and (0,2,0) States. J Mol Spectrosc 1988;128:151-71.

[83] Bouazza S, Barbe A, Mikhailenko S, Plateaux JJ. Line positions and intensities of the \(v_1+2v_2+v_3 \) and \(2v_2+2v_3 \) bands of \(^{16}\text{O}_3 \). J Mol Spectrosc 1994;166:365-71.

[87] Flaud JM, Camy-Peyret C, Rinsland CP, Smith MAH, Malathy Devi V. Line parameters for \(^{16}\text{O}_3 \) bands in the 7-\(\mu \text{m} \) region. J Mol Spectrosc 1989;134:106-12.

[91] Chichery A, Barbe A, Tyuterev VG, Sulakshina O, Borkov Y. Intensities of the difference bands \(v_1+v_3-v_2 \) and \(2v_3-v_2 \) of ozone. Comparison with theoretical predictions. J Mol Struct 2000;517:165-70.

[92] Malathy Devi V, Flaud JM, Camy-Peyret C, Rinsland CP, Smith MAH. Line positions and intensities for the \(v_1+v_2 \) and \(v_2+v_3 \) bands of \(^{16}\text{O}_3 \). J Mol Spectrosc 1987;125:174-83.

[94] Bouazza S, Mikhailenko S, Barbe A, Regalia L, Tyuterev VG, Plateaux JJ. The \(v_1+v_2+2v_3 \) and \(v_2+3v_3 \) bands of \(^{16}\text{O}_3 \). J Mol Spectrosc 1995;174:510-9.

[96] Flaud JM, Camy-Peyret C, Devi VM, Rinsland CP, Smith MAH. The \(v_1 \) and \(v_3 \) Bands of \(^{16}\text{O}_3 \): Line Positions and Intensities. J Mol Spectrosc 1987;124:209-17.

Hamiltonian parameters. See: http://smpo.iao.ru/ru/lev/par/1/12/.

Mikhailenko S, Barbe A, Tyuterev VG, Regalia L, Plateaux JJ. Line positions and intensities of the $v_1+v_2+3v_3$, v_2+4v_3, and $3v_1+2v_2$ bands of ozone. J Mol Spectrosc 1996;180:227-35.

Barbe A, Mikhailenko S, Plateaux JJ, Tyuterev VG. Analysis of the $2v_1+v_2+2v_3$ band of ozone. J Mol Spectrosc 1997;182:333-41.

Barbe A, Plateaux JJ, Mikhailenko SN, Tyuterev VG. Infrared spectrum of ozone in the 4600 and 5300 cm$^{-1}$ regions: High order accidental resonances through the analysis of $v_1+2v_2+3v_3-v_2$, $v_1+2v_2+3v_3$, and $4v_1+v_3$ bands. J Mol Spectrosc 1997;185:408-16.

[113] Barbe A, Plateaux JJ, Tyuterev VG, Mikhailenko S. Analysis of high resolution measurements of the $2v_1+3v_3$ band of ozone: Coriolis interaction with the $v_1+3v_2+2v_3$ band. 1998:185-94.

[116] Barbe A, Chichery A, Tyuterev VG, Plateaux JJ. Analysis of high resolution measurements of the v_1+5v_3 band of ozone: Coriolis interactions with the $6v_3$ and $3v_1+v_2+2v_3$ bands. Mol Phys 1998;94:751-7.

[140] Smith MAH, Benner DC, Predoi-Cross A, Malathy Devi V. Multispectrum analysis of 12CH$_4$ in the ν_3 band: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing. JQSRT 2009, this issue.

[183] Lafferty WJ, Flaud JM, Ngom EHA, Sams RL. 34S16O$_2$: High-resolution analysis of the (0 3 0), (1 0 1), (1 1 1), (0 0 2) and (2 0 1) vibrational states; determination of equilibrium rotational constants for sulfur dioxide and anharmonic vibrational constants. J Mol Spectrosc 2009;253:51-4.

[184] Lafferty WJ, Flaud JM, Sams RL, Abib Ngom EH. High resolution analysis of the rotational levels of the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states of 34S18O$_2$. J Mol Spectrosc 2008;252:72-6.

[185] Flaud JM, Lafferty WJ, Sams RL. Line Intensities for the v_1, v_3 and $v_1 + v_3$ bands of 34SO$_2$. JQSRT, 2009, this issue.

[211] Lahaye JG, Vandenhaute R, Fayt A. CO\textsubscript{2} laser saturation Stark spectra and global rovibrational analysis of the main isotopic species of carbonyl sulfide (OC\textsubscript{34}S, O\textsubscript{13}CS, and 18OCS). J Mol Spectrosc 1987;123:48-83.

[214] Sung K, Toth RA, Brown LR, Crawford T. Line strength measurements of carbonyl sulfide (16O\textsubscript{12}C\textsubscript{32}S) in the 2\textnu\textsubscript{3}, \nu\textsubscript{1}+2\nu\textsubscript{2}+\nu\textsubscript{3}, and 4\nu\textsubscript{2}+\nu\textsubscript{3} bands. JQSRT 2009, submitted.

[215] Toth RA, Sung K, Brown LR, Crawford T. Intensities of 43 bands of five isotopologues of OCS near 4100 cm-1, in preparation for JQSRT.

[216] Bermejo D, Domenech JL, Santos J, Bouanich JP, Blanquet G. Absolute line intensities in the 2\textnu\textsubscript{3} band of 16O\textsubscript{12}C\textsubscript{32}S. J Mol Spectrosc 1997;185:26-30.

[217] Rohart F, Université de Lille, Lille, France, private communication, 2008.

[220] Domenech JL, Bermejo D, Bouanich JP. Pressure lineshift and broadening coefficients in the 2\textnu\textsubscript{3} band of OCS. J Mol Spectrosc 2000;200:266-76.

[222] Perrin A, Jacquemart D, Kwabia Tchana F, Lacome N. Absolute line intensities measurements and calculations for the 5.7 and 3.6 \mu m bands of formaldehyde. JQSRT 2009, this issue.

