


NACA RM No. A.7E29

NATIONAL ADVISORY COMMITTEE FOR AERODMUTICS

RESEARCH MEMORAMIMI

A THEORY OF UNSTAGMUM AIRFOIL CASCADES

IN COMESSIBLE FLOW

By Robert A. Spurr and H. Julian Allen

STJNMAPY

By use of the methods of thin airfoil theory, which include
effects of compressibility, rela.tio^as are developed which permit
the rapid determination of the pressure distribution over an
unstaggered cascade of airfoils of a. giver profile ,. and the deter-
mination of the profile shape necessary to yield a given pressure
distribution for small chord gap ratios, For incompressible flow
the results of the theory are compared with available examples
obtained by the more exact method of conformal traxisformation.
Although the theory is developed for small chord/gap ratios, these
comparisons show that it may be extended to chord/gap ratios of
order unity, at least for low speed flows. Choking of cascades,
a phenomenon of particular importance i n compressor design, is
considered.

INTRODUCTION

The wider use of gas turbines and other devices empi-oying
axial flow compressors has i-Mcreased the need for compressors with
a. high pressure rise per stage. I-.-i order to achieve this purpose,
-it is necessary to use high velocity flows, thus intcrea.sing the
possibil i ty of losses through compression shock, A method is there-
fore desirable which will permit the design of compressor blades
which have high critical compressibility speeds. This result can
be accomplished if a cascade of airfoils representing the flow can
be designed to give a. desirable airfoil—section. pressure distribution.

This report attacks a. portion of the problem by finding the
relation between the profile shape and pressure distribution over
airfoils arranged in an unstaggered cascade through the use of the
approximate methods of th i n airfoil theory originally presented by
Glauert in reference 1 and further developed by the NACA in
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reference 2. The flow over an airfoil in cascade is related to that
over a single airfoil in a. free stream. The problem of finding the
pressure distribution over an airfoil in cascade or the shape of
an airfoil in cascade to give a required pressure distribution then
reduces to the analogous problem for a single.airfoil, which can be
solved by known methods.

The analys
i
s involves the assumption that the gap between adr-

foils is large.compaxed to the chord :Length. in particular expres-
sions, relating the characteristics of a cascade airfoil to those of
a. free airfoil are expanded in apower series in c1g, where c is
the chord and g the perpendicular distance between airfoil chord
lines i n the cascade, and powers of c/g higher than the second are
neglected. Definitio-rBof the symbols used are found in Append i x A.

THEORY

Consider an infinite unstaggered- cascade of identical two—
dimensional airfoils, az represented in figure 1. The col:J-,iguration
is specified by the chord/gap ratio c/g, the camber—line shape and
thickness distribution of the individual airfoils. For an indivi-
dual airfoil, the incident velocity is V with a corresponding
density of p and angle of attack mt.

The pressure distribution on a typical cascade airfoil will
be compared with that whicl.1 would be obtained over a. single airfoil
of the same shape in a stream of velocity V and density p. The
angle of attack m of the s i ngle airfoil will not, in general, be
the same a.s. the angle of attack 

mt 
of the airfoil in cascade, and

an expression relating the two angles will be given. In the analysis
to follow, primes will be used to designate properties of the cascade
airfoil.

Aerodynamic Characteristics of a, Cascade
Airfoil of Given Profile Shape

Rffpnt of camber.— The chordwise lift distribution for the free
airfoil is given by the Kutta—Joukowski relation

QL =ar
d—x PV n'	 (1)
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where L is 
'
lift per unit span, r is the vorticity per unit

span, and x is the obordwise distance from the leading edge to
the point in question. The sift--distribution, coefficient P is
then defined as

	

P 1 U 2 dr	 (2)q FX- V T

In Appendix B it is shown that the stream velocity at the
cascade airfoil is uniform so that the lift distribution for the
cascade airfoil may be expressed as

dL' = PV drf
d—X	 d' x

and the lift-distribution coefficient of the cascade airfoil referred
to the dynamic pressure q is

pit.	 1 dL t 	 2 art	 (4)
q Ti- V ax

From equations (2) and (4),

I

P* - p 2 dT
I Y dr)

V ax	 ax

It is now desirable to express equation, (5) in a. more convenient
form. It is assumed that the vorticity distributions of the free
and cascade airfoils, respectively, may be represented by the
following series (references I and 2):

2V (Ao cot 1 6 +2	 A. sin ne
dx

n=1	 (6)
ar

CO
2V ( Ao I cot !̂2e +	 An I sin ne)ax 

I
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The new parameter e is related to x by the equation

x = 2c (I --Cos	 7

Equation (5) then becomes

p i; — P = 4 F (AQ	Ao) cot 4 
+(An	

An ) sin neL 
The coefficients in equation (8) will now be evaluated by

considering the condit i ons of flow at the airfoil boundaries. Lot
v and v I be the vertical components of velocity induced, respec-
tively, by the free airfoil and. a. particular cascade airfoil, and
let Av be the vertical component of velocity induced by the other
airfoils of the casca.cle. For small angles of attack, in order t1,at
the flow be tangent at the surfaces, the slope dy, /dx of the air-
foil camber line (which is the same for both free and cascade air-
foils) must be given by the following relations:

d-yc	 M +
Tx_	 V

V t AV
dYC MI +	 +
dx	 V

Appendix B gives the vertical.1 components of velocity induced
by the vorticity and source—sink distributions which represent the
airfoils of a cascade. For simplicity, the following symbols are
used:

