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A THREORY OF UNSTAGGERED AIRFOIL CASCADES
IN COMPRESSIBLE FLOW.

By Robert A, Spurr and H. Julian Allen

SUMMARY

By use of the methods of thin airfoil theory, which include
effects of compressibility, relations are developed which permit
the rapid determination of the pressure distribution over an
unstaggered cascade of airfoils of a given profile, and the deter—
mination of the profile shape necessery to yield a given pressure
distribution for small chord/gap ratios. For incompressible flow
the results of the theory are compayed with available examples
obtained by the more exact method of conformael transformation.
Although the thecry is developed for small chord/gap ratlios, these
comparisons show that it may be extended to chord/gap ratios of
order unity, at least for low-speed flows. Choking of cascades,

a phenomenon of particular importance in comprsssor design, is
considered.

INTRODUCTION ’

The wider use of gas turbines and other devices employing
axial~flow compressors has increased the need for compressors with
a high pressure rise per stage. TIn order to achieve this purpose,
it 1s necessary to use high veloclty flows, thus increasing the
possibility of losses through compression sheck. A method is there—
fore desirable which will permit the design of compressor blades
which have high critical compressibility speeds. This result can
be accomplished if a cascade of airfolils representing the flow can
be designed to give a desirable airfoil-section. pressure distribution.

This report attacks a portion of the problem by finding the
relation between the profile shape and pressure distribution over
airfoils arranged in an unstaggered cascade through the use of the
approximate methods of thin alrfoil theory originally presented by
Glavert in reference 1 and further developed by the NACA in
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reference 2. The flow over an airfoil in cascade is related to that
over a single airfoil in a free stream. The problem of finding the

pressure distribution over an airfoil in cascade or the shape of

an alrfoil in cascade to give a required pressure distribution then

reduces to the analcgous problem for a single airfoll, whick can be -
golved by known methods.

The analysis involves the assumption that the gap bvetween air—
folls is large compared to the chord length. In particular expres—
siong, relating the characteristics of a cascade airfoil to those of
a free airfoil are expanded in a power seriss in c/g, where ¢ is
the chord and g the perpendicular distance between airfoil chord
lines in the cascade, and powers of c/g higher than the second are
neglected. Definitiomof the symbols used are found in Appendix A,

THEORY

Consider en infinite unstaggered cascade of identical two—
dimensional airfoils, as represented in figure 1. The configuration
is specified by the chord/gap ratio c/g, the camber—line shape and
thickness distribution of the individual airfoils. For an indivi—
dual airfoil, the incident velocity is V with a corresponding
density of o and angle of attack af.

The pressure distribution on a typical cascade airfoil will
be compared with that which would he obtained over a single airfoil
of the same shape in a stream of velocity V and density po. The
angle of attack o of the single airfoil will not, in general, be
the same as the angle of attack a' of the airfoil in cascade, and
an expression relabting the two angles will be given. In the analysis
to follow, primes will be used to designate properties of the cascade
alrfoil.

Aerodynamic Characteristics of a Cascade
Airfoll of Given Profile Shape

Effect of camber .- The chordwise lift distribution for the free
airfoil 1s given by the Kutta—Joukowski relation

%% = oV %%ﬂ (1)
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vhere L is 1ift per unit span, I' is the vorticity per unit
span, and x 1is the chordwise distance from the leading edge to
the point in question. The lift~distribution coefficient P is
then defined as

1d4L 24l
Peim T | (2)

In Appendix B it is shown that the stream velocity at the
cagcade airfoll is uvniform so that the 1lift distribution for the
cagscade airfoil may be expressed as

31Tt 1
aL ar . (3)

........:pv....,_.‘

ax dx

and the lift~distribution coefficient of the cascade airfoil referrved
to the dynamic pressure ¢ is

¥ o 2 dLT 240
P = S = Tax (%)

From equations (2) and (&),

2 //§£~ d
P*-P=z \ - (5)

BN

v is now desirable to express equation (5) in a more convenient
form. It is assumed that the vorticity distributions of the free
and cascade airfoils, respectively, may be represented by the
following series (references 1 and 2):

x

%L‘ = oV (AD cot 26 + A, sin n9> )
X , |
ned !k (6)
! /7 Teg \
ar’ = oy (Ao cot 20 + % An' sin no)
dx \ - /

8}

n=y
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The new parameter € 1is related to x by the equation

(1 ~ cos 8} &

Equation (5) then becomes

2]
P —P = b (A" ~ o) cot 30 + Z(An' ~ay) sinme | (8)

.

| S

n=3

The coefficients in equation (8) will now be evaluated by
considering the conditions of flow at the airfoil boundaries. Iet
v and v' De the vertical components of velocity induced, respec—
tively, by the free airfoil and a particular cascade airfcil, and
let 4Lv be the vertical component of velocity induced by the other
airfoils of the cascade. For swall angles of attack, in order that
the flow be tangent at the surfaces, the slope dxz/dx of the air-
foil camber line (which 1s the same for both free and cascadc alr-
foils) must be given by the following relations:

dye _
dx
(9)
dye _
ax

I

g..