83

[236] Nikitin A, Champion JP, Burger H. Global analysis of 12CH3\(^{35}\)Cl and 12CH3\(^{37}\)Cl: simultaneous fit of the lower five polyads (0-2600 cm\(^{-1}\)). J Mol Spectrosc 2005;230:174-84.

[251] Weber M, Blass WE, Reuter DC, Jennings DE, Hillman JJ. The ground state of 13C12CH$_6$ (ethane) derived from v_{12} at 12.2 μm. J Mol Spectrosc 1993;159:388-94.

[253] Weber M, Reuter DC, Jennings DE, Blass WE, Hillman JJ A spectral atlas of the v_{12} fundamental of 13C12CH$_6$ in the 12 μm region; NASA Technical Memorandum 104601, Greenbelt; 1994.

[289] Reuter DC, Sirota JM. Absolute intensities and foreign gas broadening coefficients of the $11_{1,10}$ \leftarrow $11_{2,10}$ and $18_{0,18}$ \leftarrow $18_{1,18}$ lines in the v_7 band of C$_2$H$_4$. JQSRT 1993;50:477-82.

[291] Xu LH, University of New Brunswick, St John, Canada, private communication, 2007.

[305] Gomez L, Tran H, Jacquemart D. Line-mixing in the v₅ Q branches of methyl bromide broadened by nitrogen and modelling at low temperatures. JQSRT to be submitted.

[348] Manatt SL, Lane AL. A compilation of the absorption cross-sections of SO₂ from 106 to 403 nm. JQSRT 1993;50:267-76.

Table Captions

Table 1 New ozone bands for the principal isotopologue 16O16O16O.

Table 2. Updated ozone bands for the principal isotopologue 16O16O16O.

Table 3 New ozone bands for the 16O16O18O isotopologue.

Table 4 New ozone bands for the 16O18O16O isotopologue.

Table 5. J_{max} values for OH term values.

Table 6. Summary of the bands and transitions now available for the 12C$_2$H$_2$ molecule.

Table 7. Dunham constants (in cm$^{-1}$) for the $X^1\Sigma^+$ ground electronic state of NO$^+$.

Table 8. Summary of molecules represented by IR cross-section data in HITRAN.

Table 9. Energy levels for oxygen currently in HITRAN with their vibrational range and descriptors.

Table 10. Definitions and units associated with the HITRAN database

Figure Captions

Fig. 1. Flow diagram outlining the assembly of the CO$_2$ HITRAN2008 line list in the 4300 to 7000 cm$^{-1}$ region.

Fig. 2. Polyad energy-level structure for 12CH$_4$.

Fig. 3. 32SO$_2$ air-broadened half-width parameters.

Fig. 4. SO$_2$ self-broadened half-width parameters: (a) for $K_a \leq 5$; (b) for $K_a \geq 6$.

Fig. 5. Extension of data now available in HITRAN for the 12C$_2$H$_2$ isotopologue of acetylene.

Fig. 6. Line intensities of the O$_2$ Herzberg bands now in HITRAN.

Fig. 7. Temperature dependence of the supercooled water imaginary indices of Wagner et al [375]. The 300 K indices are from Downing and Williams [376].
Table 1. New ozone bands for the principal isotopologue 16O16O16O.

