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The Mars Entry Atmospheric Data System (MEADS) is being developed as part of the
Mars Science Laboratory (MSL), Entry, Descent, and Landing Instrumentation (MEDLI)
project. The MEADS project involves installing an array of seven pressure transducers
linked to ports on the MSL forebody to record the surface pressure distribution during
atmospheric entry. These measured surface pressures are used to generate estimates of
atmospheric quantities based on modeled surface pressure distributions. In particular, the
quantities to be estimated from the MEADS pressure measurements include the total pres-
sure, dynamic pressure, Mach number, angle of attack, and angle of sideslip. Secondary
objectives are to estimate atmospheric winds by coupling the pressure measurements with
the on-board Inertial Measurement Unit (IMU) data. This paper provides details of the
algorithm development, MEADS system performance based on calibration, and uncer-
tainty analysis for the aerodynamic and atmospheric quantities of interest. The work
presented here is part of the MEDLI performance pre-flight validation and will culminate
with processing flight data after Mars entry in 2012.

I. Introduction

The Mars Entry, Descent, and Landing Instrumentation (MEDLI) system is an array of sensors installed
in the heat shield of the Mars Science Laboratory (MSL) entry vehicle. The goals of this project are to
measure the aerodynamic and aerothermal environment during atmospheric entry.1 The MEDLI system
consists of three basic subsystems: The Mars Integrated Sensor Plug (MISP), the Mars Entry Atmospheric
Data System (MEADS), and the Sensor Support Electronics (SSE). The MISP system uses 7 sensor plugs
installed in the heat shield, each plug consisting of 1 recession sensor and 4 thermocouple sensors, to measure
the aerothermal environment during entry. MEADS makes use of 7 flush pressure measurements on the
aeroshell fore-body to allow estimation of atmospheric state parameters, and when combined with external
velocity measurements, atmospheric parameters such as density and winds. The SSE is an electronics box
that provides the signal conditioning and data acquisition systems for MISP and MEADS. This paper is
focused on the development of models and algorithms in support of MEADS system design and, eventually,
flight data processing. Details on the MEADS subsystem requirements and design are provided in Ref. 2.
Information on other MEDLI instruments can be found in Ref. 1.

The basic MEADS science objectives are to reconstruct atmospheric data variables from pressure mea-
surements alone when the freestream dynamic pressure is above 850 Pa. In particular, the objectives are
to estimate the angles of attack and sideslip to within 0.5 deg, the dynamic pressure to within 2%, and
the Mach number to within 0.1, in a 3σ sense. These accuracy goals are based largely on flight experience
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Figure 1. MSL Reference Trajectory

with the Shuttle Entry Air Data System (SEADS).3–5 Secondary objectives are to estimate the freestream
density and atmospheric winds from the MEADS pressure measurements, when combined with the on-board
Inertial Measurement Unit (IMU) data. These measurements will aid the MSL trajectory reconstruction
and performance analysis, and will separate the aerodynamic and atmospheric uncertainties.

Seven pressure ports are proposed for the MSL geometry as shown in Fig. 2(a), labelled as ports P1
through P7(MISP locations are shown as T1 through T7). As seen above, the angle of attack remains near
20 deg. over much of the trajectory. At these conditions the stagnation region is along the windward part
of the cone and a recompression and potential for turbulent flow is predicted along the leeward side. To
minimize the uncertainties in pressure measurements the proposed port layout avoids placing ports in the
latter region.

Pressure ports P1 and P2 are located in the stagnation region to provide a nearly direct measurement of
the total pressure at the high Mach regime. Ports P3, P4, and P5 lie on the spherical cap and are placed in
order to take advantage of the simple geometry for angle of attack measurements. Additionally, P4, located
at the geometric center, provides a nearly direct total pressure measurement at the low Mach regime prior to
parachute deployment. The final two ports are located in the horizontal plane of symmetry, approximately
1.0 meters off of the centerline. The ports, P6 and P7, provide the off-axis measurements needed to estimate
the angle of sideslip. The pressure ports are connected to pressure transducers via a tube system illustrated
in Fig. 2(b). The measured pressures are sampled at a rate of 8 Hz from entry interface until heat shield
separation.
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(a) MEADS Port Geometry (b) MEADS Tube Configuration

Figure 2. MEADS Geometry and Tube Configuration

The remainder of the paper is organized as follows. Section II discusses the basic surface pressure
distribution modelling. Section III discusses atmospheric data estimator design using least–squares and
Kalman filtering techniques. Section IV provides a summary of error models, trade studies, and system
performance analysis. Current status and future work plans are outlined in Sec. V.

II. Pressure Models

A. Newtonian Flow Model

In the traditional implementations of FADS-based air data estimation, the surface pressures are modelled
using Newtonian flow approximations in which the surface pressure is a function of the port location, angle
of attack, angle of sideslip, and Mach number. Explicitly, the surface pressure at port i is given by3

pi = pt

[
(1−R) cos2 θi + R

]
(1)

where pt is the total pressure, R is ratio of static pressure to total pressure, and θi is the incidence angle.
The pressure ratio is a function of the Mach number, which takes the form3

R =
p∞
pt

=





[
2

(γ+1)M2∞

]γ/(γ−1)

·
[

2γM2
∞−(γ−1)
γ+1

]1/(γ−1)

for M∞ > 1

[
1 + γ−1

2 M2
∞

]−γ/(γ−1)
for M∞ ≤ 1

(2)