+

|

.*..
4z

e e et

Appendix B gives the vertical components of velocity induced
by the vorticity and source—sink distributions which represent the
airfoils of a cascade. For simplicity, the following symbols are
used: ‘

= J1E (Bk)

where M is the Mach number of the undisturbed strean.
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The velocity components calculated in Appendix B are

Yo | -A~ + N A\ cos nod (B5)
'V- - (o] L L
n=i
l’{;. =M -Ao! +";_ An' cos nG) (B6)
L.

and ncglecting terms involving ¢ to the second and higher powers
%E = D % [(Ao' + ZA2") — (2ha" + £3') cos 8] (B25)

Substituting these relations in equations (9), there is
obtained

- ,
%&=a+)\,/—AO+ ZAncosnG\
X \ } J
n=1 :

v Y (20
e _ 4 ~Ag !+ L' cos nb /
i o! + A ( 2% L n o

n=1

-2 % [(Aot + 2Az") — (246" + A1) cos 6] )

Since equations (10) are equal trigonometric series, the
coefficients of cos nf can be equated:

@ = Mo = a' — Mo' —2 ¢ (o' + Fh2') |
|
Ady = Myt "‘2%(%0' + Axt) ;
!
fe i \ (1)
/
’ !
|
An = Ap' (n £ 1) |

N
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From the first of equations (11), it is seen that the quantity
(Ao' — Ap) depends on the angle of attack o of the free airfoil,
This angle may be arbitrarily defined so that

Aot —Ap =20 (12)

Combining equations (11) and (12), the following relations are
ohtained:

AO, - Ao = 0
At~ 8y = 2 5% (BA0" + Ay')
Agt ~ Az =0 (13)

Ant ~ Ap =0 (n # 1)

and

ol —a =2 (A" +3A") (1)

Meking use of equation (13), equation (1k4) may also be written as
follows:

a' —a=2 % (A + 3h2) (15)
From equations (8) and (13), there is obtained

P¥ - P = -8 f-—z- (2An! + Ay!) sin 6 (16)

Changing to the unprimed coefficients with the use of equations (13),

and neglecting terms in 02, the expression becomes

P¥ - P = -8 XQ; (P80 + A1) sin @ (17)
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It should not be interpreted from equations (16) and (17)
that A;! and A; are equal. Egquation (17) is the result of
dropping terms in o2 and not of equating Ai' and A;. The
difference between A;' and A; to the order ¢ is still given
by equation (13).

The sectiocn lift coefficient.for the free airfoil is

oy =LZ?1 P d(%) (18)

Substituting from eguations (2), (6), and (7) and performing the
integration, one obtains

c1 == 7T (EAO + Al) (19)

Similarly, the gquarter—chord moment coefficient is

Cmeyy = f\ (E % % ~~E(A1~A2) (20)

From equations (19) and (20) it follows that

3
2Ao+Al=-;{l'- i
(21)
Ag +-?§A2 = %‘fi— (C'L +‘)4~ Cmc/é)

With use of equations (21), equations (15) and (17) then become

at —-a = é% (c1 + & Cmcﬁ4) ' | (22)
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and
Pr—p o - 39 i g (52)
- = - ;a;- a1in . LeD)
léccz; ’ -

Effect of thicknsessg.— From Appendix B, the horizontal velocity
at an alirfoll in cascade is greater then that at a single airfoil
by the amount Au, which is given by the relation

Tt | (Bek)

The quantity A -is a function of airfoll thickness given by
‘equation (B20) and tabulated for various airfoils in table I, which
has been taken from reference 3.

The increment of velocity given by equation (B24) can be
added to the veloclity of the undlsturbed stﬂeam Vi to give the
true incident veloclty V:

V = Vi + Au _ (25)

From equations (B24) and (25),

o4 - (26)
v A°

The density o1 TFar ahead of the cascade is given by the
following equation, derived for isentropic flow:

. ' . l
R (R e V0 S B 3
pr=p< 1 -2 M2§<-{;L> lj}.

al
L

where 7y 1is the ratio of specific heat at constant pressure to that
at constant volume. Using the binomial expansion and neglecting
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terms containing powers of [(Vi/V)2 — 1] higher than the first,
there is obtained to the order of o
Lx - AcM2 “
o 1+ 35 (27)
The ratio of the dynamic pressure q at the center of
pressure tc the dynamic pressure ¢y Tfar ahead of the airfoil
is then found to be
-gnr.l-i-EAo“ . 2
h -—%h | (28)
where
e=1-1 (29)
The lift-distribution coefficient P' referred to the
dynamic pressure (i 138 given by
a_ ox
Pt =g ® (30)
The cagcade section 1ift coefficient is
1 Plg / a 3
eyt =; P! d(x/c) = 2= P* d(x/c) (31)
Jo 1 o