<table>
<thead>
<tr>
<th>Band</th>
<th>Spectral range (cm$^{-1}$)</th>
<th>Number of lines</th>
<th>Sum of line intensities (10^{-22} cm3/mol\timescm$^{-2}$)</th>
<th>References for line positions</th>
<th>References for line intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>030 – 020</td>
<td>593 – 813</td>
<td>2897</td>
<td>19.640</td>
<td>[80], [81]</td>
<td>[82]</td>
</tr>
<tr>
<td>121 – 021</td>
<td>956 – 991</td>
<td>15</td>
<td>0.004</td>
<td>[83-85]</td>
<td>[86]</td>
</tr>
<tr>
<td>030 – 010</td>
<td>1329 – 1480</td>
<td>804</td>
<td>0.403</td>
<td>[87], [80]</td>
<td>[88]</td>
</tr>
<tr>
<td>102 – 011</td>
<td>1330 – 1378</td>
<td>210</td>
<td>0.057</td>
<td>[89], [90]</td>
<td>[91]</td>
</tr>
<tr>
<td>111 – 020</td>
<td>1346 – 1409</td>
<td>221</td>
<td>0.090</td>
<td>[81], [89]</td>
<td>[91]</td>
</tr>
<tr>
<td>201 – 110</td>
<td>1367 – 1406</td>
<td>71</td>
<td>0.016</td>
<td>[89], [90]</td>
<td>[91]</td>
</tr>
<tr>
<td>022 – 011</td>
<td>1619 – 1687</td>
<td>660</td>
<td>0.396</td>
<td>[83], [90]</td>
<td>[92]</td>
</tr>
<tr>
<td>121 – 110</td>
<td>1622 – 1678</td>
<td>297</td>
<td>0.096</td>
<td>[83], [90]</td>
<td>[92]</td>
</tr>
<tr>
<td>031 – 020</td>
<td>1632 – 1711</td>
<td>1109</td>
<td>1.734</td>
<td>[81], [93]</td>
<td>[92]</td>
</tr>
<tr>
<td>130 – 020</td>
<td>1722 – 1875</td>
<td>443</td>
<td>0.220</td>
<td>[81], [89]</td>
<td>[92]</td>
</tr>
<tr>
<td>121 – 011</td>
<td>1735 – 1754</td>
<td>42</td>
<td>0.013</td>
<td>[83], [90]</td>
<td>[92]</td>
</tr>
<tr>
<td>112 – 110</td>
<td>1886 – 2034</td>
<td>104</td>
<td>0.039</td>
<td>[90], [94]</td>
<td>[95]</td>
</tr>
<tr>
<td>130 – 001</td>
<td>1992 – 2061</td>
<td>3</td>
<td>0.005</td>
<td>[96], [89]</td>
<td>[97]</td>
</tr>
<tr>
<td>130 – 100</td>
<td>2040 – 2102</td>
<td>10</td>
<td>0.025</td>
<td>[96], [89]</td>
<td>[97]</td>
</tr>
<tr>
<td>211 – 011</td>
<td>2043 – 2149</td>
<td>62</td>
<td>0.017</td>
<td>[90], [98]</td>
<td>[95]</td>
</tr>
<tr>
<td>003 – 010</td>
<td>2255 – 2360</td>
<td>1809</td>
<td>11.908</td>
<td>[87], [89]</td>
<td>[84]</td>
</tr>
<tr>
<td>102 – 010</td>
<td>2270 – 2407</td>
<td>479</td>
<td>0.400</td>
<td>[87], [89]</td>
<td>[99]</td>
</tr>
<tr>
<td>201 – 010</td>
<td>2281 – 2325</td>
<td>11</td>
<td>0.003</td>
<td>[87], [89]</td>
<td>[99]</td>
</tr>
<tr>
<td>031 – 010</td>
<td>2333 – 2407</td>
<td>742</td>
<td>0.474</td>
<td>[87], [93]</td>
<td>[90]</td>
</tr>
<tr>
<td>130 – 010</td>
<td>2424 – 2552</td>
<td>487</td>
<td>0.185</td>
<td>[87], [89]</td>
<td>[84]</td>
</tr>
<tr>
<td>013 – 100</td>
<td>2529 – 2607</td>
<td>659</td>
<td>0.394</td>
<td>[96], [94]</td>
<td>[100]</td>
</tr>
<tr>
<td>013 – 001</td>
<td>2602 – 2724</td>
<td>775</td>
<td>0.455</td>
<td>[96], [94]</td>
<td>[100]</td>
</tr>
<tr>
<td>022 – 010</td>
<td>2603 – 2769</td>
<td>1629</td>
<td>1.729</td>
<td>[87], [83]</td>
<td>[89]</td>
</tr>
<tr>
<td>112 – 001</td>
<td>2630 – 2720</td>
<td>1432</td>
<td>4.414</td>
<td>[96], [94]</td>
<td>[100]</td>
</tr>
<tr>
<td>112 – 100</td>
<td>2658 – 2718</td>
<td>68</td>
<td>0.025</td>
<td>[96], [94]</td>
<td>[89]</td>
</tr>
<tr>
<td>131 – 020</td>
<td>2666 – 2741</td>
<td>899</td>
<td>0.828</td>
<td>[81], [101]</td>
<td>[89]</td>
</tr>
<tr>
<td>221 – 110</td>
<td>2673 – 2727</td>
<td>311</td>
<td>0.102</td>
<td>[90], [102]</td>
<td>[89]</td>
</tr>
<tr>
<td>121 – 010</td>
<td>2678 – 2774</td>
<td>1851</td>
<td>16.465</td>
<td>[87], [83]</td>
<td>[89]</td>
</tr>
<tr>
<td>211 – 100</td>
<td>2681 – 2764</td>
<td>1242</td>
<td>2.522</td>
<td>[96], [98]</td>
<td>[99]</td>
</tr>
<tr>
<td>211 – 001</td>
<td>2713 – 2768</td>
<td>48</td>
<td>0.014</td>
<td>[96], [98]</td>
<td>[89]</td>
</tr>
<tr>
<td>202 – 100</td>
<td>3009 – 3093</td>
<td>365</td>
<td>0.155</td>
<td>[96], [103]</td>
<td>[89]</td>
</tr>
<tr>
<td>031 – 000</td>
<td>3032 – 3111</td>
<td>689</td>
<td>0.417</td>
<td>[96], [93]</td>
<td>[93]</td>
</tr>
<tr>
<td>202 – 001</td>
<td>3035 – 3117</td>
<td>662</td>
<td>0.392</td>
<td>[96], [103]</td>
<td>[89]</td>
</tr>
<tr>
<td>211 – 010</td>
<td>3078 – 3166</td>
<td>876</td>
<td>0.878</td>
<td>[87], [98]</td>
<td>[89]</td>
</tr>
<tr>
<td>130 – 000</td>
<td>3133 – 3249</td>
<td>384</td>
<td>0.126</td>
<td>[96], [89]</td>
<td>[89]</td>
</tr>
<tr>
<td>022 – 000</td>
<td>3256 – 3511</td>
<td>1826</td>
<td>1.225</td>
<td>[96], [83]</td>
<td>[83]</td>
</tr>
<tr>
<td>121 – 000</td>
<td>3286 – 3480</td>
<td>1764</td>
<td>7.430</td>
<td>[96], [83]</td>
<td>[83]</td>
</tr>
<tr>
<td>131 – 010</td>
<td>3369 – 3440</td>
<td>910</td>
<td>0.689</td>
<td>[87], [101]</td>
<td>[83]</td>
</tr>
<tr>
<td>113 – 100</td>
<td>3506 – 3566</td>
<td>466</td>
<td>0.195</td>
<td>[96], [104]</td>
<td>[94]</td>
</tr>
<tr>
<td>014 – 001</td>
<td>3525 – 3605</td>
<td>992</td>
<td>1.306</td>
<td>[96], [104]</td>
<td>[94]</td>
</tr>
<tr>
<td>Page</td>
<td>From - To</td>
<td>Length</td>
<td>Correlation</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>014 – 100</td>
<td>3534 – 3538</td>
<td>9</td>
<td>0.002</td>
<td>[96], [104], [105]</td>
<td></td>
</tr>
<tr>
<td>113 – 001</td>
<td>3547 – 3605</td>
<td>11</td>
<td>0.004</td>
<td>[96], [104], [94]</td>
<td></td>
</tr>
<tr>
<td>212 – 001</td>
<td>3704 – 3755</td>
<td>326</td>
<td>0.102</td>
<td>[96], [106], [107]</td>
<td></td>
</tr>
<tr>
<td>221 – 010</td>
<td>3751 – 3821</td>
<td>895</td>
<td>0.772</td>
<td>[96], [102], [107]</td>
<td></td>
</tr>
<tr>
<td>211 – 000</td>
<td>3768 – 3866</td>
<td>1762</td>
<td>12.815</td>
<td>[96], [98], [107]</td>
<td></td>
</tr>
<tr>
<td>113 – 010</td>
<td>3864 – 3968</td>
<td>1466</td>
<td>4.367</td>
<td>[87], [104], [108]</td>
<td></td>
</tr>
<tr>
<td>014 – 010</td>
<td>3875 – 3968</td>
<td>183</td>
<td>0.076</td>
<td>[87], [104], [109]</td>
<td></td>
</tr>
<tr>
<td>320 – 010</td>
<td>3888 – 4000</td>
<td>279</td>
<td>0.173</td>
<td>[87], [104], [109]</td>
<td></td>
</tr>
<tr>
<td>202 – 000</td>
<td>4034 – 4207</td>
<td>1387</td>
<td>1.100</td>
<td>[96], [103], [103]</td>
<td></td>
</tr>
<tr>
<td>131 – 000</td>
<td>4065 – 4145</td>
<td>714</td>
<td>0.460</td>
<td>[96], [101], [101]</td>
<td></td>
</tr>
<tr>
<td>301 – 000</td>
<td>4179 – 4264</td>
<td>1213</td>
<td>2.471</td>
<td>[96], [110], [110]</td>
<td></td>
</tr>
<tr>
<td>230 – 000</td>
<td>4195 – 4263</td>
<td>14</td>
<td>0.009</td>
<td>[96], [110], [110]</td>
<td></td>
</tr>
<tr>
<td>221 – 000</td>
<td>4444 – 4525</td>
<td>1066</td>
<td>1.034</td>
<td>[96], [102], [102]</td>
<td></td>
</tr>
<tr>
<td>014 – 000</td>
<td>4522 – 4700</td>
<td>1998</td>
<td>1.626</td>
<td>[96], [104], [104]</td>
<td></td>
</tr>
<tr>
<td>123 – 010</td>
<td>4531 – 4600</td>
<td>783</td>
<td>0.649</td>
<td>[87], [111], [111]</td>
<td></td>
</tr>
<tr>
<td>330 – 010</td>
<td>4554 – 4602</td>
<td>47</td>
<td>0.018</td>
<td>[87], [111], [111]</td>
<td></td>
</tr>
<tr>
<td>113 – 000</td>
<td>4562 – 4668</td>
<td>1599</td>
<td>8.751</td>
<td>[96], [104], [104]</td>
<td></td>
</tr>
<tr>
<td>320 – 000</td>
<td>4586 – 4700</td>
<td>587</td>
<td>0.432</td>
<td>[96], [104], [104]</td>
<td></td>
</tr>
<tr>
<td>212 – 000</td>
<td>4700 – 4845</td>
<td>924</td>
<td>0.412</td>
<td>[96], [106], [106]</td>
<td></td>
</tr>
<tr>
<td>141 – 000</td>
<td>4760 – 4794</td>
<td>4</td>
<td>0.001</td>
<td>[96], [106], [106]</td>
<td></td>
</tr>
<tr>
<td>104 – 000</td>
<td>4805 – 4979</td>
<td>977</td>
<td>0.730</td>
<td>[96], [112], [112]</td>
<td></td>
</tr>
<tr>
<td>005 – 000</td>
<td>4807 – 4957</td>
<td>1579</td>
<td>5.350</td>
<td>[96], [112], [112]</td>
<td></td>
</tr>
<tr>
<td>311 – 000</td>
<td>4808 – 4952</td>
<td>1203</td>
<td>3.561</td>
<td>[96], [112], [112]</td>
<td></td>
</tr>
<tr>
<td>203 – 000</td>
<td>4997 – 5085</td>
<td>1086</td>
<td>1.255</td>
<td>[96], [113], [113]</td>
<td></td>
</tr>
<tr>
<td>132 – 000</td>
<td>5028 – 5085</td>
<td>27</td>
<td>0.014</td>
<td>[96], [113], [113]</td>
<td></td>
</tr>
<tr>
<td>123 – 000</td>
<td>5216 – 5301</td>
<td>784</td>
<td>0.586</td>
<td>[96], [111], [111]</td>
<td></td>
</tr>
<tr>
<td>401 – 000</td>
<td>5244 – 5319</td>
<td>896</td>
<td>0.809</td>
<td>[96], [111], [111]</td>
<td></td>
</tr>
<tr>
<td>330 – 000</td>
<td>5252 – 5302</td>
<td>43</td>
<td>0.015</td>
<td>[96], [111], [111]</td>
<td></td>
</tr>
<tr>
<td>024 – 000</td>
<td>5271 – 5316</td>
<td>2</td>
<td>0.001</td>
<td>[96], [111], [111]</td>
<td></td>
</tr>
<tr>
<td>015 – 000</td>
<td>5444 – 5526</td>
<td>947</td>
<td>0.975</td>
<td>[96], [114], [114]</td>
<td></td>
</tr>
<tr>
<td>213 – 000</td>
<td>5625 – 5705</td>
<td>622</td>
<td>0.344</td>
<td>[96], [115], [115]</td>
<td></td>
</tr>
<tr>
<td>420 – 000</td>
<td>5663 – 5706</td>
<td>10</td>
<td>0.003</td>
<td>[96], [115], [115]</td>
<td></td>
</tr>
<tr>
<td>312 – 000</td>
<td>5753 – 5786</td>
<td>14</td>
<td>0.004</td>
<td>[96], [116], [116]</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51781</td>
<td>124.407</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Updated ozone bands for the principal isotopologue 16O16O16O.