The pressure ratio is shown as a function of Mach number for γ = 1.335 in Fig. 3(a).
The incidence angle is a function of the port location and angles of attack and sideslip, given by

cos θi = cos α cos β cosλi + sin β sin φi sin λi + sin α cos β cosφi sin λi (3)

where λi is the cone angle and φi is the clock angle of the orifice.
Substituting Eqs. (2–3) into Eq. (1) yields a relationship for surface pressure as a function of the port

location, total pressure, Mach number, and angles of attack and sideslip. The Newtonian flow pressure model
can also be written as a function of the freestream dynamic pressure by making use of the relationship3

q∞ =
(γ

2

)
ptRM2

∞ (4)
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Figure 3. Pressure Ratio vs. Mach for γ = 1.335
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Figure 4. MEADS CFD Grid and Port Pressure

As noted in Ref. 3, 4, for small R (or, equivalently, high Mach) the product RM2
∞ is nearly constant.

This trend is illustrated in Fig. 3(b) for γ = 1.335. The implications of this trend are twofold. First,
any slight change in static pressure has a large impact on the Mach number, which implies that the Mach
number is difficult to estimate for low pressure ratios. Secondly, it implies that the dynamic pressure can
be computed accurately directly from the total pressure by substituting the limiting value of the quantity
RM2

∞. Therefore, errors in static pressure or Mach number do not contribute to errors in dynamic pressure
estimates in the high hypersonic regime.

B. CFD-Based Model

A CFD-based table lookup model was developed for analysis of the MSL air data system. This CFD
database is based on supersonic and hypersonic regime pressure distributions from thin–layer Navier–Stokes
solutions generated using the Langley Aerothermal Upwind Relaxation Algorithm (LAURA). The relaxation
of vibrational temperature of the CO2 molecule is simulated using the CAMAC model. Forebody solutions
were obtained using a 7 block singularity-free grid.

The supplied CFD database was converted from absolute pressure to pressure coefficient in order to
allow the pressure distribution to scale with different trajectories and to enable estimation of freestream
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atmospheric properties such as the static pressure. The data was re–interpolated from the 7 block grid to
a single-zone grid of clock and cone angles. This alteration simplifies the interpolation of surface conditions
without complications of search routines required to handle multiple zones.

The CFD grid points are shown as a function of total angle of attack and Mach number in Fig. 4(a) along
with the nominal reference trajectory. The pressure profiles for each MEADS port are shown in Fig. 4(b).
Note that each CFD grid point consists of a full surface pressure distribution solution, with 37 clock angles
in uniform 5 deg increments and 61 cone angles with non-uniform increments. These grid points can be
interpolated using linear or cubic spline techniques. The linear interpolation is significantly faster and is
therefore suitable for Monte–Carlo analysis. Cubic interpolation is suitable for analyzing specific simulation
cases or flight data.

III. Atmospheric Data Estimation

The basic MEADS atmospheric state estimation procedure is essentially similar to the SEADS state
estimation described in Ref. 3, a point–wise least squares fit of the surface pressure measurements to the
modelled pressure distribution to determine minimum–variance estimates of the atmospheric states. When
combined with an Inertial Measurement Unit (IMU), the MEADS measurements can also be used to generate
wind and density estimates. This section describes the techniques used to estimate these quantities, beginning
with the basic MEADS estimation technique to compute the atmospheric state variables.

A. Least–Squares State Variable Estimation

By defining the atmospheric state vector as x, p as the vector of N observed surface pressures, and the
pressure model as h(x, t) then the pressure measurement model can be written compactly as

p = h (x, tk) + ε (5)

where ε is the vector of pressure measurement errors and tk is the measurement sampling time. The pressure
measurement model can be approximated by means of the truncated series expansion

p ≈ h (x̄, tk) + H(tk) (x− x̄) + ε (6)

where x̄ is some reference state and H(tk) is the Jacobian matrix

H(tk) =
[
∂h
∂x

]

x=x̄

(7)

The problem can be reduced to that of a linear regression problem

y = Hx + ε (8)

where y = p − h (x̄, tk) + Hx̄. By virtue of the Gauss–Markov theorem, the best linear unbiased estimate
of x is the weighted least-squares solution,6

x̂ =
(
HT R−1H

)−1
HT R−1y (9)

where R is the pressure measurement error covariance matrix. Since the original relationship between the
states and the measurement in Eq. (5) is nonlinear, the estimation scheme can be iterated until convergence
by successively replacing x̄ by x̂, using the converged state estimate from the previous sampling time (tk−1)
as the initial reference state x̄. The state estimate error covariance matrix P̂ can then be computed from

P̂ =
(
HT R−1H

)−1
(10)

Note that the aerodynamic state vector formulation is not unique. In particular, any two variables from
the set of p∞, pt, q∞, R, and M∞ can be used in the estimator in addition to α and β. The remaining
state variables not used directly in the estimator can be calculated as parameters, having first estimated
the aerodynamic state variables. Note that the SEADS algorithm3 made use of p∞ and pt in the estimator
formulation.

Due to the asymptotic behavior of the pressure ratio as a function of Mach described in the previous
section, some numerical difficulties can arise for high Mach number conditions. For high–Mach cases it may
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be advantageous to consider a special case of estimators that use a fixed pressure ratio R and form state
estimates using only three aerodynamic variables, e.g. pt, α, and β, with dynamic pressure computed directly
from pt assuming the limiting value of the quantity RM2

∞. These estimators are generally more consistent but
become biased as the true pressure ratio drifts away from the assumed value. If the vehicle is instrumented
with an Inertial Measurement Unit (IMU) then it is also possible to schedule the assumed pressure ratio as
a function of the inertial Mach number to reduce the growth of the bias over time. Alternately, the bias can
be calibrated and subtracted out using preflight simulation cases.