Substituting equations (24) and (28) in equation (31) and
performing the integration, there is obtained, neglecting terms in o2,

‘ oc
cy! - ¢l = -2 -X% (l --%Q) {32)

Equation (32) gives the relation between the 1lift coefficient of a
cagscade airfoil at angle of attack «' and that of a single airfoil
at angle of attack «. The relation between o' and o is given
by equation (22).
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The Mach number M' must now be related tc the Mach number
M for the corresponding single airfoil. The velocity of zound a;
is related to a by

ay = ;E%a (33)
)

For isentropic flow

Tl-.T{l-Z::-L-ME < ) —-1}

which becomes, using equation (26)

Ty = {1+(7~1) -%‘%} (34)

L_

Hence equation (23) becomes, to the order of o

a1 =<l + L;Ma%-%> a (35)

and so

M =(1 —--f-\i% 0 W (36)
where

Ve
b=l +Kz:?i M? (37)



NACA RM No. A7E29 11

Determination of pressure coefficient.— The following coeffi-
cients are useful in expressing the pressure on an airfoil surface:

H-p1 D1—P ‘ a0
87 = o=l Py = 2L E 38
1 T 1 g (38)

where ©pj; 18 the local static pressure on the surface of the airfoil,

and H, p, and ¢ ave, respectively, the total head, static pressure,
and dynamic pressure of the undisturbed stream. The variation of H

with Mach number, assuming that the ratio of specific heats is 1.4,
is given (reference %) by the equations

H=p+aq(l+n)
R A MIERR N

From these equations,

Sy =14+1n—~P {40)

A graph of mn asg a function of Mach number is glven In figure
The subscript 1 in equations (38) and (40} will be replace by U,
L, or £ +to dencte, respectively, the upper and lower surfaces of
an airfolil and the surface of its symmetrical base profile.

o

According to reference 5, the velocity V¢ .along the base
profile of a single alrfoil is given, for incompressible flow by
the expression

Y i o T ()

where the pressurc coefficients are referred to ¢q. That is,
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and p is the static pressuré of the stream corresponding to q.

The velocity V¢' along the base profilc of the airfoill in a
cagcade in terms of V 1is simply

ol Ve
v oV
so that
JIPe* = f1Pr (42)

since cascade base-profile pressure coefficient Pr* is referred

to the dynamic pressure g and to the static pressure p rather

than to the corresponding quantities in the undisturbed stream.
Analysis (reference 3) shows that eguation (42) holds also for
compressible flow, to an approximation of the same ordsr of magnitude
as others already made.

The upper--and lower-surface pressure coefficients referred to

q are Trom reference 9.
1 2
<1~Pf* +'IP*)

* oz ] e
Fu 1-pp* N
1 A2 (43)
<l—Pf*- ) |
Pr* = 1 — :
L TP J

Although egquations (43) were derived for incompressible flow, it
can be shown that they are applicable in the case of flow in a
compressible stream.

The coefficlents Py* and P1* can be converted into the
coefficients Py' and PL' referred.to g3 (the dynamic pressure

in the undisturbed stream) and the corresponding static pressure by
means of the following equations, which are based on equations (28)
and (40):
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SU*:}.‘FT]*-W w
Sy# =1 +n -~ Pr¥*
t_,ﬂ_ P % _‘qﬁ.
SU—qlSU*~SU’(l+2A>“3 \
. / (4k)
t = 8. gr#® = gr% Ao
81, T SL 51, CL4-2~X§>
Py! = 1 + 1! — Sy '
PL’=l+q(__SL¥
J

when n' is tho value corresponding to M' given by equation (36).

/

Determination of Pressure Distribution for
a Given Profile Shape in Cascade

A method can now be outlined for finding the pressure distri-—
bution over an alrfoil of given profile in an unstaggered cascade.
It will be assumed at the outset that the Mach number M' of the
approaching air is known and that the desired 1ift coefficient c3t,
of each of the cascade airfoils is given.

1. The Mach nmuwber of the corresponding free airfoil, M, is
determined from equation (36) to a first order in ¢ as

M=<l+§—g- u)M’ . - (45)

wherein

2
) (B11)
A 1-(M1)2 ~(46)

1+ 25L ()2 (47)

Q

1
31: :
o Y
&

>
i

-
L
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and A may be obtained from table I or from equation (B20).