<table>
<thead>
<tr>
<th>Band</th>
<th>Spectral range (cm$^{-1}$)</th>
<th>Number of lines</th>
<th>Sum of line intensities $(10^{-21}$ cm$^{-1}$/ (mol×cm$^{-2}$))</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 – 100</td>
<td>1613 – 1849</td>
<td>1271</td>
<td>0.267</td>
</tr>
<tr>
<td>012 – 001</td>
<td>1617 – 1826</td>
<td>1581</td>
<td>0.640</td>
</tr>
<tr>
<td>111 – 001</td>
<td>1629 – 1854</td>
<td>1557</td>
<td>0.130</td>
</tr>
<tr>
<td>012 – 100</td>
<td>1637 – 1706</td>
<td>85</td>
<td>0.004</td>
</tr>
<tr>
<td>210 – 100</td>
<td>1701 – 2051</td>
<td>1663</td>
<td>0.197</td>
</tr>
<tr>
<td>210 – 001</td>
<td>1719 – 2066</td>
<td>388</td>
<td>0.015</td>
</tr>
<tr>
<td>003 – 100</td>
<td>1848 – 2104</td>
<td>1920</td>
<td>1.175</td>
</tr>
<tr>
<td>003 – 001</td>
<td>1867 – 2098</td>
<td>2847</td>
<td>1.313</td>
</tr>
<tr>
<td>102 – 100</td>
<td>1869 – 2071</td>
<td>2206</td>
<td>0.426</td>
</tr>
<tr>
<td>012 – 010</td>
<td>1872 – 2120</td>
<td>3794</td>
<td>3.198</td>
</tr>
<tr>
<td>201 – 100</td>
<td>1888 – 2243</td>
<td>2831</td>
<td>10.902</td>
</tr>
<tr>
<td>201 – 001</td>
<td>1896 – 2289</td>
<td>2165</td>
<td>0.328</td>
</tr>
<tr>
<td>102 – 001</td>
<td>1901 – 2085</td>
<td>2965</td>
<td>15.675</td>
</tr>
<tr>
<td>022 – 020</td>
<td>1921 – 2067</td>
<td>1046</td>
<td>0.740</td>
</tr>
<tr>
<td>121 – 020</td>
<td>1984 – 2079</td>
<td>1817</td>
<td>1.424</td>
</tr>
<tr>
<td>111 – 010</td>
<td>1918 – 2220</td>
<td>3520</td>
<td>42.815</td>
</tr>
<tr>
<td>300 – 100</td>
<td>2021 – 2288</td>
<td>2508</td>
<td>0.472</td>
</tr>
<tr>
<td>210 – 010</td>
<td>2006 – 2353</td>
<td>3050</td>
<td>0.838</td>
</tr>
<tr>
<td>300 – 001</td>
<td>2012 – 2313</td>
<td>1804</td>
<td>0.915</td>
</tr>
<tr>
<td>012 – 000</td>
<td>2590 – 3025</td>
<td>3886</td>
<td>3.293</td>
</tr>
<tr>
<td>111 – 000</td>
<td>2626 – 3020</td>
<td>3604</td>
<td>24.909</td>
</tr>
<tr>
<td>210 – 000</td>
<td>2704 – 3196</td>
<td>3327</td>
<td>0.806</td>
</tr>
<tr>
<td>003 – 000</td>
<td>2906 – 3202</td>
<td>4512</td>
<td>140.140</td>
</tr>
<tr>
<td>201 – 000</td>
<td>2919 – 3274</td>
<td>2706</td>
<td>7.854</td>
</tr>
<tr>
<td>102 – 000</td>
<td>2924 – 3196</td>
<td>4646</td>
<td>12.683</td>
</tr>
<tr>
<td>300 – 000</td>
<td>2955 – 3398</td>
<td>2445</td>
<td>0.467</td>
</tr>
</tbody>
</table>
Table 3. New ozone bands for the $^{16}\text{O}^{16}\text{O}^{18}\text{O}$ isotopologue.