The least–squares solution described in this section has several important properties. First, all pressure
measurements are processed simultaneously to determine the atmospheric state variable estimate, opposed to
the so-called “triples” algorithms, which use only a subset of available ports to determine the state variable
estimates individually in sequence. Using all measurements simultaneously is advantageous in the sense that
every port contributes to the state estimate rather than a restricted set, which generally leads to better
performance,8 and is also fault tolerant in the sense that a failed port can simply be removed from the
solution that would otherwise ruin a triples algorithm.

1. Wind Estimation

Wind estimation is enabled by combining the MEADS algorithm outputs with velocity and attitude outputs
derived from the IMU. One approach is to relate the angle of attack and sideslip estimates to the planet rel-
ative velocity and the horizontal wind components and solve directly for the winds using Newton’s method.9

To this end, the aerodynamic angles can be expressed as

tan α =
wb

ub
(11)

tan β =
vb√

u2
b + v2

b

(12)

where ub, vb and wb are the body-axis wind-relative velocities, which are in turn functions of the wind
velocity and the planet-relative trajectory given by





ub

vb

wb





= G (Ψ, Θ,Φ)





ug − uw

vg − vw

wg − ww





(13)

where Ψ, Θ, and Φ are the yaw-pitch-roll Euler angles relating the tangent frame to the body frame and G
is the matrix of the transformation, ug, vg and wg are the planet relative North-East-Down velocities, and
uw, vw, and ww are the wind components.

At each air data measurement point occurring at time tk with aerodynamic angle estimates given by α̂
and β̂, the wind velocities may be solved for by the iterative method (neglecting the downward wind)

{
uw

vw

}

j+1

=

{
uw

vw

}

j

+ Γ−1

{
α̂− α

(
uwj , vwj

)

β̂ − β
(
uwj , vwj

)
}

(14)

where j is an iteration index, and

Γ =




∂α
∂uw

∂α
∂vw

∂β
∂uw

∂β
∂vw




(uw=uwj
,vw=vwj )

(15)

The wind estimate error covariance matrix, P̂w, follows from the measurement error covariance matrix,
P̂, and from the planet-relative trajectory error covariance matrix, Q̂, by means of the equation

P̂w = Γ−1P̂
(
Γ−1

)T
+ ΛQ̂ΛT (16)

where

Λ =




∂uw

∂ug

∂uw

∂vg

∂uw

∂wg

∂uw

∂ψ
∂uw

∂θ
∂uw

∂φ

∂vw

∂ug

∂vw

∂vg

∂vw

∂wg

∂vw

∂ψ
∂vw

∂θ
∂vw

∂φ


 (17)
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This method suffers from singularities in the matrix Γ when the flight path angle is zero.9 This singular
condition is problematic for the MEADS application since the MSL entry trajectory crosses zero flight path
angle on two occasions, shown in Fig. 1(c).

2. Density Estimation

The freestream atmospheric density at time tk follows the determination of the dynamic pressure and the
wind–relative velocities from

ρ̂∞ =
2q̂∞

(u2
b + v2

b + w2
b )

(18)

B. Kalman Filter Formulation

The Kalman filter technique can be used to blend the MEADS and IMU measurements together in a tightly–
coupled fashion, in order to compute the winds and atmospheric state variables directly from the MEADS
measured surface pressures and integrated IMU accelerations and angular rates. The approach is to recast
the pressure model to be written as a function of the freestream atmospheric quantities (pressure, density,
and tangential winds) along with the planet–relative vehicle velocity and orientation. After computing these
transformed states, the aerodynamic orientation angles, Mach number, and dynamic pressure are calculated
as output parameters. A tightly–coupled solution of this nature has not been implemented before for entry
vehicle trajectory reconstruction, though a conceptually similar philosophy has been proposed for real-time
air data processing for aircraft applications in Ref. 10.

The proposed blended data processing technique for MEADS/IMU is modification to the Extended
Kalman Filter (EKF) approach implemented in a trajectory reconstruction code known as NewSTEP.
This code is a generalization of the Statistical Trajectory Estimation Program (STEP)11–13 developed by
NASA/LaRC and used extensively in the 1960s-1980s on a wide variety of launch vehicle and entry vehicle
flight projects, including the X-23A/SV-5D PRIME,14 Viking,15–17 Pioneer Venus,18 the Space Shuttle19,20

and Titan IIIC.21 The NewSTEP code borrows heavily from the STEP formulation, but includes several
enhancements to the algorithms and implementation. In particular, NewSTEP is coded entirely in Matlab
in order to make use of built-in capabilities such as numerical integration routines. The NewSTEP code has
been applied to several projects including the Hyper-X Mach 7 and Mach 10 flights22 and the Mars Explo-
ration Rover (MER) mission. In addition to the MSL/MEDLI flight data processing, the code is planned to
be used in support of the Inflatable Reentry Vehicle Experiment (IRVE and IRVE-II),23 the Orion Launch
Abort Flight Tests (PA-1), and the Ares I-X flight test.24

The NewSTEP code is designed to combine vehicle inertial data and external data sources over the entire
time history in order to generate a state trajectory estimate and associated uncertainty estimates. The
nonlinear filter dynamics are driven by acceleration and angular rate measurements from the on-board IMU.
The NewSTEP code has been generalized for the MEADS data processing to incorporate tightly coupled
pressure measurements to be included in the Kalman filter formulation. To do so, atmospheric state variables
are included in the filter formulation such that the filter estimates the freestream atmospheric conditions
(pressure, density, and winds) directly from the MEADS pressure measurements when combined with IMU
data at each measurement update step. An iterative update has been added to NewSTEP in order to better
capture the nonlinear relationship between the state variables and the measured pressures. Additionally,
the option to include pressure transducer scale factor errors as “solve-for” parameters has been incorporated
into the implementation.