2. The 1ift coefficient of the corresponding free airfoil,

cl, is found from equation (32) by neglecting second order terms
in o as

oy = oy {1 +25(1-t A)W (48)

wherein ¢ 1is given by equation (29). The angle-of-attack relation,
in degrees, is

at = a+ 57.3 % (c1 + % cmopp) (22)

3. P =Pp ~ Py for compressible flow at the Mach number M
is found for the single airfoil at the lift coefficient c3.
Preferably an experimental pressure distribution at the appropriate
Mach number and at approximately the same Reynolds number should
be used but a theoretical distribution (e.g., by references 2, 6,
7, or 8) modified by the Glauert~Prandtl on Kdrmdn-Tsien rule is
satisfactory (references 9 and 10).

4, P* ig found from equation (24).

. 160cy
px = P — 2L/ (1-%)

5. o/ 1=Pp¥  ig calculated from the free airfoil pressure
distribution from equations (41) and (42)

G
O

JIF = T - AU (49)

6. (1-Pp*¥) and P* are combined to give (1-Py*) and
(1-P1¥) from equations (43)
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2
) - e o (et 2 320
1-Pp*

(1-Pp# — 3P)2
1-Pp#

1l — P1* =

T. The cascade pressure coefficients Py' and P1' arc then
found by means of equations (&4):

N
SU* = 1 — PU¥ + q |

i
SL¥ = 1 — PL¥ + 1 }
s'=<1+2-/\0>s I
U %) st | (1)
syt = (1 + o8k ) g ff
L' = (1 +25s )8 ‘
Py! = 1 — Syt + 7!
Prt = 1 - 81" + 1t

where n and #n' corresponding to M and M', respectively, are

found from figure 2.

Determination of Profile Shape From a Given
Pressure Distribution In Cascads

The procedure for obtaining the profile shape for a given
pressure distribution in cascade involves a process which is essen-—
tially the reverses of that just outlined. First the required pres—
sure distribution is drawm. The initial choice must be made skill-
fully with reliance on experimental pressure distributions so that
the distribution chosen shall correspond or nearly correspond to
that obtainable with a real airfoil. From the chosen distribution
the coefficients ¢3!t and Cmc/4' are determined by graphical or
nmumerical integration and the pressure coefficients Py' and Pr!
arc read off at scleccted points. The method then consists of the
Following steps: '
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1. Py* end Ppr* are found by applying equations (k&) in
reverse order, neglecting terms involving ¢ to the second and
higher powers.

Sgt = 1 + nt - Pyt N
S =1 + ot - P!
$ﬁ9=<1.~‘~§§>SQV

(1 -—2‘—‘{%)81,'

Py* = 1+ 7 = Sy*

(50)

~

SL*

il

y
Pr*

i

14+ n-—-8r*

2. (1-Pf) is found by means of the following equations, which
are readily ohtained from equations (49)

¥ oS 1P
JTFT - S - YRR R (49)

o

The base profile should now be checked to see if it satisfies the
cloging condition given in reference 2. If the assumed pressure
distribution does not correspond to a closed shape, it must be
8lightly modified until it does,

3. The single-airfoil lift-distribution coefficient P is Found
from the relations

P¥ = Pp* - Py* (51)
: 16ocy!?
= D¥ X71 - X
Po= PX b (1 3 (52)

LY

hgy The final upper— and lower-pressure coefficients are calcu—
lated by means of the following equations from equation {43):
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_ (1-Pr +3P)3

PU = 1
1-Pr (53)
Po —xP)2
l—Pf

5. The angle of attack of the single alrfoil is then given in
degrees by

o = a' = 57.3 ;%: (cy! + heme 4') (54)

vhich is a modification of equation (22).

The problem of finding a profile shape which will have a given
pressure distribution in cascade has now been reduced to the analogous
problem for a single airfoil., It is now possible to correct the
pressure distribution given by equation (53) by the method of

reference 10, or simply by multiplying Py and P by NEIYER

An airfoil shape can be designed to give this pressure distribution
by the method of refersnce 2. In the application of this method,

it is generally necessary to make some changes in the pressure
distribution, as previously noted, in order to make it correspond to

a possible distribution for an actual airfoil. If the initial distri-
bution has been well chosen, however, the changes will be minor,

The Choking of Cascades
In the compressible adiabatic flow of a fluid in an elementary

stream tube of varying area Ay, +the mass flow must be constant so
that the logarithmic derivative

av, aA
dpy &V &y
P V1 Ay

must vanigh. Now the density p3 and the velocity V3 are related
to the pressure pj; by Bernoulli's equation
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dpy _ dpy 4o
Py deyp T ;g

L=y, avy

The quantity dp3/de; is, of course, the square of the velocity of
sound so that Bermoullils equation may be written

dp1 V14Vy dvy
A = e = M2 Lt
o1 a2 1=

whers M, 1is the local Mach number. Combining this expression
with that of the logarithmic derivative then