<table>
<thead>
<tr>
<th>Band</th>
<th>Spectral range (cm$^{-1}$)</th>
<th>Number of lines</th>
<th>Sum of line intensities (10$^{-22}$ cm$^{-1}$/(mol×cm$^{-2}$))</th>
</tr>
</thead>
<tbody>
<tr>
<td>002 – 000</td>
<td>1903 – 2143</td>
<td>6004</td>
<td>3.217</td>
</tr>
<tr>
<td>111 – 010</td>
<td>2010 – 2085</td>
<td>2413</td>
<td>1.334</td>
</tr>
<tr>
<td>101 – 000</td>
<td>2004 – 2182</td>
<td>8284</td>
<td>44.610</td>
</tr>
<tr>
<td>200 – 000</td>
<td>2020 – 2266</td>
<td>6117</td>
<td>1.660</td>
</tr>
<tr>
<td>111 – 000</td>
<td>2694 – 2768</td>
<td>2337</td>
<td>1.023</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>25 155</td>
<td>51.845</td>
</tr>
</tbody>
</table>

Note: The 101-000 band is an update.
Table 4. New ozone bands for the 16O18O16O isotopologue.

<table>
<thead>
<tr>
<th>Band</th>
<th>Spectral range (cm$^{-1}$)</th>
<th>Number of lines</th>
<th>Sum of line intensities (10^{-22} cm$^{-1}$/mol×cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>002 – 000</td>
<td>1854 – 2082</td>
<td>3175</td>
<td>1.503</td>
</tr>
<tr>
<td>111 – 010</td>
<td>1962 – 2049</td>
<td>1375</td>
<td>0.749</td>
</tr>
<tr>
<td>101 – 000</td>
<td>1898 – 2149</td>
<td>3074</td>
<td>22.771</td>
</tr>
<tr>
<td>200 – 000</td>
<td>2020 – 2225</td>
<td>2450</td>
<td>0.378</td>
</tr>
<tr>
<td>111 – 000</td>
<td>2654 – 2739</td>
<td>1300</td>
<td>0.452</td>
</tr>
<tr>
<td>Total</td>
<td>11 374</td>
<td></td>
<td>25.853</td>
</tr>
</tbody>
</table>

Note: The 101-000 band is an update.
Table 5. J_{max} values for OH term values

<table>
<thead>
<tr>
<th>Vibrational level</th>
<th>J_{max} Ref. [201]</th>
<th>J_{max} HITRAN2004</th>
<th>J_{max} HITRAN2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>49.5</td>
<td>45.5</td>
<td>45.5</td>
</tr>
<tr>
<td>1</td>
<td>47.5</td>
<td>45.5</td>
<td>45.5</td>
</tr>
<tr>
<td>2</td>
<td>46.5</td>
<td>44.5</td>
<td>44.5</td>
</tr>
<tr>
<td>3</td>
<td>44.5</td>
<td>44.5</td>
<td>44.5</td>
</tr>
<tr>
<td>4</td>
<td>36.5</td>
<td>44.5</td>
<td>36.5</td>
</tr>
<tr>
<td>5</td>
<td>22.5</td>
<td>44.5</td>
<td>22.5</td>
</tr>
<tr>
<td>6</td>
<td>23.5</td>
<td>44.5</td>
<td>23.5</td>
</tr>
<tr>
<td>7</td>
<td>23.5</td>
<td>42.5</td>
<td>23.5</td>
</tr>
<tr>
<td>8</td>
<td>17.5</td>
<td>40.5</td>
<td>17.5</td>
</tr>
<tr>
<td>9</td>
<td>18.5</td>
<td>38.5</td>
<td>18.5</td>
</tr>
<tr>
<td>10</td>
<td>16.5</td>
<td>35.5</td>
<td>16.5</td>
</tr>
</tbody>
</table>
Table 6. Summary of the bands and transitions now available for the 12C$_2$H$_2$ molecule.