Cr = 
7tP C2	

(Bll)
r$ g2

= -7
1/1 

'q2	 (B4)

where M is the Mach number of the undisturbed stream.
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The velocity components calculated in Appendix B are

00Vv— = A,	
V—,

( —Ao +	 A,.1 cos 
ne) (B5)

CO

V,	 —Act +7 Ap t cos ne' (B6)
V

n=i

and- neglecting terms involving	 a	 to the second and higher powers

v =I—2	 (Ao	 -;^FA29 - ( 2PIO t + Al t ) cos e (B25)

Substituting these relations in equations (9), there is
obtained.

CO
dyc
dx	 a + X	 —Ao +	 A-n cos nG)

=

n=l
00

a,	 +	

J^,O+

An' 	 cos Tie
dx
	

L
(10)

n=l

2 11	 (Ao I +-;I&A2 1 ) —	 2A ' ++ Al t ) cos e

Since equations (10) are equal trigonometric series., the

coefficients of	 cos ne	 can be equated:

a	 %Ao	 a t	 — ),Ao' -- 2	 (loo t + 2A2 1)

%A,	 XAI I + 2	 (2Ao I + All)

A2	 Alt

An	 An' (n	 1)
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From the first of equations (11), it is seen that the quantity
(Ac t - Ao) depends on the angle of attack m of the free airfoil.
This angle may be arbitrarily defined so that

Act - Ao = 0
	

(12)

Combining equations (11) and (12), the following relations are
obtained:

Aol - Ao = 0

Al l - Al = -2 --51- (moo' + Alt)X2

A2 1 - A2 = 0	 (13)

An t 	 A, 0 (n ^ 1)

and

a' - a = 2 f (Ao' + #20	 (14)

Making use of equation (13), equation (14) 
may also be written as

follows:

2	 + -^'^AOX (Ao	 (15)

From equations (8) and (13), there is obtained

P* - P	 IT2 (2Ao l + Al l ) sin 0	 (QX

Changing to the unprimed coefficients with the use of equations (13),
and neglecting terms in a2 , the expression becomes

P* - P = -8 A NO + Aj sin 0	 (17)
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It should not be interpreted from equations (16) and (17)
that Al t and Al are equal. Equation (17) is the result of
dropping terms in a2 and not of equating Al ' and Ay. The
difference between A l l and A, to the order a is still given
by equation (13).

The section lift coefficient for the free airfoil is

cZ =	 Pd( c^	 (18)
o	 l

Substituting from equations (2), (6), and (7) and performing the
integration, one obtains

cZ	 It (2A0 + Al )	 (19)

Similarly, the quarter—chord moment coefficient is

cmc /4 =	 P	 — %d (x,'\, ~- IT (Ai A2)	 (20)
0

From equations (19) end (20) it follows that

1

2Ao + Al = c 2.
IT

(21)

Ao + 2A2 =	 (CZ + 4 Cme/4 )

With use of equations (21), equations (15) and (17) then become

a' — a =	 (cI ± 4 cmc/4 )	 (22)
4



!Lu = .Ao
V 03

(B24)
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and

P* -- P = 8021 sin 8	 (23)

16, / x ( 1 '_ x)	 (24)V/ 0 %

Effect of thickness.-- From Appendix B, the horizontal velocity
at an airfoil in cascade is :,renter than that at a. single airfoil
by the amount 6u, which is given by the relation

The quantity A -is a function of airfoil thickness given by
equation (B20) and tabulated for various airfoils in table I, which
has been taken from reference 3.

The increment of velocity given by equation (B24) can be
added to the velocity of the undisturbed stream V l to give the
true incident velocity V:

V = V1 + Lu	 (25)

From equations (B24) and (25`1,

Vz = 1 - A6	 (26)V • 	 % 3

The density Pz far ahead of the cascade , is given by the
following equation, derived for isentropic flow:

ir t _	 M2 F V1 2_ 1]1y-z
Pi -P 

t	
2	 1^V.

where y is the ratio of specific heat at constant pressure to that
at constant volume. Using the binomial expansion and neglecting
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terms containing powers of .[(V,/V^2
I — 1] higher than the first,

there is obtained, to the order of a

P.1 = 1 + AqM2	 (27)
P	 7

The ratio of the dynamic pressure q at the center of
pressure to the dynamic pressure q, far ahead of the airfoil
is then found to be

AcTF	 (23)I + 2
q1

where

2^ = 1 _	
(29)