(1-;2) &V . _ 21
V1 Ay

From this relation it is seen that for a subsonic flow the
area must decrease Tor a velocity Increase, while at supersonic
speeds the area must increese for a velocity increase. When the
Mach number is unity, then dA& = O, so that sound speed is only
attained where the area is a minimum,

Considering the flow through the cascade of figure 1 as
essentlally unidimensional, then it i apparent that if the flow
pagt the plane AA attains sonic speed, the mass flow through the
cagcade cannot be further increased and the cascade flow may be
said to be "choked." Of course, the flow through a cascade is not
unidimensional, but experience with the similar phenomena of choking
in wind tunnels has indicated that the assumption of unidimensionality
of flow yields calculated choking Mach numbers in good agreesment
with experiment.

For a unidimencional flow it is shown in reference 3 that thsé
ratio of the free area of the undisturbed stream A to the minimum
flow area Ap is related to the choking Mach number of the free
stream Meh by

7+1

A .1 [1 =N <Mch2~ )} 20-D) (55)

bm - Men 7+L
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For the approaching stream which will pass between any two airfoils
of the cascades the free cross~sectionsl area is

A =g cos af

vhile the minimum arce between the two airfoils is

Am=g-t=g<l-§->

and hence
A . cos af =
yoniale (56)
m 1 iy

where t 18 the maximum thickness of an airfoil.

Properly the thickness of the boundary layers on each surface
of the airfoil should be added to the geometric thickness to obtain
an effective thickness te. Using this value with equations (55)
and (56) and a value of 7 (for air) of 1.4 then

Menh cos ot =
= l 7 .C‘.ﬂ - pied (b’()
L2 Mch ) 3
2roch
3

sl

A practical estimate of the choking Mach number may be found by
assuming the angle of attack tc be so small that cos o' ® 1 and
that the effective thickness is the geometric thickness. With these
agsumptions, values of the thickness gap ratio as a function of the
choking Mach number are given in figure 3.

It is shown in reference 3 that there sexists another possibility
that choking may occur in the wake of the airfoils for very thin
profiles ag the result of the action of viscosity. In most cases

this type of choking will not be of practical importence.
DISCUSSION
In order to cheék the accurscy of the equations which have been

developed, pressure distributions for incompressible flow have been
calculated at three 1lift coefficients for an unstaggercd cascado of
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NACA 4412 airfoils. These cases were chosen to permit comparison
with those which have been determined in reference 11 by the method
of conformal transformation. The chord/gap ratio in all cases is
1.03 and the 1ift coefficients considered are C, 0.5, and 1.0, This
comparison subjects the approximate theory of this report to a
rather severe test since the analysis has been developed on the basis
of a chord/gap ratic which is less than unity., The comparison with
reference 11 indicates the agreement is good as may be seen in
figures 4, 5, and 6. The single-airfoil pressure distributions, as
obtained by conformal transformation in reference 11, are shown on
the figures for the same 1ift coefficients as for the cascade alr—
foils. (In Appendix C the calculations to obtain the pressure
distribution of figure 6 are given in detail, Table II zives all

the necessary computations and serves o demonstrate the simplicity
of the method.) It is evident from the figures that one effect of
cascading airfoils i1s to impose a "nesative camber influence" on the
pregsure distributions as the 1lift coefficient is increased. Accord—
ingly, for airfoils for use in cascade the cambsr must be exaggerated
if a certain desired camber effect on the pressure distribution is

t0 be obtained. It is of interest to note that the calculated angles
of attack are alsc in reasonably good agreement as may be seen in the
following tebulation:

Airfoil in Cascade Airfoil Alone
a! (from a! (method
cy! reference 11) of report) a
0 -5.9° -6.0° —4,3°
.5 +1,8° +2,3° -0,1°
1.0 +9.7° +10.4° +,0°

The corresponding ratio of the mean lift-curve slope of the
airfoil in cascade to that for the alirfoil alone,

(dCL'ﬁﬁm'%asoade

(dCL/d“)lone airfoil

is 0.53 by the method of reference ll and 0.61 by the method of this
report.



NACA RM No. ATE29 21

Unfortunately no prossure distributions over unstaggercd
cagcades at high airspeeds could be found so that the validity of
the compressibility corrections developed in this report could not
be determincd. They have been developed, however, in much the
same way as the compressibility corrections of reference 3, which
have since boen found %o be in good agreement with experiment. It
is clear, howevcr, that as the Mach number is increased the accuracy
of the calculations will diminish unless the chord/gap ratioc is
simultancously decreased. This will be particularly truc as the
choking Mach number is approachcd. '

One matter of intercst concernms the effect of compressibility
on the lift—curve slope of a cascade of NACA 4412 airfoils having
chord/gap ratios of O, (i1 e., lone airfoil) 0,5,and 1.0 which is
shown in figure 7. It is secn that the imporitance of the interfor-
ence effects of the airfoils in cascade incroass go rapldly with
Mach number that, contrary to the usual expectation, a decreasc in
lift—curve slope with Mach number is indicated for high solidities.