<table>
<thead>
<tr>
<th>Spectral region (μm)</th>
<th>Number of bands</th>
<th>Number of transitions</th>
<th>Spectral range (cm$^{-1}$)</th>
<th>Intensity range (cm-molecule$^{-1}$) at 296K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cold</td>
<td>hot</td>
<td>cold</td>
<td>hot</td>
</tr>
<tr>
<td>13.6b</td>
<td>1</td>
<td>5</td>
<td>150</td>
<td>1038</td>
</tr>
<tr>
<td>7.7b</td>
<td>1</td>
<td>0</td>
<td>71</td>
<td>0</td>
</tr>
<tr>
<td>5b</td>
<td>3</td>
<td>15</td>
<td>283</td>
<td>1212</td>
</tr>
<tr>
<td>3.8c</td>
<td>2</td>
<td>3</td>
<td>90</td>
<td>331</td>
</tr>
<tr>
<td>3d</td>
<td>2</td>
<td>0</td>
<td>125</td>
<td>0</td>
</tr>
<tr>
<td>3d</td>
<td>0</td>
<td>18</td>
<td>77^a</td>
<td>1971</td>
</tr>
<tr>
<td>2.5c</td>
<td>4</td>
<td>5</td>
<td>450</td>
<td>720</td>
</tr>
<tr>
<td>2.2d</td>
<td>4</td>
<td>4</td>
<td>254</td>
<td>392</td>
</tr>
<tr>
<td>1.9d</td>
<td>7</td>
<td>0</td>
<td>539</td>
<td>0</td>
</tr>
<tr>
<td>1.7d</td>
<td>2</td>
<td>4</td>
<td>175</td>
<td>350</td>
</tr>
<tr>
<td>1.5b</td>
<td>2</td>
<td>2</td>
<td>129</td>
<td>224</td>
</tr>
<tr>
<td>1.5d</td>
<td>4</td>
<td>16</td>
<td>200</td>
<td>1443</td>
</tr>
<tr>
<td>1.4d</td>
<td>4</td>
<td>0</td>
<td>347</td>
<td>0</td>
</tr>
<tr>
<td>1.3f</td>
<td>1</td>
<td>0</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>1.2f</td>
<td>2</td>
<td>0</td>
<td>132</td>
<td>0</td>
</tr>
<tr>
<td>1.0f</td>
<td>3</td>
<td>1</td>
<td>193</td>
<td>108</td>
</tr>
</tbody>
</table>

a 12C13CH$_2$ data are not in this table.
b HITRAN2004.
c HITRAN updates of 2007.
d New data from Ref. [241].
e New high J lines added to the two cold bands already present in HITRAN2004.
f New data from Ref. [242].
Table 7. Dunham constants (in cm⁻¹) for the $X^1\Sigma^+$ ground electronic state of NO⁺.

<table>
<thead>
<tr>
<th>Dunham Coefficient</th>
<th>Value (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y_{1,0}$</td>
<td>2376.5568(85)</td>
</tr>
<tr>
<td>$Y_{2,0}$</td>
<td>-16.2603(46)</td>
</tr>
<tr>
<td>$Y_{3,0}$</td>
<td>-0.00480(55)</td>
</tr>
<tr>
<td>$Y_{0,1}$</td>
<td>1.997365(33)</td>
</tr>
<tr>
<td>$Y_{1,1}$</td>
<td>-0.018804(22)</td>
</tr>
<tr>
<td>$Y_{2,1}$</td>
<td>-4.90(53) ×10⁻⁵</td>
</tr>
<tr>
<td>$Y_{0,2}$</td>
<td>-5.580(99) ×10⁻⁶</td>
</tr>
<tr>
<td>$Y_{1,2}$</td>
<td>6(3) ×10⁻⁸</td>
</tr>
</tbody>
</table>

Note: Number in parentheses is approximately 2σ.
Table 8. Summary of molecules represented by IR cross-section data in *HITRAN*