The basic premise behind the proposed inertially blended atmospheric data filter is to reformulate
the measured pressure model into one that directly incorporates planet–relative states and freestream at-
mospheric conditions. For example, in Newtonian flow theory the surface pressure distribution is usually
written as a function of the angle of attack, angle of sideslip, dynamic (or total) pressure, and static pressure
or the pressure ratio, e.g. Eq. (1). By substituting the relations Eqs. (11) and (12) and the relation for
Mach number as the ratio of wind-relative velocity to the speed of sound, the surface pressure distribution
can be written as a function of the planet–relative trajectory and freestream atmospheric conditions. This
reformulation allows for a tight coupling between the IMU and the atmospheric data system in order to
estimate the trajectory and atmosphere simultaneously.

The filter state variables used in this formulation are

x =
[

r θ φ u v w e0 e1 e2 e3 uw vw ww p∞ ρ∞
]T

(19)
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where r is the radius of the vehicle from the center of the planet, θ is the longitude, φ is the declination,
u, v, w are the inertial velocity components in a local-radial coordinate frame, ei are the Euler parameters
describing the attitude of the vehicle with respect to the local-vertical frame, uw, vw and ww are the wind
components in the local-vertical frame, and p∞ and ρ∞ are the freestream pressure and density, respectively.

The state dynamics are modelled with the nonlinear system of differential equations given by22

ṙ = −w (20)

φ̇ =
u

r
(21)

θ̇ =
v

r cosφ
− Ω (22)

u̇ = au +
1
r

(
uw − v2 tan φ

)−
(

3µJ2

2r4

)
sin (2φ) (23)

v̇ = av +
1
r

(uv tan φ + vw) (24)

ẇ = aw − 1
r

(
u2 + v2

)
+

µ

r2
−

(
3µJ2

2r4

) (
2− 3 cos2 φ

)
(25)





ė0

ė1

ė2

ė3





=
1
2




−e1 −e2 −e3

e0 −e3 e2

e3 e0 −e1

−e2 e1 e0











ωx

ωy

ωz




− 1

r
G





v

−u

−v tanφ






 (26)

ṗ∞ =
ρ∞w

r2
(27)

ρ̇∞ =
ρ2
∞w

r2p∞
(28)

u̇w = 0 (29)
v̇w = 0 (30)
ẇw = 0 (31)

where µ is the gravitational parameter of the planet, J2 is the oblateness coefficient of the gravity field, and
Ω is the angular rate of the planet. The matrix G is the transformation from the local-tangent frame to
the body frame. The quantities ωx, ωy and ωz are the body-axis sensed angular rates, and au, av and aw

are body center of mass accelerations in the local frame, which are related to the sensed accelerations at the
IMU location in the body frame via the equation,





au

av

aw





= Gr








ax

ay

az




−



− (

ω2
y + ω2

z

)
(ωxωy − ω̇z) (ωxωz + ω̇y)

(ωxωy + ω̇z) − (
ω2

x + ω2
z

)
(ωyωz − ω̇x)

(ωxωz − ω̇y) (ωyωz + ω̇x) − (
ω2

x + ω2
y

)








xm

ym

zm






 (32)

where ax, ay, and az are the sensed accelerations at the IMU location and xm, ym, and zm are the IMU
position coordinates in the body frame. Transducer scale factor errors can be included in the filter formulation
using differential equations of the form λ̇i = 0 where λi is the scale factor error of the ith transducer.

Additive process noise terms are included on the acceleration and angular rate measurements to account
for sensor errors. Process noise terms are also included on the atmospheric winds, pressure, and density to
account for model uncertainties.

Let the quantities x̂k−1 and P̂k−1 be the state estimate and state estimate error covariance at time step
tk−1, respectively, and let x̄k and P̄k be the predicted state and state error covariance at time tk. The
MEADS pressure measurement pk at time tk is processed according to7

x̂k,i+1 = x̄k + Kk,i [pk − h (x̂k,i, tk)−Hk,i · (x̄k − x̂k,i)] (33)

where i denotes the iteration index, h (x, t) is the predicted pressure measurement based on the surface
pressure model and H is its linearization about the current state estimate. The quantity Kk,i is the Kalman
gain matrix,

Kk,i = P̄kHT
k,i

[
Hk,iP̄kHT

k,i + Rk

]−1
(34)
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The filter equations above are iterated until convergence (or until reaching a prescribed upper limit on
the number of iterations), leading to the final state estimate following the pressure measurement update.
The estimated state covariance is then provided by

P̂k = [I−KkHk] P̄k (35)

where Kk and Hk are computed using the converged state estimate.
The state predictions from one measurement point to the next are computed using numerical integration

of the nonlinear dynamic model in Eqs. (20–31). The covariance predictions are propagated according to
the matrix differential equation

˙̄P(t) = Fx(x̂(t), t)P̄(t) + P̄(t)T Fx(x̂(t), t)T + Fu(x̂(t), t)Q(t)Fu(x̂(t), t)T (36)

P̄ (tk−1) = P̂k−1 (37)

where Fx and Fu are the linearizations of the system dynamics with respect to the states and process noise
terms, respectively, and Q is the process noise covariance matrix.