The lift,-distributior- coefficient P I referred to the
dynamic pressure q, is given by

pr_q P*	 (30)q 1 

The cascade section lift coefficient is

I
c j t =;r  P f d-(x/ /C) = q Pic CI(x/c)	 (31)

Jo	 q 1 J/0

Substituting equations (24) and (28) in equation (31) and
performing the integration, there is obtained, neglecting terms in cr2,

cj I -- cl = —2 
ac; 

1 — -LA	 (32)

Equation (32) gives the relation between the lift coefficient of a
cascade airfoil at angle of attack m , and that of a single airfoil
at angle of attack m. The relation between ml and m is given
by equation. (22).
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The Mach number M I must now be related tc, the Mach number
M for the corresponding single airfoil. The velocity of sound a,
is relat-od to a by

a	 /T-1 aT

For isentropic flow

F	 2
Ti = T 1

2 
M2 I //V,

V)
"\ - 1
—

which becomes,, using equation (26)

	

Tj T I1 +	 1) M2 AG	 (34)
L

Hence equation (33) becomes, to the order of a

	al	 1 + L-1 M2 Acy a	 (35)2 0)

and so

M V, VI), a M

a,	 V a.,

Using equations (26) and (35) then

	

MI	 U 1M

	

, )
	

(36)

where

(33)

1 +	 m2 (37
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Determination of Rressure coefficient.— The following coeffi-
cients are useful in expressing the pressure on an a-irfoil surface:

SI = H—PI ; 
PI = PZ—Pq	

q

where p, is the local static pressure on the surface of the adrfoil*J,
and H, p, and q are, respectively, the total head, static pressure,
and dynamic pressure of the undisturbed stream. The variation of H
with Mach number, assuming that the ratio of specific heats is 1.4,
is given (reference 4) by the equations

	

H	 p + . a (1 + TI)

	

+ Tj =1 + 
M2 M4

6 	

(39)
T + Mo- + &E-0 -

From these equations,

	

S1 = 1 + n P!	 (4o)

A graph of Tj as a. function of Mach number is given in figure 2.
The subscript Z in equations (38) and (40) will be replace by U,
L, or f to denote, respectively, the upper and lower surfaces of
an airfoil and the surface of its symmetrical base profile.

According to reference 5, the velocity Vf alung the base
profile of a single airfoil is given, for incompress i ble flow by
the expression

Vf =	 — + ^z 1—Pi.
V	

Pf =	

2	
(41)

-where the pressure coefficients are referred to q. That is,

PU =	 -P 	 Lp1rp ; PL = PI; " Pf = E f:IP-
q	 q	 a

(38)
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and p is the static pressure of the stream corresponding to q.

The velocity Vf' along the base prof ilo of the airfoil in a.
cascade in terms of V is simply

Vf' _ Vf
V V

so that

1_pf* =	 ( 42)

since ca.scade base profile pressure coefficient Pf* is referred
to the dynamic pressure q and to the static pressure p rather
than to the corresponding quantities in the undisturbed stream.
Analysis (reference 3) shows that equation (42) holds also for
compressible flow, to an approximation of the same order of magnitude
as others already made.

The upper-and lower-surface pressure coefficients referred to
q are from reference 5.

L
1 Pf*+L

i,Ux = 1 (
1 Pf*

2	 ( 43)
(,-Pf*- I.P*/

1
P1,^=1-

1 Pf'

Although equations (43) were derived for incompressible flow, it
can be shown that they are applicable i» the case of f low in a
compressible stream.

The coefficients PU'^ and Pi,* ca.n. be converted into the
coefficients PU T and Pi,' referred-to q, (the dynamic pressure
in the undisturbed stream) and the corresponding static pressure by
means of the following equations, which are based or equations (28)
and (4o) :
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STJ* = 1 +	 PtT*

SL; = 1 +	 Pj;*

SU , = -I- SU* = SU* (i + AM
q 1	 X3

(44)

SL
  = q-2 , - SL* = SL*	 + 2AUk

X3

Put = I + It - Sut

PL I = 1 + I t — SL t

when It is tbl) value corresponding to M I given by equation (36).

Determination of Pressure Distribution for
a Given Profile Shape in Cascade

A method can now be outlined for finding the pressure distri-
bution over an airfoil of given profile in an unsta.ggered cascade.
It will be assumed at the outset that the Mach number Mt of the
approaching air is known and that the desired lift coefficient c1l,
of each of the cascade airfoils is given.

1. The Mach number of the corresponding free airfoil, M, is
determined from equa.t ion (36) to a first order in a az

M = fli ► , Aq	 M1	 (45)% 3 V)	 I .

wherein

Cr =	 ( Bll)48

X = jj-( IV, t ) 2	 (46)

	

= I + 7-1 (M,)2	 (4--(
2
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and A may be obtained from table I or from equation (B20).