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Common Name</th>
<th>Temperature Range (K)</th>
<th>Pressure Range (torr)</th>
<th>Number of T,P sets</th>
<th>Spectral Coverage (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF(_6)</td>
<td>Sulfur hexafluoride</td>
<td>180-295</td>
<td>20-760</td>
<td>32</td>
<td>925-955</td>
</tr>
<tr>
<td>ClONO(_2)</td>
<td>Chlorine nitrate</td>
<td>189-297</td>
<td>0-117</td>
<td>25</td>
<td>750-830</td>
</tr>
<tr>
<td>CCl(_4)</td>
<td>Carbon tetrachloride</td>
<td>208-297</td>
<td>8-760</td>
<td>32</td>
<td>750-812</td>
</tr>
<tr>
<td>N(_2)O(_5)</td>
<td>Dinitrogen pentoxide</td>
<td>205-293</td>
<td>0</td>
<td>5</td>
<td>540-1380</td>
</tr>
<tr>
<td>HNO(_4)</td>
<td>Peroxy nitric acid</td>
<td>220</td>
<td>0</td>
<td>1</td>
<td>780-830</td>
</tr>
<tr>
<td>C(_2)F(_6)</td>
<td>Hexafluoroethane, CFC-116</td>
<td>181-296</td>
<td>25-760</td>
<td>43</td>
<td>1061-1165</td>
</tr>
<tr>
<td>CCl(_3)F</td>
<td>CFC-11</td>
<td>190-296</td>
<td>8-760</td>
<td>55</td>
<td>810-880</td>
</tr>
<tr>
<td>CCl(_2)F(_2)</td>
<td>CFC-12</td>
<td>190-296</td>
<td>8-760</td>
<td>52</td>
<td>850-950</td>
</tr>
<tr>
<td>C(_2)Cl(_3)</td>
<td>CFC-13</td>
<td>203-293</td>
<td>0</td>
<td>6</td>
<td>765-805</td>
</tr>
<tr>
<td>C(_2)Cl(_2)F(_2)</td>
<td>CFC-14</td>
<td>203-293</td>
<td>0</td>
<td>6</td>
<td>1065-1140</td>
</tr>
<tr>
<td>CF(_4)</td>
<td>CFC-14</td>
<td>180-296</td>
<td>8-761</td>
<td>55</td>
<td>1250-1290</td>
</tr>
<tr>
<td>C(_2)Cl(_2)F(_3)</td>
<td>CFC-113</td>
<td>203-293</td>
<td>0</td>
<td>6</td>
<td>789-995</td>
</tr>
<tr>
<td>C(_2)Cl(_2)F(_4)</td>
<td>CFC-114</td>
<td>203-293</td>
<td>0</td>
<td>6</td>
<td>1005-1232</td>
</tr>
<tr>
<td>C(_2)Cl(_2)F(_3)</td>
<td>CFC-115</td>
<td>203-293</td>
<td>0</td>
<td>6</td>
<td>955-1015</td>
</tr>
<tr>
<td>C(_2)Cl(_2)F(_2)</td>
<td>HCFC-21</td>
<td>296</td>
<td>1</td>
<td>1</td>
<td>785-840</td>
</tr>
<tr>
<td>CHCl(_2)F</td>
<td>HCFC-22</td>
<td>181-297</td>
<td>0-765</td>
<td>29</td>
<td>760-860</td>
</tr>
<tr>
<td>CHCl(_2)F</td>
<td>HCFC-23</td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>1080-1450</td>
</tr>
<tr>
<td>CHCl(_2)F</td>
<td>HCFC-13</td>
<td>287</td>
<td>0</td>
<td>1</td>
<td>675-715</td>
</tr>
<tr>
<td>CH(_2)Cl(_2)F</td>
<td>HCFC-141b</td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>710-790</td>
</tr>
<tr>
<td>CH(_2)Cl(_2)F</td>
<td>HCFC-142b</td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>895-1210</td>
</tr>
<tr>
<td>CH(_3)Cl(_2)F</td>
<td>HCFC-225ca</td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>1325-1475</td>
</tr>
<tr>
<td>CHCl(_3)F (_2)F</td>
<td>HCFC-225cb</td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>695-865</td>
</tr>
<tr>
<td>CH(_3)F (_2)F</td>
<td>HFC-32</td>
<td>203-297</td>
<td>0-750</td>
<td>17</td>
<td>995-1236</td>
</tr>
</tbody>
</table>

105
<table>
<thead>
<tr>
<th>CHF₂CHF₂</th>
<th>HFC-134</th>
<th>203-297</th>
<th>0-750</th>
<th>9</th>
<th>600-1700</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFH₂CF₃</td>
<td>HFC-134a</td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>815-865</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190-296</td>
<td>20-760</td>
<td>32</td>
<td>1035-1130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190-296</td>
<td>20-760</td>
<td>33</td>
<td>1135-1340</td>
</tr>
<tr>
<td></td>
<td></td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>935-1485</td>
</tr>
<tr>
<td>CF₃CH₃</td>
<td>HFC-143a</td>
<td>203-297</td>
<td>0-750</td>
<td>9</td>
<td>580-630</td>
</tr>
<tr>
<td></td>
<td></td>
<td>203-297</td>
<td>0-750</td>
<td>9</td>
<td>750-1050</td>
</tr>
<tr>
<td></td>
<td></td>
<td>203-297</td>
<td>0-750</td>
<td>9</td>
<td>1100-1500</td>
</tr>
<tr>
<td>CH₂CHF₂</td>
<td>HFC-152a</td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>840-995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>1050-1205</td>
</tr>
<tr>
<td></td>
<td></td>
<td>253-287</td>
<td>0</td>
<td>3</td>
<td>1320-1490</td>
</tr>
<tr>
<td>SF₃CF₃</td>
<td>Trifluoromethyl sulfur pentafluoride</td>
<td>213-323</td>
<td>760</td>
<td>5</td>
<td>599-624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213-323</td>
<td>760</td>
<td>5</td>
<td>676-704</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213-323</td>
<td>760</td>
<td>5</td>
<td>740-766</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213-323</td>
<td>760</td>
<td>5</td>
<td>860-920</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213-323</td>
<td>760</td>
<td>5</td>
<td>1150-1280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213-323</td>
<td>760</td>
<td>5</td>
<td>1280-2600</td>
</tr>
</tbody>
</table>

New or modified data added after the HITRAN2004 edition

CH₃C(O)OONO₂	PAN (Peroxyacetal nitrate)	295	0.08	1	550-1450
		295	0.08	1	1650-1901
CH₃CN	Acetonitrile (methyl cyanide)	276-324	760	3	624-784
		276-324	760	3	867-1159
		276-324	760	3	1175-1687
		276-324	760	3	2217-2343
		276-324	760	3	2786-3261
		276-324	760	3	3881-4574
CHF₂CF₃	HFC-125	203-293	0-600	16	494-1503

Note: These data are in the main directory. Additional redundant data for CFC-11, CFC-12, HFC-125, and HFC-143a are stored in a supplemental sub-directory.
Table 9. Energy levels for oxygen currently in *HITRAN* with their vibrational range and descriptors.