IV. System Performance

The impact of individual error sources and the effects of selected failure modes are examined in this
section. These error sources include port location knowledge, sensor noise and quantization, telemetry time
stamp errors, pneumatic lag, thermal transpiration, and system calibration uncertainties. The associated
error models are reviewed in the following sections before showing sensitivity simulation results. The CFD
pressure distributions uncertainties are not considered in this work.

A. Error Models

1. Port Location Knowledge Error

Errors in the knowledge of the port location after installation are cast as random longitudinal perturbations
at constant clock angle and a random tangential perturbation at constant cone angle. The errors are specified
as uncorrelated zero-mean Gaussian random numbers. The measurement system is accurate to within 0.05
inches in a 3σ sense.

2. Noise and Quantization

Sensor noise is modeled using the equation

P̂i = Pi + (Pmax − Pmin) ηp (38)

where Pi is the transducer output, and Pmax and Pmin are the maximum and minimum pressure range of
the sensor system, respectively. The variable ηp is a uniform random variable between ±N/2n where N is
the number of counts of noise and n is the system effective bit size.

Sensor quantization can be modelled using the equation

P̃i =
(

Pmax − Pmin

2n

)
Int

[(
P̂i

Pmax − Pmin

)
2n

]
(39)

Finally, sensor saturation can be modeled as P̄i = max
[
min

(
P̃i, Pmin

)
, Pmax

]
.

3. Timing Error

Relative errors in the telemetry time stamp between measurements at different port locations introduces a
distortion effect that corrupts the pressures used as input to the basic data reduction algorithm. Timing
errors include both random and systematic components. The systematic timing errors can the adjusted in
pre-processing of the flight data, leaving only the random error to be considered in error budgeting. These
errors are simulated by first casting a uniform random number for each port in the range of ±25µs, and then
shifting the truth state used to calculate the measured surface pressures.

9 of 21

American Institute of Aeronautics and Astronautics



4. Pneumatic Lag

The MEADS system response model, or lag model, captures the dynamics of the pressure measurement
from the surface port location to the pressure transducer (the sensor). In general, these characteristics are a
function of the line properties (tube diameter and length), fluid properties (density, dynamic viscosity, etc.),
as well as flight conditions (pressure and temperature at the port and temperature at the transducer). The
system response models are used to accomplish two objectives: firstly, to accurately model the response so
that pre-flight simulation can be used to assess hardware, algorithms, and telemetry rates, and secondly, to
characterize the system response so that measured pressures can be corrected to actual surface pressures for
use in generating atmospheric data estimates.

High–fidelity response models based on the Navier–Stokes equations are available in the literature, in
particular the infinite–order frequency–domain Bergh–Tijdeman response model25 and variations on this
model for branched systems developed by Whitmore.26 In these models, the pneumatic system is broken up
into a series of segments, each with constant line and fluid properties. The end to end frequency response from
port to transducer becomes the product of the individual response functions for each segment. Entrapped
volume in any of the segments can also be captured. In this manner changes in tubing diameter as well
as temperature gradients can be explicitly modelled. The response is evaluated across a range of input
frequencies and the result is a complex frequency response that can be represented as magnitude and phase.

The frequency domain results for each flight condition are not readily suited either for time domain
simulation or for direct analysis of time histories of measured pressure. For these purposes, a low–order
response model must be utilized. For simple 2nd order systems, this response can be characterized by a
natural frequency and damping, with transfer functions of the form

PL

P0
=

ω2
n

s2 + 2ζωn + ω2
n

(40)

where P0 is the applied pressure, PL is the lagged pressure, and ζ and ωn are the damping ratio and natural
frequency, respectively, and s is the Laplace variable.

A variety of 2nd order models based on simplified fluid mechanics relations are available in the literature
with varying assumptions and classifications.27 A new 2nd order response model based on first principles is
presented in Ref. 27. This model is derived directly from the Bergh–Tijdeman equations using order reduction
techniques and was found to be more accurate than other 2nd order models. The natural frequency and
damping coefficients of this model are

ω2
n =

Acc
2/LV

(LAc/2V )
[
1 + (1/12) (γLRd)

2
/ (cρ0)

2
]

+ 1 + (1/6) (γLRd)
2
/ (cρ0)

2
(41)

ζ =
ωn

2

(
γRd

ρ0

) [
V L

Acc2
+

1
2

(
L

c

)2
]

(42)

where L is the tube length, Ac is the cross-sectional area, V is the transducer entrapped volume, ρ0 is the
fluid density in the tube, c is the speed of sound, and γ is the ratio of specific heats. The parameter Rd

is known as the acoustic impedance and can be calculated as a function of Reynold’s number to capture
laminar, transitional, or turbulent flow conditions, as described in Ref. 27.

Another approach to time domain analysis is look for a low-order system that matches the model response.
This assumed form of this equivalent system is chosen to capture the modelled dynamics and to facilitate
efficient simulation. Numerical optimization techniques have been utilized to fit transfer function models
to the high-fidelity frequency response model, including up to 4th order systems with pure time delay.
Preliminary results of this approach have been documented in Refs. 28 and 29 but will not be discussed in
this paper.