2. The lift coefficient of the corresponding free airfoil,
cl, is found from equation (32) by neglecting second order terms
in a as

+ 2cr	 A)'	 (48)
X-2

wherein g is given by equation (29). The angle—of--atta.ck relation,
in degrees, is

at = a + 57.3 -,K (cl + 4 cmc /4 )
	

(22)

3. P = PL — PU for compressible flow at the Mach number M
is found for the single airfoil at the lift coefficient cl.
Preferably an experimental pressure distribution at the appropriate
Mach number and at approximately the same Reynolds number should
be used but a. theoretical distribution (e.g., by references 2, 6,

7, or 8) modified by the Glauert—Pranati on Mfrm6i—Tsien rule is
satisfactory (references 9 and 10).

4. P* is found from equation (24).

P* = P_
16ac 1	

1'DCFL---I 7ICX2^/ X (	 XC)

5. /—I—Pf* is calculated from the free airfoil pressure
distribution from equations (41) and (42)

J—Pf * ='^I—J—Pf	 JI—PU +	 (49)7
2

6. (1—Pf*) and Tr are combined to give (I—P-,Y*) and

(1 PL*) from equations (43)
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i — 
P'U'S 

= (i::p4* + !P*),
1-Pf *

1-- PL * = (1-p-r*
I-pf*

7. The cascade pressure coefficients PU t and PL' are then
found by means of equations (44):

SU-Y, = 1 - PU* + q

SLR,
	 I 

..-
PL*` 

+

SU	 1 + 0&_ft ) Su*

	

X3	 (44)

SL' ^l + 2	 SL*

Pu l = 1 - Sul + II

PL' = 1 — SL' + n'

where n, and 71 1 corresponding to M and MI ., respectively, are
found from figure 2.

Determination of Profile Shape From a Given
Pressure Distribution in Cascade

The procedure for obtaining the profile shape for a given
pressure distribution, in cascade involves a. process which is essen-
tially the reverse of that just outlined. First the required pres-
sure distribution is drawn. The initial choice must be made skill-
fully with reliance on experimental pressure distribut i ons so that
the distribution chosen shall correspond or nearly correspond to
that obtainable with a real airfoil. From the chosen distribution
the coefficients c1 	 and cmc /4 t are determined by 6-raphica.1 or
numerical integration and the pressure coefficients PU t and PLt
re road off a
at 

selected points, The met-hod then consists of the
following steps:

(4-1)
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1. PU* and PL* axe found by applying equations (44) in
reverse order, neglecting terms involving a to the second and
higher powers.

Su l = J+ TJ l - Put

SL t = 1 + 71 1 - PL t

Su* = 1 aAa Sy uySO 7	

(50)
SL:; (1 2n-) SL

piJ =1 +	 Su*

PL* = 1 + T) - SL*

2. (I-Pf) is found by means of the following equations, which
are readily obtained from equations (49)

414pf	 TPf*	
+ .07!	

(49)
2

The base profile should now be checked to see if it satisfies the
closing condition given in reference 2. If the assumed pressure
distribution does not correspond to a closed shape, it must be
slightly modified until it does.

3. The single-airfoil lift-distribution coefficient P is found
from the relations

pi: = PL--" - I`U*	 (51)

L16 ca, c I
P P* +

	

 Q	 (52)
2

4. The final upper- and lower-pressiwe coefficients axe calcu-
lated by means of the followiiig -equations from equation (43):
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PU = 1 (1-pf +

1 P	 (53)

P	 1 
( 1_pf _ 1 p) 2

L =	
4

1 P

5. The angle of attack of the single airfoil is then given in
degrees by

CG = M' — 57.3	 (c l ' + 4cmc(r-4)A

which is a modification of equation (22).

The problem of finding a profile shape which will have a given
pressure distribution in cascade has now been reduced to the analogous
problem for a single airfoil. It is now possible to correct the
pressure distribution given by equation (53) by the method of

reference ]A P or simply by multiplying PU and PL by WTM2.
An airfoil shape can be designed to give this pressure distribution
by the method of reference 2. In the application of this method,
it is generally necessary to make some changes in the pressure
distribution, as previously noted, in order to make it correspond to
a possible distribution for an actual airfoil. If the initial distri-
bution has been well chosen, however, the changes will be minor.

The Choking of Cascades

In the compre ssible  adiabatic flow of a fluid in an elementary
stream tube of varying area Al, the mass flow must be constant so
that the logarithmic derivative

&P	
IV' , 17

P1	 V1	 Al

must vanish. Now the dens i ty pj and the veloc i ty Vj are related

to the pressure p, by Bernoulli's equation ,
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p
pZ =a Z XppZ = ArZdVZ

Z	 Z	 Z

The quantity dp Z /dp Z is, of course, the square of the velocity of
sound so that Bernoulli's equation may be written

dpZ _ VZdVZ T	 2 dVZ
pb _ — 

a.12	 Z	 VI

where M I is the local Mach number. Combining this expression
with that of the logarithmic derivative then

(1-M12) dVZ = — 
dAZ

VZ	 AZ

From this relation it is seen that for a subsonic flow the
area must decrease for a. velocity increase, while at supersonic
speeds the area. must increase for a velocity increase. When the
Mach number is unity, then dA = 0, so that sound speed is only
attained where the area is a. minimum.