An examination of the cquations for the choking of cascades
indicates that care must be exerciscd with an unsteggered cascade
to kecp the airfoll thickness smell for high solidities if relatively
high free-stream Mach numbers are employed. Even for the cascade
conaidered in figures 4, 5, and 6, for example, the choking Mach
number as cbitained from figure 3 is only about 0.6k based on the
geometric thickness of the airfoils.

The existence of a boundary layer on the airfoil surfaces
would, of coursc, increase the effective thickmness which would
reduce the choking Mach number. When the pressure gradients are
gtrongly adverse, as in the case of the airfoil of figure 6, the
boundary—layer growth will be increoased and its effect on the
chdking Mach number will be more pronounced, The proper choice of
canber consistent with the design 1ift will serve to reduce the
sharp pressure peak, thereby improviag the critical as well as the
choking Mach number.

Amcs Aervonautical Iaboratory,
National Advisory Committee for Aeronautics,
Moffett Field, Calif.
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APPENDIX A
‘Ligt of Symbols
The following symbols are used through this report:
airfoil chord

distance pefpendicular to chord hetween airfoils
in cascade

factor depending upon shape of base profile (See
equation (B20) and table I.) :

factor depending upon solidity of cascade ﬁg ég
angle of attéck, degrecs |

section 1ift coefficient

section quarter—chord-moment coefficient
veloclty

Mach number

choking Mach number

compressibility correction factor<~kb4ﬂ2>

compressibility correction factor (1 ——7?

compressibility correcticn factor <].+-1§i»M2>

ratio of specific heat at constant pressure to
specific heat at constant volume (cp/cv)

total head )
gstatic pressure
dynamic pressure

mass density
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compressibility factor (See equation (39) and fig. 2.)

local lift at any chord station in coefficient fomm
local pressure coofficiont (Sce cquation 38)
local pressure coefficient (See equation 38)

coordinate of points on chord line as measured from
leading edge

angular coordinate of pointe on chord line (Sce
equation 7.)

radial digtonce in polar coordinates

polar angle in polar coordinates (positive counter—:
clockwise)

inclination of the radins r to a line normal to
the airfoil chord (See fig. 1.)

ordinate of base profile

maximum airfoil thickness

glope of mean—camber line

source strength

vorticity per unit length of chord line
horizontal component of velocity
vertical component of velocity

total induced vertical velocity at the airfoil
under consideration due to the other airfoils

Fourier coefficients (Sec equation 7.)
Fourier coefficients (Seec equation (B1l4).)
circulation per unit span

1ift per unit span

23
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T absolute temperature

Superscripts

! used to distinguish propertios of casgcade airfoll

® donotes'cascade airfoil chaﬁacteristics as coefficients
referred to dynamic pressure ¢ of incident stream
at center of pressure

Subscripts

1 denotes values in stroam far shead of cascade

1 denotes local conditicﬁs at point in fluid

L denotes values on lower surface of airfolil

U denotes values on upper surface of airfoil

T rofergs to base profile



NACA RM No. ATE29 25

APPENDIX B.
VELOCITY COMPONENTS INDUCED BY AIRFOILS IN CASCADE

For incompressible flow over a single airfoil, the vertical
velocity {perpendicular to the chord) induced at the point on the
chord x5 by its own vorticity distribution is '

¢4l gy
v = A P i (1)
[y XXo

To obtain the velocity for compressible flow, the factor

e ~
B%s @)

must be applied to the right-hand side of equation (B1) as is showm
in reference 9. Here M is the Mach number of the undisturbed
gstreem and ¢ is the angle between the stream direction and a

line drawn from the vortex to the point in gquestion. For a single
airfoil ¢ is always close o 0° or 180° and tho induced velocity
in a compressible stream is approximately

C ar I"C Q:.E
. ?_A/l—-sz G & (83)
21 Jo XXp 2o XXg
where :
A o=y 1R (Bl)

Equation (B3) can be integrated by substituting for dI'/dx and
for x the following:

0

ar - gy (AO cot 36 + Y Ay sin n@» (6)
ax \ ) /
n=1
X = % (1 — cos 6) (7



1
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The details of the integration are given in reference 2, page k.
The resulting expression is

00

= )\,(éAo + ZAYL cos n@> (B5)
Y *=_‘1

il

ks

The vertical velocity at a point on the chord of an alrfoil
in cascade is mads up of three parts. These are (1) the velocity
v!' induced by its own vortices, (2) the velocity Avy induced by
the vortices of the remaining airfoils of the cascade, and (3) the
velocity avg induced by the sovrces and sinks of the remaining
airfoils.