5. Thermal Transpiration

Under rarefied flow conditions, transpiration induced effects within a tubing system can cause the pressure
measured by the transducers to be significantly different from the surface pressure. The effects can be divided
into those caused by temperature gradients between the transducer and the surface, and those caused by
heat transfer and/or shear stress.

A study of the available literature yielded three models to account for transpiration effects; two models for
simulating the difference between measured and orifice pressure due to thermomolecular flow effects and one
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model for simulating the difference between the surface and orifice pressure due to shear stress and/or heat
transfer. The first transpiration model is provided in Ref. 30, which is an application of thermomolecular
flow theory developed by Knudsen in Ref. 32. Knudsen’s general formula for the thermomolecular pressure
effect is

dP

dT
=

1
(1 + a′r/λ)2

P

2T
, where a′ = a1

1 + a2r/λ

1 + a3r/λ
(43)

where r is a physical length scale, λ is the mean free path, P is the pressure, T is the temperature, and a1, a2,
and a3 are empirical constants. The empirical constants have been obtained by Knudsen, using least–squares
fit to data acquired with hydrogen in glass tubes.32 The results are a1 = 2.46, a2 = 3.15, and a3 = 24.6.

Assuming that the temperature in the tubing between the surface and the transducer in known as a
function of length x, Eq. (43) can be written as

∂P (x)
∂x

=
P (x)
2T (x)

[
∂T (x)

∂x

] [
κ (P, T, D)2 + a1κ (P, T,D)

κ (P, T,R)2 + (a1 + a2) κ (P, T, D) + a2a3

]2

(44)

where the parameter κ is the Knudsen number, given by

κ =
µ

DP

√
πRgT

2
(45)

where Rg is the specific gas constant. The viscosity µ can be calculated as a function of temperature using
Sutherland’s relation33

µ = µ0

(
T0 + C

T + C

)(
T

T0

)3/2

(46)

The constants associated with carbon dioxide are summarized in Table 1.

Table 1. Gas Constants for Carbon Dioxide

Constant Value
Rg, J/kg-K 191.8
µ0, Pa-s 14.8·10−6

T0, K 293.15
C, K 240.0

The second transpiration model is based on an algorithm described by Potter.34 This model is based
on the theoretical formulation of Ref. 35 and empirical data obtained in Ref. 36. The empirical data were
obtained in a sequence of experiments involving a wide range of tube lengths, diameters, orifice shapes, and
gases, including hydrogen, helium, nitrogen, and argon. The model is

∂P (x)
∂x

=
P (x)
2T (x)

[
∂T (x)

∂x

] [
1 +

b1

κ (P, T, D)
+

b2

κ (P, T,D) + b3/κ (P, T, D)

]−2

(47)

where b1 = 0.275, b2 = 0.625, and b3 = 24.0.
Note that both the Knudsen and Potter transpiration models predict that (∂P/∂x) → 0 as κ → 0.
The last model investigated for this paper is an augmentation of the Potter model34 that includes non–

equilibrium effects due to heat transfer and shear stress. This model is described in Ref. 37. The solution
relies on empirical fits to data obtained in a wide range of experiments. The algorithm for calculating
non–equilibrium effects is complicated and is not repeated here.

6. System Calibration and Temperature Uncertainty

A calibration of the MEADS flight system was conducted in order to compute pressure as a function of Voltage
and sensor/electronics temperature. The MEADS calibration program carried two independent calibration
efforts. The baseline approach involved the industry standard or “traditional” method, successfully employed
on SEADS38–40 and Aeroassist Flight Experiment (AFE)41 programs. The second approach is a proof-of-
concept experiment using a Design of Experiments (DOE) method, which has never been used to calibrate

11 of 21

American Institute of Aeronautics and Astronautics



(a) a0 Coefficient (b) a0 Uncertainty

Figure 5. Calibration Database Example

space flight transducers prior to MEADS. The DOE approach is documented in Ref. 42 and is not discussed
further in this paper.

The traditional calibration method uses a least–squares fit for each transducer to a model of the form

p = a0 (T1, T2) + a1 (T1, T2)V + a2 (T1, T2)V 2 (48)

where T1 is the pressure head temperature, T2 is the SSE electronics temperature, V is the Voltage output
from the transducer, and p is the pressure. The coefficients a0, a1, and a2 are termed the bias, sensitivity, and
nonlinearity, respectively. These coefficients are determined from a least–squares fit of pressure vs. Voltage
at specific temperature set points using a simple increasing/decreasing applied pressure to create the voltage
response. By varying the temperature set points, a database of calibration coefficients can be constructed,
and an empirical model developed that uses spline interpolation to look up values of these coefficients as
functions of the two temperatures.

Along with the values of the calibration coefficient, the uncertainties in the coefficients are also stored
as a function of the two temperatures. These uncertainties can be used to build a calibration error model
to assess system performance. The uncertainty analysis must also consider the effects of the in–flight zero,
in which the bias is effectively removed from the model by taking a measurement in space shortly before
atmospheric entry. A small residual bias error remains due to the slope of the bias curve as a function of
temperature, coupled with temperature uncertainty and noise.

Let T ?
1 and T ?

2 be the transducer and SSE temperatures and V ? be the measured voltage at the time of
the in–flight zero prior to atmospheric entry. Then the pressure error is

δp = a0 (T ?
1 , T ?

2 ) + a1 (T ?
1 , T ?

2 )V ? + a2 (T ?
1 , T ?