Considering the flow through the cascade of figure 1 as
essentially unidimensiona.l, then it is apparent that if the flow
past the plane AA attains sonic speed, the mass flow through the
cascade cannot be further increased and the cascade flow may be
said to be "choked." Of course, the flow through a. cascade is r_ot
unidimensional, but experience with the similar phenomena of choking
in wind tunnels has indicated that the assumption of unidimensionality
of flow yields calculated choking Plash numbers in good agreement
with experiment.

For a unidimensional flow it is shown in reference 3 that the
ratio of the free arrea of the undisturbed stream A to the minimum
flow area Am is related to the choking Mach number of the free
stream Mch by

y+1

Am 
= 1 1 + ^ (Mch 2 - 1^^ 2 y z	 (55)
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For the approaching stream which will pass between any two air foils
of the cascades the free cross—sectional area is

A = s coe ml

while the minimum area between the two airfoils is

An = g — t =g( "" 
^

and hence

A = cos mt
Am 1	 (56)

where t is the maximtra thickness of an airfoil.

Properlir the thickness 
of 

the bound.axy layers on each surface
of the airfoil should be added to the geometric thick-,-joss to obt-a-in
an effective thickness te. Us i ng this. value with equations (55)
and (56) and a value of y (for a-ir) of 1.4 then

to	 Mch COS Mt
G

A practilcal estimate of -the choking Mach number may be found by
assuming the an,-,le of attack to be so small that cos a t ^-'- 1 and-
that the effective thickross is the geometric thickness. With these
assumptions, values of the thickness gap ra.tJ o a.s a. function of thL	 e
choking Mach number are given in fig

ure 
3.

It is shown in reference 3 that there exists another possibility
that choking may occur in the wake of the airfoils for very thin
profiles as the result of the action of viscosity, In most cases
this type of choking will not be of practical ir;.p,-,r'uP---qce.

DISCUSSION

In order to check the accuracy of the equations wh i ch have been
developed, pressure distributions for incompressible flow have been
calculated at three lift coe-f.:icients for an unstaggerod cascade of
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NACA 4412 airfoils. These cases were chosen to permit comparison
with those which have been determined in reference 11 by the method
of conformal transformation. The chord gap ratio in all cases is
1.03 and the lift coefficients considered are 0, 0.5, and 1.0. This
comparison subjects the approximate theory of this report to a
rather severe test since the analysis has been developed on the basis
of a. chord gap ratio which is less than unity. The comparison with
reference 11 indicates the agreement is good as may be seen in
figures 4,,5, and 6. The s'_.ngle—airfoil pressure distributions, as
obtained by conformal transformation in reference 11, are shown on
the figures for the same lift coefficients as for the cascade air-
foils. (In Appendix C the calculations to obtain the pressure
distribution of figure 6 are giv-,n in detail. Table II gives all
the necessary computations and serves to demonstrate the simplicity
of the method.) It is evident from the figures that one effect of
cascading airfoils is to impose a "negative camber influence" on the
pressure distributions as the lift coefficient is increased. Accord-
ingly, for airfoils for use in cascade the camber must be exaggerated
if a certain desired camber effect on the pressure aistribution is
to be obtained. It is of interest to note that the calculated angles
of attack are also in reasonably good agreement as may be seen in the
following tabulation:

Airfoil in Cascade Airfoil Alone

CG '	 ( f 120M a' (method
01 1 reference 11) of report) a

0 --5.90 —6.00 —4.30
.5 +1,80 +2.30 —0.10

1.0 +9.70 +10.40 +4.00

The corresponding ratio of the mean lift-curve slope of the
airfoil in cascade to that for the airfoil alone,

(dCL' Amt )ca.s cad e

(dCL/da) lone airfoil

is 0.53 by the method of reference 11 and 0.61 by the method of this
report.
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Unfortunately no pressure distributions over unstaggerod
cascades at high airspeeds could be found so that the validity of
the compressibility corrections developed in this report could not
be determined. They have been developed, however, in much the
same way as the compressibility corrections of reference 3, which
have since been found to be in good agreement with experiment. It
is clear, however, that as the Mach number is increased the accuracy
of the calculations will diminish unless tho chord/gap ratio is
simultaneously decreased- This will be particularly true as the
choking Mach number is approached.

One matter of interest concerns the effect of compressibility
on the lift—curve slope of a, cascade of TV,-CA 4412 airfoils having
chord/gap ratios of 0 ; (i e., lone a.-trfoil) 0.5, and- 1.0 which is
shown in figure 7. It is seen that the importance of the intorfer-
er_ce effects of the airfoils in cascade increase so rapidly with
Mach number that, contrary to the usual expectation, a, decrease in
lift—curve slope with Mach number is indicated for high solidifies.