By analogy with equation (35):

[vs]

;{T'_ = <«Aot + >/ Apt cos n6’>‘ (B6)
=

The vertical velocity induced by the vorticity distribution of the
other airfoils is given by the expression

Ayl I %5? sin ™m s JINE
A = 3‘62‘; Jo Ty <ZL-—M2 cos2 Tm) ax (87)
n=1

The summation is over the remaining airfoils of the cascade. The
angle - 1is measured clockwise between the vertical and a line from
the vortex to the point in question, as indicated in figure 1. The
factor in parentheses is that necessary to give the correct result
for compressible flow. It is derived from the factor (B2) with
use of the relation sin® = —cos v. Since vy = (mg/cos Tp) and
tan Tm=(x-xo0)/mg so that

X~¥p
ng

gin = - 2
—— =4
; 1 (X Xo)

ng .
and

cOos 'Tm = =
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the preceding equation may be written

XX }
- A dfffdx e
Ly > f — . TEX \ = | dx (88)

\ g

Expanding the term in braces in a power series in (x—xo)/mas
neglecting terms involving the cube and higher powers, and noting

that
>}
L a
E‘E—.
-

therse is obtained

, Ne
.
Avy = 6X€2n]; dx " (x-xo) dx (89)

If equations (6) and (7) are substituted into equation (B9)
and the indicated integration is performed, there is finally
obtained

B2 8 [(he! +3he') - (2hof + ha¥) cos 6] (210)
vhere

It is interesting to note that equation (B10) can be more
directly obtained by replacing each of the airfoils of the cascade
by & single vortex. The important point in such a derivation is
the proper chordwise location of this vortex at the airfoil center
of pressure.

Tn a manner similar to that in which equation (B10O) was
obtained it is possible to show that neglecting terms involving
&k—xd/mg to the third and higher pcwers,

e -0 | {B12)
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In appendix B of reference 2 the velocity components induced
by a source at the origin are given as follows: The velocity

component perpendicuvlar to the stream Avg is

Q ’rJl-ME (s8in 3) —f
2nr L 1-M® gin2¢ J

and the induced velocity component parallel to the stream Aug is

Qr cog @ :]

o A/1-M2 (1-M2 sin? o)

vhere € is the mass flow divided by the free—stream density.

The vertical velocity induced by the source-sink distributions
of the remeining airfoils of the cascade can then be expressed as

m==-too

Avg = "?r]"' Z f __&._ld*fc {"\/l:Mg (cos 'rm).}
o 1-M2 cos® Ty |
m=1

and the corresponding horizontal induced velocity is, after noting
that cos8 § = — sin Tn,

=-too ¢ (‘
R § 4o’ /dx sin Tm }
Bis = "/ f 1 ‘ ATFE (147 cos® Tm) ax
=1 o] P AN A m) o
where Q—%—,— dx ig the source strength over an element of chord d4x

of the cascade airfoil. BSubstitubing for mm and cos Tp and
sin Tm a8 before, expanding, and neglecting the third and higher
powers of (x—x)/mg, there is obtained

Avg = 0 (513)
B13
SRR AUV B ¢ | ALY SV a
Aug Ry e (x~xp) dx
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The source-sink distribution %%L is now expressed by the fcllowing

series:
jv]

, | . . ;
480 oy (Bo' cot 36 + ) Ba' sin u6) (B1k)
N=3

On substitution of equation (Bl4) the integral in equation (BLR)
can be evaluated, obtaining, analagously with equations (BLO)
and (B12): '

&%s . ¢ : (B15)
v
and
AUS 20 ' 1 t t 1
= = 38 [(Bo' +4B2') ~ (2Bo' + Bat) cos 6] (B16)

Since the airfoll must be a cloged figure, it follows that

~C
48l ax = 0 (B17)
o ax

By substitution of equation (Bll4) in equation (B1l7), there is
cbtained

2Bo! + By! = 0 (B18)

go that

Aus a OBt 4 1
b = R 2Bo Bo
v A S (28 2')

From thin airfoil thecry (reference 2) it can be shown that

¢ P
2ot + 3t = 1 [ 22 g (%) (319)
4

where y; 1s the ordinate of the base profile as measured from the
axig of symmetry in terms of the airfoll chord at the corresponding
x station.