2 ) (V ?)2 (49)

Then the adjusted pressure is given by p̂ = p− δp. Following this correction, the estimated pressure is reset
to read zero output at zero applied pressure. However, residual bias error remains due to the gradient of
the a0 coefficient in the presence of temperature uncertainty. The in–flight zero does nothing to aid the
knowledge of the transducer sensitivity and nonlinearity.

Let the measured transducer temperature be given by T̂1 = T1+b1+n1 where T1 is the true temperature,
b1 is the bias error, and n1 is a noise component. Similarly let the measured SSE temperature be given by
T̂2 = T2 +b2 +n2. The uncertainty in the estimated pressure due to calibration uncertainty and temperature
uncertainty can be derived by first expanding the equation for the adjusted pressure measurement as

p̂ = a0

(
T̂1, T̂2

)
+ a1

(
T̂1, T̂2

)
V + a2

(
T̂1, T̂2

)
V 2 − a0

(
T̂ ?

1 , T̂ ?
2

)
− a1

(
T̂ ?

1 , T̂ ?
2

)
V ? − a2

(
T̂ ?

1 , T̂ ?
2

)
(V ?)2 (50)

For purposes of uncertainty analysis, the Voltage V ? can be assumed to be zero. Thermal analysis of
the MSL vehicle has shown a nearly constant temperature from the time of the in–flight zero throughout
the atmospheric entry, though the initial temperature can vary widely.42 Therefore the temperatures at the
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Figure 6. Total System Performance Trade Study

in–flight zero condition can be written as T̂ ?
1 = T1 + b1 + n?

1 and T̂ ?
2 = T2 + b2 + n?

2, where n?
1 and n?

2 are
the noise samples at the in–flight zero. Substituting these expressions into Eq.(50) and linearizing for small
temperature errors leads to an expression for the pressure calibration error of the form

σ2
p = 2σ2

n

[(
∂a0

∂T1

)2

+
(

∂a0

∂T2

)2
]

+

[
σ2

a1
+

(
∂a1

∂T1

)2 (
σ2

n + σ2
b

)
+

(
∂a1

∂T2

)2 (
σ2

n + σ2
b

)
]

V 2

+

[
σ2

a2
+

(
∂a2

∂T1

)2 (
σ2

n + σ2
b

)
+

(
∂a2

∂T2

)2 (
σ2

n + σ2
b

)
]

V 4 (51)

where σn, σb, σa1 and σa2 are the thermocouple noise, thermocouple bias, slope, and nonlinearity standard
deviations, respectively. Note that the bias uncertainty is removed through the in-flight zero, however a
residual bias error remains due to the slope of the bias curve as a function of temperature, coupled with
temperature uncertainty due to noise.

7. IMU Error Model

An inertial measurement unit (IMU) error model is required for the analysis of the wind estimation techniques
using either the loosely coupled least–squares approach or the tightly–coupled Kalman filtering approach
described in Sec. III. The loosely coupled least–squares solution requires a navigation error model as well,
whereas the tightly coupled approach integrates the IMU measurements itself so that the navigation errors
are captured in the state estimate error covariance matrix. The IMU measurement error and linear navigation
error model implemented for the least–squares uncertainty analysis is based on the error analysis presented
in Ref. 44. The IMU measurement error model for the Kalman filtering approach is described in Ref. 22. In
both cases, systematic error parameters and noise uncertainty inputs to the models are described in Ref. 45.

B. Error Analysis Results

This section describes error analysis results and test cases in order to assess system performance and sensi-
tivities.

1. Total System Performance

The basic MEADS least–squares algorithm was used in a performance trade study in order to determine the
total system accuracy requirements based on the science objectives of 0.5 deg angle of attack and sideslip,
2% dynamic pressure, and 0.1 Mach number uncertainties. A series of Monte–Carlo simulation studies were
conducted with random multiplicative pressure error levels of 0.5%, 1.0%, 2.5% and 5.0% of reading. These
Monte–Carlo simulations were conducted using 3000 runs with a Newtonian flow pressure model and the
least–squares estimator formulated using a fixed pressure ratio of R = 0.001. The results of this study are
shown in Fig. 6. From these plots it can be determined that a total system error of 1% of reading meets the
science objectives on the angle of attack, sideslip, and dynamic pressure error levels. Therefore, total system
error levels of 1% of reading became the requirements for system design.
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Figure 7. Tube Response

2. Pneumatic Lag Sensitivity

Due to computational complexities of simulating the tube and transducer response, these models were
employed in a stand–alone manner in order to assess impacts to system performance. These studies include
both the high–fidelity frequency domain models suitable for analyzing specific flight conditions as well as
2nd–order approximate models suitable for analyzing time histories.

The fist study is an assessment of the port diameter. Three flight conditions were explored using the
high–fidelity frequency response model, including a high Mach/low pressure case, the maximum pressure
case, and a low Mach/low pressure case. The frequency response for these three conditions are shown in
Fig. 7(a) and (b). The frequency response of the 2nd order model is also shown for comparison. Table 2
shows several important metrics of the frequency response for these three flight conditions. Here, the time
constant and the time delay (computed from phase loss at 1 Hz frequency) are shown corresponding to the
high–fidelity (HF) model as well as the 2nd order model. While differences are apparent between the HF
and 2nd order models, the trends and orders of magnitude are similar. These results agree to within a factor
of 2 or better with an independent implementation using a reduced–order Bergh–Tijdeman model described
in Ref. 46. These results indicate that the response time is acceptable even for the worst–case lag time at
the low Mach, low pressure condition.