An examination of the equations for the choking of cascades
indicates that care must be exercised. with an unstaggered ca.scado
to keep the airfoil thickness small for high solidities if relatively
hi&.7 free--stream Mach numbers are employed. Even for the ca.sca.de
considered in figures 4, 5, and 6, for example, the choking Mach
number a.s obta.ined- from figure 3 is only about 0.64 based on the
geometric thick-noss of the airfoils.

The existence of a. boundary layer on the .airfoil surfaces
would, of course, increase the effective thickness which would
reduce the choking Mach number. When the pressure gradients are
strongly adverse, as in the ca.se of the airfoil of figure 6, the
boundary—layer growth will be increased and its effect on the
chckinE^ Much number will be more pronounced. The proper choice of
caraber consistent with the design lift will serve to reduce the
sharp pressure peak, thereby improving the critical as well as the
choking Mach number.

Amos Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Moffett Field, Calif.
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APPENDIX A

List of Symbols

The following symbols are used through this report:

c	 a.irf oil chord-

9'	 distance perpendicular to chord between airfoils
in cascade

A	 factor depending upon shape of base profile (See
equation (B20) and table I.)

2
CT	 factor depending upon solidity of cascade g2

M	 angle of attack, degrees

cl	 section lift coefficient

cmc /4 	sect-ion, quarter—chord-moment coefficient

v	 velocity

M	 Mach number

Mch	 choking Mach number

x	 compressibility correction f--.ctor(,WT:7)

compressibility correction factor 1 — M2

compressibility correcticn factor 1 + -Y-1 M2
2

Y	 ratio of specific beat at constant pressure to
specific heat at constant voli.ane (c-,O/cv)

H	 total head

p	 static pressure

q	 dynamic pressure

P	 mass density
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compressibility factor (See equation (39) and fig. 2.)

P	 local lift at any chord station in coefficient foITI

P I	'local pressure coefficient (See equation 38)

S 2	local pressure coefficient (See e quati o
n 

38.)

x	 coordinate of points on chord line as mea,oured frcam
leading; edge

0	 angular coordinate of points on chord line (see
equation  7 - )

r	 radial distance in polar coordinates

45	 polar angle in polar coordinates (positiv
e counter-

clockwise)

T	 inclination of the radius r to a. line noima,l to
the airfoil chord (see fig. 1.)

Yt	 ordinate of base profile

t	 maximum airfoil thickness

&yc Id x slope of mean–camber line

01	 source strength

dr /ax vorticity per unit length of chord- line

U horizontal component of velocity

v vertical component of velocity

AV total induced vertical velocit
y
 at the airfoil

under consideration due to the other airfoils

An Fourier coefficients (See equation 7.)

Bn Fourier coefficients (See equation (B14).)

r circulation per unit span

L lift per unit span
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T	 absolute temperature

Superscripts

used to distinguish properties of cascade airfoil

denotes cascade airfoil characteristics as coefficients
referred to dynamic pressure q of incident stream
at center of pressure

Subscripts

I	 denotes values in stream fox ahead of cascade

I	 denotes local conditions at point in fluid

L	 denotes values on lover surface of airfoil

U	 denotes values on upper surface of airfoil

f	 refers to base profile
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APPENDIX B.

VELOCITY MTOMNTS INDUCED BY AIRFOILS IN CASCADE

For incompressible flow over a single airfoil, the vertical
velocity (perpendicular to the chord) induced at the point on the
chord xo by its own vorticity distribution is

(Bl)
71

^ c^

o X—Xo

To obtain the velocity for compressible flow, the factor-

1412
1-442 	-	 (B2)sin-- 0

must be applied- to the right—band side of equation (Bl) a-s is shown
in reference 9. Here M is the Mach number 

of 
the undisturbed

stream and 0 is the angle between the stream direction and a,
line drawn from the vortex to the point in question. For a single
airfoil 0 is always close to Oe or 180o and the induced- velocity
in a compressible stream is approximately

' dZ d-x	 00 d r dx
V 

^Ij:Tj-^2f 
dx	

X
(B3)

2 
	 _Xo	 JC 0I

v	 X—xo

where

?, = -1- 12	 (B4)

Equation (B3) can be integrated by substituting for dT/dx and
f or x the f ollowing:

00

dr = 2V (Ao cot ie + 7 An sip. ne.)
ax	 ILJ

Tl= I

x = 
2
c U — cos	 (7)
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The details of the integration are given in reference 2, page 4.
The resulting expression is

V = X - Ao +
V

00

A. cos nG (B5)

The Vert-ical velocity at a. point on the chord- of an airfoil
in cascade is made up of three parts. These are (1) the velocity
vt inauced by its own vortices, (2) the velocity Oivv induced by
the vortices of the remaining airfoils of the cascade, and (3) the
velocity revs induced by the sov,.rces and sinks of the remaining
airf oils.