In the problem of determining the wall interference in a two-
dimensional wind tunnel, an evaluation of the influence of the
image base profiles yields an identical resvlt if the limitations
of thin airfoil theory are presumed. ILcck (discussed in reference 3)
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has evaluated the image base-profile effects as regards wall inter—
ference in the incompressible case for profiles not necessarily
thin and has found that (in the notation of this report)

Ml | d;
A = %(—6-,/ zét/(l—l:fi,i 1 +\ t a(éi) (B20)

-0

is a more precise value to replace 2Bg' + Bx', where Pf; 1is the
base-profile pressure coefficient in incompressible flow. Values of
A computed by equation (B20) for various airfoils are given in
table I which was taken from roference 3. Accordingly, as in
reference 3, this value is used in this report so that the velocity
increment duve to the offect of sources and sinks bscomes

A‘U.S AQ‘ .
T h¥] : (B21)

It should be noted that properly Lock's result for incompressible
flow is

= AG (22)

However, the expregsion for V is

V =V + An
go it follows that
Vi A
v =1-5
Thus for incompressible flow
Aus . / .-.-/:_*H

which to the first order in o is still equation (B22) so that
equation (B21) for compressible flow follows. From equations (Bl2)
and (B21) it is clear that the influence at the position of ome
girfeil of the cascade due to all other airfoils of the cascade is
gimply that promoted by the source-—sink system
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L

=4 | (B2k)

Moreover, because Avg (cquation (B1l3)) is zerc, it follows from
equation (B10O)

ov
=

= -2 % [(Bot + ZAz1) — (2Ro' + Ay') cos 9] (B25)
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APPENDIX C
SAMPLE PRESSURE-DISTRIBUTION CALCULATION

Table II gives all the nccessary calculations to arrive at the
cagcade pressure distributlion showm In figure 6. It was desired to
obtain the pressure distribution for a cascade of NACA 4412 airfoils
given the values c¢3' = 1.0 and c/g = 1,03 for comparison with the
distribution calculated by the method of conformal transformation
given in reference 11.

Since the assumed flow is incompressible, then A, p, and &
are unity and n and n' are zero. From table I, A is 0.237.
The parameter o is 0.220. The lift coefficient for the correspond—
ing airfoil in free air is obtained from equation (48) as 1.335.
By potential theory for the NACA b2 airfoil the free-air angle of
attack for o7 = 1.335 is 6.8 and omg/, 38 —0.11 so that for the
airfoil in cascade, by equation (22), a! = 10.4°,

Values of the pressure coefficient for the isolated airfcil
wers calculated from the frec—~alr values of reference 11 using the
method of reference 5. From thesc pressures P was determined and
the P* was obtained from equation (24), P¥ and 1-Pr¥* (equal
to 1~Pf) were then combined by equations (43) to glve 1-Py*
and 1~Pp*. The cascade pressure distribution was finally cbtained
using oquations (44),



NACA RM No. ATE29

REFERENCES

1. Glauert, H.: The Elements of Aesrocfoil and Airscrew Theory.
The University Press, Cambridge, 1926.

2. Allen, H. Julian: General Theory of Airfoil Sections Having
Arbitrary Shape or Pressure Distribution. NACA ACR No. 3G29,
19k3, '

3. Allen, H. Julian, and Vincenti, Walter G.: Wall Interference "
in a Two-Dimensional~Flow Wind Turmel With Consideration of
the Effect of Compressibility. WNACA ARR No. 4KO3, 194k,

L. Stack, John: The N.A.C.A. High-8Speed Wind Tunnel and Tests of
Six Propeller Sections. NACA Rep. No. 463, 1933.

5. Allen, H. Julian: A Simplified Methed for the Calculation of
Airfoll Pressure Distribution. NACA T No. 708, 1939

6. Theodorsen, Theodors: Theory of Wing Sections of Arbitrary
Shape. NACA TR No. 411, 1931.

7. Jacobs, Eastman II. and Rhode, R.V.: Airfoil Section Character—
istics as Applied to the Prediction of Air Forces and Their
Distribution on Wings. NACA Rep. No. 631, 1938,

8. Abbott, Ira H., von Doenhoff, Albert E., and Stivers, Louis S. Jr.:
Summary of Airfoil Data. NACA ACR No. L5C05, 1945.

9. Glauvert, H.: The Effect of Compressibility on the Lift of an
Aerofoil. R. & M. No. 1135, Britigk A.R.C., 1927.

10, von Kérménj'Th,: Compressibility Effects in Aerodynamics.
Jour. Aero. Sci., vol. 8, no. 9, July 1041, pp, 337-356.

11. Garrick, I.E.: On the Plane Potential Flow Past a Symmetrical
Lattice of Avbitrary Airfoils. NACA ARR No. 4A07, 194k,
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TABLE IT.— CALCULATION OF CASCADE PRESSURE DISTRIBUTION OF FIGURE 6 (SEE APPENDIX C)
{o = 0.220; A= 0.237]
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Figure |.- Schematic diagram of cascade.
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Figure 3.- Choking Mach number as a function of the
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