Pressure and Quantity Thresholds for Ignition of Oil Contamination by Rapid Pressurization in Oxygen Systems

Susana Tapia, Sarah Smith, Steve Peralta, and Joel Stoltzfus
NASA White Sands Test Facility

July 2009
Problem Statement

• Problem:
 – Oil contamination produces an increased ignition hazard in oxygen systems

• Solution:
 – Determine oil quantity and oxygen pressure thresholds
Experimental

• Perform rapid pressurization tests
 – Common ignition mechanism in oxygen systems

• Contamination level threshold
 – Determine quantity of oil (sebum) deposited by handling hardware with bare hands
 – Determine quantity of oil (sebum) required to obtain a burning reaction during rapid pressurization to 4000 psi

• Oxygen pressure ignition threshold
 – Use highly volatile hydrocarbon oil (WD-40) on open-cell polyethylene foam
 – Determine minimum ignition threshold as a function of pressure
Contamination Level Threshold

• The oil on the surface of the skin is a complex mixture of sebum oil, lipids, sweat, and environmental materials
• Synthetic sebum selected for tests

<table>
<thead>
<tr>
<th>TABLE 1—Composition of synthetic sebum (Lot #9183).^a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition</td>
</tr>
<tr>
<td>10 % Palmitic acid</td>
</tr>
<tr>
<td>5 % Stearic acid</td>
</tr>
<tr>
<td>15 % Coconut oil</td>
</tr>
<tr>
<td>10 % Paraffin wax</td>
</tr>
<tr>
<td>15 % Synthetic spermaceri</td>
</tr>
<tr>
<td>20 % Olive oil</td>
</tr>
<tr>
<td>5 % Squalene</td>
</tr>
<tr>
<td>5 % Cholesterol</td>
</tr>
<tr>
<td>10 % Oleic acid</td>
</tr>
<tr>
<td>5 % Linoleic acid</td>
</tr>
</tbody>
</table>

^aSynthetic sebum is a product of Scientific Services S/D, Inc., 42 Main Street, Sparrow Bush, NY, 12780. (Treated to remove peroxides and flushed with nitrogen in order to prevent polymerization and oxidation; contains trace water; is stable at ambient conditions in the absence of air; nitrogen padded.)
Contamination Level Threshold

• Properties of sebum oil
 – Heat of Combustion
 • ~39.7 KJ/g
 • 90% of hydrocarbon-based oil
 – Auto Ignition Temperature
 • 139 ± 7 °C
 • Silicone grease AIT = 216 °C
Contamination Level Threshold

- Evaluated contamination level due to handling without gloves
 - Five technicians
 - Four separate occasions
 - “Flip & Grip” test coupons
 - NVR = 14 ± 5 mg/m²
Contamination Level Threshold

- Rapid pressurization according to ASTM G74
- Oil coated cylindrical rods
- Varied surface concentration (9000 mg/m²)
- Tested at 4000 psi (27.6 MPa)

July 2009
Tapia, Smith, Peralta, and Stoltzfus
Pressure and Quantity Thresholds for Ignition of Oil Contamination by Rapid Pressurization in Oxygen Systems
Detection Technique

- Sapphire View Window
- SS Modified Viewing Chamber
- SS Sleeve
- 38 Aminco Modified Line
- GRIN Lens
- SS B-Nut
- SS Ball Support
- SS Cylindrical Rod
- Anvil Nut (Sample Holder)

- IR Viewing Scope
- Camera
- GRIN Relay Lens
- Boroscope
- Modified Viewing Chamber
- Sample Holder

July 2009

Oil Contaminated Area
Contamination Level Threshold

- Threshold surface concentration was 150 mg/m²
- Next highest concentration tested was 340 mg/m²
- Hand oil contamination maximum 20 mg/m²

<table>
<thead>
<tr>
<th>Contamination level (mg/m²)</th>
<th>Number of reactions/number of tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,000</td>
<td>1/3</td>
</tr>
<tr>
<td>3,200</td>
<td>1/12</td>
</tr>
<tr>
<td>540</td>
<td>1/27</td>
</tr>
<tr>
<td>340</td>
<td>1/16</td>
</tr>
<tr>
<td>150</td>
<td>0/40</td>
</tr>
</tbody>
</table>

July 2009 Tapia, Smith, Peralta, and Stoltzfus

Pressure and Quantity Thresholds for Ignition of Oil Contamination by Rapid Pressurization in Oxygen Systems
Oxygen Pressure Level Threshold

• Rapid pressurization according to ASTM G74
 – Each sample subjected to 5 consecutive pneumatic impact events for each test data point
• Minicell L-200 polyethylene foam samples
• Contaminated with WD-40
• Tested at various oxygen pressures
Oxygen Pressure Level Threshold

- A reaction occurred at 300 psia
- No reactions occurred at 275 psia in 80 tests

<table>
<thead>
<tr>
<th>Impact Pressure (Mpa)</th>
<th>Impact Pressure (psia)</th>
<th>Number of Reactions</th>
<th>Number of Samples Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>350</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>300</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>300</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1.9</td>
<td>275</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

From WSTF Number 06-40281

July 2009

Tapia, Smith, Peralta, and Stoltzfus
Pressure and Quantity Thresholds for Ignition of Oil Contamination by Rapid Pressurization in Oxygen Systems
Summary

• Contamination level threshold
 – Sebum (fingerprint) oil
 – 4000 psi rapid pressurization
 – Between 150 and 340 mg/ft²
 – Fingerprints could contribute to other oil contamination

• Oxygen pressure level threshold
 – WD-40 oil
 – Standard rapid pressurization test system
 – Between 275 and 300 psia
 – Below 275 psia (minus your desired margin) no ignition due to rapid pressurization