By analogy with equatlior, (B5):

CO

4. 
.0 
t +	 An t Cos VIP,
	

(B6)

The vertical velocity induced by the vorticity distribution of the
other airfoils is given by tae expression

M=CO	 art -
n Ts inax	 =1-M-

v	 --7-) ax	 (B7)
o

I	 li	
1–^42 COS2 M,

M=j

The summation is over the remaining-7 airfoils of the cascaae. The
angle -, is measured clockwise between the vertical and a. line from
the vortex to the point in question, as indicated in figure 1. The
factor in parentheses is that necessa-^Y to give the correct result
for compressible flow. It is derived. from the factor (B2) with
use of the relat i on sin e,7,. = -cos T. Since rll = (mg/cos TM ) and
tan- Tm=(x.--xo)/rag so that

X-X 0

sin -' m 	
mg 
--X-xo

1+ C ng-
and.

cos Tm
2(x--Xn )

^:-M—g ^
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the preceding equation may be written

	

14E:90	 c	 X­X0
?I	 artldx I	 MR	 dLx	 (B8)Z^vv	

.10	 mg 1 
_ M2 + ^X 2

mg

Expanding the term in braces in a power series in (x­xC')/M&'
neglecting terms involving the cube and higher powers, and noting
that

00
2

m

there is obtained

Avv = Tc f" dr' x­x

	

(o) dx	 (B9)
7b_%g­2 1, dx

If equations (6) and (7) ere substituted into equation (B9)
and the ind

i
cated integrat i on is performed-, there is finally

obtained.

	

^Vv = -2	 [(Ao' + 12A2 1 ) — (2Ao' +Al t ) cos 61	 (BlO)

where

CT = 
T(2

4U	

(Bll)
 9 

2

It is interesting to note that equation (BlO) can be more
directly obtained by replacing each of -the airfoils of the cascade
by a. single vortex. The important point in such a. derivation is
the proper chordwise location of this vortex at the airfoil center
of pressure.

In a. manner similar to that in which equation (BlO) was
obtained it is possible to show that neglecting terms involving

to the third and higher pcwers.,

AUV = 0	 (B12)
V
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In appendix B of reference 3 the velocity components induced
by a source at the origin are given as follows: The velocity
component perpendicular to the stream nxs is

,/74-12 ( S in (9).

27ir L 1—M2 SiT12 el,)

and the induced velocity component pa-rallel to the stream thus is

	

F	 cos ^

M2	 2(1_.M	21trL	
'12 D)

where Q is the mass flow divided by the free-stream density.

The vertical velocit- induced by the source--sink distributions
of the remadninjZ airfo

i
ls of the cascade can then be expressed as

M=400	
-,fi:^7J2 ( go$ TM)

Z-\Vs	 C d (LtIdx 1	 dx
rMl TI2 cost TM _j

M=j

and the corresponding horizonta.l induced velocity is, after -noting
that cos ^ = - Sin Tm,

m=-too c
	

TmLO I /dX	 SiT-1
Lu S	

17 f	 COS2	
dx

it	 o	

I)M L "IT—T12

where 
dx

d-(V dx is the source strength over an element of chord dx

of the cascade airfoil. Substituting for rm and cos Tm and

Sin TM as before ., expand i ng, and neglecting the third and higher
powers of (x-xO )/mg, there is obtained

1	 (B13)

/bus = 1 dkl'(X-XO) dx
6% 3,q^jo ax
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The source--sink distribution M! is now expressed by the fc1lowing
series:	 d_x

dx
2V (Bo I cot el +	 Bnf sin ne)	 (B14)

L

On substitution of equation (B!4) the integral in equation (B-13)
can be evaluated, obtaining, analagolasly with equations (B'10)
and (B12) :

and

A-Lis= 2c
v	

37	 -;^^B,;, [(Bo l + ' 2 1 ) — (2B C) 1 + B1 1 ) cos 0 1 	 (B16)

Since the airfoil must be a. closed, figure, it follows that

f4l, 
aM dx = 0	 (B 1-7)

o dx

By subst
i
tution of equation (B14) in equation- (B17), there is

obtained

2Bo ' + BI I = 0	 (B18)

so that

^©U—' = '5 (2Bo' + Bp')
v 7

From thin airfoil thecry (reference 2) it can be shown that

2BO , + B,--,' 	 16 'i 'it & X	 (B19)
IT	 C	 (C)

where yt is the ordinate of the base joli-ofila as measured from the
axis of symmetry in terms of the ai-rfo ]_ chord. at the corresponding;
X station.

In the problem of determining the wall interference in a two-
d-imensional wind tunnel, an evaluation of the influence of the
image base profiles yields an identical result if the limitations
of thin a,irfo-*Ll theory are presumed, Lock (discussed in reference 3)
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V -- %S

(B21)

Ws
V! 7 Au (B22)
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has evaluated the image base-profile effects as regards wall inter-
ference in the incompressible case for profiles not necessarily
thin and has f ound that (in the notation of -this report)

Yt 	 (B20)

_P

1-6A = I / 7c Q­Pf 1 +	
A)20 F	 J

is a more precise value to replete 2BO I + BA where Pfj is the
base profile pressure coefficient in incompressible flow. Values of
0, computed by equation (B20) for various airfoils awe given in
table I which waz taken from reference 3. Accordingly, as in
reference 3, this value is wood in this report so that the velocity
increment due to the effect of sources and sinks becomes