<table>
<thead>
<tr>
<th>Electronic State</th>
<th>X</th>
<th>Ω</th>
<th>(\nu) (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X^3\Sigma^-_g)</td>
<td>X</td>
<td>0</td>
<td>0 - 2</td>
</tr>
<tr>
<td>(a^1\Delta_g)</td>
<td>a</td>
<td>0</td>
<td>0 - 1</td>
</tr>
<tr>
<td>(b^3\Sigma^-_g)</td>
<td>b</td>
<td>0</td>
<td>0 - 2</td>
</tr>
<tr>
<td>(A^3\Sigma^+_u)</td>
<td>A</td>
<td>0</td>
<td>0 - 12</td>
</tr>
<tr>
<td>(c^1\Sigma^-_u)</td>
<td>c</td>
<td>0</td>
<td>2 - 19</td>
</tr>
<tr>
<td>(A^{1}\Delta_u)</td>
<td>A</td>
<td>1, 2, or 3</td>
<td>2 - 12</td>
</tr>
<tr>
<td>(B^3\Sigma^-_u)</td>
<td>B</td>
<td>0</td>
<td>0 - 19</td>
</tr>
</tbody>
</table>

Note: \(X \) is the character describing the electronic state, \(\Omega \) are values defining the spin components, and \(\nu \) is an integer specifying the vibrational level. Note that the \(\Omega \)-value is given only for states with \(\Lambda \neq 0 \).
Table 10. Definitions and units associated with the HITRAN database

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mol</td>
<td>Molecule number</td>
<td>Unitless</td>
<td>Chronological assignment</td>
</tr>
<tr>
<td>I_a</td>
<td>Isotopologue number</td>
<td>Unitless</td>
<td>Ordering based on terrestrial values of atoms given in Ref. [389]</td>
</tr>
<tr>
<td>v</td>
<td>Transition wavenumber</td>
<td>cm$^{-1}$</td>
<td>Line position in vacuum</td>
</tr>
<tr>
<td>S</td>
<td>Intensity</td>
<td>cm$^{-1}$/ (molecule/cm2)</td>
<td>At 296 K</td>
</tr>
<tr>
<td>A</td>
<td>Einstein A-coefficient</td>
<td>s$^{-1}$</td>
<td>See Ref. [387]</td>
</tr>
<tr>
<td>γ_{air}</td>
<td>Air-broadened half-width</td>
<td>cm$^{-1}$/atm</td>
<td>HWHM at 296 K</td>
</tr>
<tr>
<td>γ_{self}</td>
<td>Self-broadened half-width</td>
<td>cm$^{-1}$/atm</td>
<td>HWHM at 296 K</td>
</tr>
<tr>
<td>E''</td>
<td>Lower-state energy</td>
<td>cm$^{-1}$</td>
<td>Referenced to zero for lowest possible level</td>
</tr>
<tr>
<td>n_{air}</td>
<td>Temperature-dependence coefficient of γ_{air}</td>
<td>Unitless</td>
<td></td>
</tr>
<tr>
<td>δ_{air}</td>
<td>Air pressure-induced shift</td>
<td>cm$^{-1}$/atm</td>
<td>At 296 K</td>
</tr>
<tr>
<td>v',v''</td>
<td>Upper- and lower-state “global” quanta</td>
<td>Unitless</td>
<td>See Table 3 of Ref. [1]</td>
</tr>
<tr>
<td>q',q''</td>
<td>Upper- and lower-state “local” quanta</td>
<td>Unitless</td>
<td>See Table 4 of Ref. [1]</td>
</tr>
<tr>
<td>ierr</td>
<td>Uncertainty indices</td>
<td>Unitless</td>
<td>See Table 5 of Ref. [1]</td>
</tr>
<tr>
<td>iref</td>
<td>Reference indices</td>
<td>Unitless</td>
<td>Pointers to sources in HITRAN</td>
</tr>
<tr>
<td>g',g''</td>
<td>Upper- and lower-state statistical weights</td>
<td>Unitless</td>
<td>Includes state-independent factors in HITRAN, see Ref. [387]</td>
</tr>
</tbody>
</table>

Other properties or constants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Units</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>Partition sum</td>
<td>Unitless</td>
<td>Function of temperature</td>
</tr>
<tr>
<td>h</td>
<td>Planck constant</td>
<td>erg s</td>
<td>$6.62606896(33) \times 10^{-27}$</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light</td>
<td>cm s$^{-1}$</td>
<td>$2.99792458 \times 10^{10}$</td>
</tr>
<tr>
<td>k_B</td>
<td>Boltzmann constant</td>
<td>erg K$^{-1}$</td>
<td>$1.3806504(24) \times 10^{-16}$</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
<td>K</td>
<td></td>
</tr>
</tbody>
</table>

108
OCO, CRDS, CDSD line lists

Is \(S_{\text{OCO}} > 10^{-26} \) for \(^{17}\text{CO}_2\) or \(S_{\text{OCO}} > 10^{-27} \) for other isotopologues?

Does transition exist in CRDS and is not blended?

Does transition exist in CDSD?

Does transition \(^{17}_{\text{O}}^{12}_{\text{C}}^{16}_{\text{O}}\) belong to \(^{17}_{\text{O}}^{12}_{\text{C}}^{16}_{\text{O}}\) or \(^{16}_{\text{O}}^{13}_{\text{C}}^{18}_{\text{O}}\)?

Take OCO line position and intensity

Take CRDS experimental line positions and intensities and supplement with CDSD intensities if needed

Take CDSD position and intensity

Ignore transition

Add pressure-induced parameters from OCO line list

\textit{HITRAN2008 CO}_2\ line list for 4300 to 7000 cm\(^{-1}\) region
P_0: Ground State, 1 level, 1 sublevel

P_1: Dyad, 2 levels, 2 sublevels

P_2: Pentad, 5 levels, 9 sublevels

P_3: Octad, 8 levels, 24 sublevels

P_4: Tetradecad, 14 levels, 60 sublevels

P_5: Icosad, 20 levels, 134 sublevels

P_6: Triacontad, 30 levels, 280 sublevels

P_7: Tetracontad, 40 levels, 538 sublevels

P_8: Pentacontakaipentad, 55 levels, 996 sublevels

P_9: Heptacontad, 70 levels, 1746 sublevels
Figure(s)
\[\gamma_{\text{self}} = 0.471 - 0.0143 K_a \]
Integrated cross-sections (in units of 10^{-26} cm2 molecule$^{-1}$)

- $A^3\Sigma^+_u - X^3\Sigma^-_g$
- $c^1\Sigma^-_u - X^3\Sigma^-_g$
- $A'^3\Delta_u - X^3\Sigma^-_g$

![Graph showing integrated cross-sections vs. wavenumber (cm$^{-1}$)](image)