It should be noted that properly Lock's result for incompressible
flow is

However, the expression for V is

V = V, + Zvi

so it follows that

V1

V_

Thus for incompressible flow

AUV s = IA^.s 	 SAU)
	 (B23)^^. r

which to the first order in a is still equation.(B22) so that
equation (B21) for compressible flow follows. From equations (B12)
and (B21) it is clear that the influence at the position of one
airfoil of the cascade due to all other airfoils of the cascade is
simply that promoted by the source—sink system
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au = Aa 	($.^)
V Xs

Moreover, because Avg (oqua.tion (B13)) is zero, it follows from
equation (Blfl)

,2 g [(Ao t + ^A2 t ) -- (2A o' + Al t ) cos 0]	 (B2.1)



3 2
	

NACA RM No. A7,29

APPENDIX C

SAAPU PP-R,"SMrPM-D19T.?.IBU"- IOX CkLCUIATIOTT,

Table II gives all the necessary calculations to arrive at the
cascade pressure distribution shown in figure 6. It was desired to
obtain the pressure distribution for a. cascade of NAICA 4412 airfoils
given the values cj' = 1.0 and c/'g = 1.03 for comparison with the
distribution. calculated by the method of con-fo-nmal transformation
given in reference 11.

Since the assumed 
f
low is incompressible., 	 %, µ, and 9

are unity and I and T1 1 are zero. From table 1.1 A is 0,237.
The parameter a is 0.220. The lift coefficient for the correspond-
ing airfoil in free air is obtained- from equation (48) as 1.335.
By potential theory for the hul', cA 4412 airf oil the free-air angle of
attack for cl = 1 -335 is 6.80 and. cm,/4 4 s -0.11 so that for the

airfoil in cascade, by equation (22), a l = 10.4'.

Values of the pressure coefficient for the isola.ted, airfoil
were calculated from the free -air values of reference 11 using the
method of reference 5. From these pressures P -vas  determined and
the P* was obtained from equation (24). P and 1-Pf* (equal
to 1--Pf) were then combined by equations (43) to give 1-1'j4'
and 1-PL*. The ca.scade pressure distribution was finally obtained
using equations (44).
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TABLE I.- VALUES OF A FOR VARIOUS BASE PROFILES
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NACA LOW-DRAG SECTIONS
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V2 to 0 p p

y^ ti cQ
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'^ O
C^

i
t
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1
cflr-i

t
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^

1
rn
r-t

1
C-	 j
c^	 !

t	 1
C^J
Y:) /

tp
di

1
eo
to

1
to
to

i

^
Q0

t
c0

i
C

0.06 --- 0.12? --- 0.111 0.125 O.I19 0.124 0.127 0.119 0.107 0.106 0.101 0,106 0.109 0.117 0.119

.09 0.2361 .196 0.155 .172 .190 .183 .189 .195 .185 .159 .1571 .148 ., 158 .163 .174 .178

.12 .3201 .2691 .212 .237 .264 .253 .263 .271 .256 .217 .214 .201 .215 .221 .236 .243

.15 . 2103 .34 5 .273 * 305. .342 * 326 .341 .353 .330 .281 .278 .2 57 .276 .283 .301 .311

.18 .493 .425 .337 .3P6 .425 .404 .424 .439 .408 .348 .344 .316 .338 .348 .3681 .379

.21 .580 .508 .404 .450 .512 .484 .511 .529 .489 .417 .415 .378 .402 .414 .436 .450

.25 .703 .625 .497 .554 .632 .596 .631 .654 .602 .512 .513 .460 .487 .501 .526 .54$

.30 .864 .780 .626 --- --- --- _-- -_- _-_ --_ -_- -_- --- --- --- ---

.35 1.049 .945 .767 -- --- --- -- -- --- --- --- -- -- --- -- ---

.50 1.690 1.500 1.258 --- --- --- -- --- --- --- -_ -_ --- --- _ ---

1.00 4.000 4.000 1 --- ___ --- --- -__ -_- --_ --- -__ --- --- --- --- ---

NXAT7. ,01l.,'J,	 CCML 11.''T' ^ mt t,.L'. lloj`!Xit i i ll

;
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o
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Figure 1. Schematic diagram of cascade :
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Compressibifity factor, 7 ., as a function
number.
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Figure 3.® Choking Mach number as a function of the
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® 3

Cascade airfoil by method of this report
® Cascade airfoil by method of reference

Lone airfoil (from reference // J
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J I	 I	 I	 (	 I	 I

NATIONAL

COMMITTEE FOR AERONAUTICS	 I

flgurPressure distribution for NAGA 4412airfoil
alone and in cascade for = /. 03 and c^ 0.
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figure 6.-Pressure distribution for NA CA 441B alrfoil
alone and in cascade for = /. 03 and c,®= /. 0.
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Mach number,

Figure 7Q- Effect of compressibility on lift-curve slope
for NAGA 4412 airfoil in cascade.