Table 2. Response Model Conditions and Results

Condition M∞ q∞, Pa P , Pa τ , sec (HF) τ , sec (2nd) ∆t, sec (HF) ∆t, sec (2nd)
1 (High Mach) 29.0 850.0 1630.0 0.34·10−3 0.72·10−3 0.70·10−3 0.75·10−3

2 (Max q∞) 16.8 14015.3 26788.5 0.45·10−3 0.33·10−3 0.55·10−3 0.14·10−3

3 (Low Mach) 3.1 850.0 1595.7 1.31·10−3 0.78·10−3 2.01·10−3 1.09·10−3

A time history of the pressure difference computed using the 2nd order model is shown in Fig. 7(c). If the
input signal is of sufficiently low frequency content, then these lag effects can be corrected by inverting the
transfer function to solve for the pressure signal at the port. Errors in the corrected pressure response are a
combination of input uncertainties to the model and inherent error in the modelled physics. The effects of
geometric uncertainties in the tube length and diameter are investigated in this section. Establishing bounds
on the physics uncertainties is not discussed in this paper.

Table 3. Response Model Port Diameter Results

Port Diameter, in τ , sec (HF) τ , sec (2nd) ∆t, sec (HF) ∆t, sec (2nd)
0.07 6.13·10−3 0.86·10−3 6.61·10−3 1.21·10−3

0.04 5.69·10−2 0.96·10−3 5.49·10−2 1.36·10−3

0.02 2.62 1.04·10−3 0.22 1.47·10−3
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Figure 8. Tube Response: Diameter Sensitivity
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Figure 9. Tube Response: Length Sensitivity

Table 3 shows the results of a study varying the port diameter for the worst–case flight condition (low
pressure, low Mach) discussed above. Here, the port diameter is varied to as low as 0.02in. These results
indicate that the 0.07in case may be acceptable but the 0.04in case and below quickly become unacceptable.
Figures 8(a) and (b) show the frequency response of the high-fidelity and 2nd-order models for these port
diameters. Discrepancies between the HF and 2nd order models tend to increase with decreasing port
diameter. Arc jet tests conducted for various port diameters indicate that the 0.10in case is acceptable,47

therefore the diameter has been kept as originally designed. However, these results serve to indicate the
sensitivity to the port diameter, therefore the diameter uncertainties should be kept as small as possible.
Currently, the diameter uncertainty requirement on the tube system is 0.01in.2 The port 5 (worst–case port)
pressure lag error due to diameter uncertainty is shown in Fig. 8(c) for a range of diameter uncertainty up
to 0.03in. In all cases the lag error is small (note that the errors are shown in % of reading).

Table 4. Response Model Tube Length Results

Tube Length, in τ , sec (HF) τ , sec (2nd) ∆t, sec (HF) ∆t, sec (2nd)
+0.1 1.22·10−3 0.80·10−3 2.03·10−3 1.11·10−3

+0.25 1.26·10−3 0.82·10−3 2.08·10−3 1.14·10−3

+0.5 1.31·10−3 0.84·10−3 2.15·10−3 1.18·10−3

Next, a study was conducted to assess the sensitivity to tube length. Three cases were investigated using
at the low pressure, low Mach flight condition. Table 4 summarizes the effects perturbing the total tube
length by increments of 0.1in, 0.25in, and 0.5in. In each case the time constant and time delay metrics do
not change considerably. Figures 9(a) and (b) show the frequency response results for these perturbations.
These results indicate that the pressure system is not highly sensitive to the tube length. Currently, the
MEADS requirement on tube length uncertainty is 0.1in.2 Figure 9(c) shows the time history of the lag error
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for port 5 induced by length uncertainties of up to 0.5in. As in the previous case, these errors are acceptably
small.

3. Thermal Transpiration Sensitivity
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Figure 10. Thermal Transpiration Results

The thermal transpiration models were employed in stand–alone codes in order to assess impacts to
system performance. Figure 10 shows the results of an analysis comparing the thermal transpiration models
along the nominal reference trajectory. Here, the pressure difference between the nominal pressure and the
pressure with the thermal transpiration effects is shown for Ports 1 and 5. Results are shown for the Knudsen
model, the abbreviated Potter model (i.e. without orifice effects) and the full Potter model including the
orifice effects. While some difference are apparent between the Knudsen and Potter models, all show the
same trend with similar magnitudes. These results indicate that above 850 Pa dynamic pressure, the thermal
transpiration effects are negligible.

4. System Performance Results

This section describes a system performance analysis on the MEADS algorithms. The error sources included
in this study are the port location uncertainties, time tag errors, and system calibration uncertainties includ-
ing temperature uncertainties. Pneumatic lag models and thermal transpiration effects are not considered in
this study, as these errors are expected to be small. IMU and navigation errors are included for determining
wind estimation uncertainties. Performance analysis results are shown for several estimator formulations.
First, least–squares estimators have been implemented that use the dynamic pressure and either the Mach
number or static pressure as solution variables, in addition to the angle of attack and sideslip. Additionally,
results for a multi–pass Kalman filter approach are shown. In this approach, the first pass through the data
estimates the pressure transducer scale factor errors in addition to the inertial and atmospheric state. Then,
the pressure measurements are corrected using the computed scale factor errors, which reduces the total sys-
tem uncertainty. The second pass through the data uses this corrected data set to estimate the inertial and
atmospheric states. Each estimator uses the CFD database as the surface pressure distribution model. The
least–squares estimators are assessed using a 500 case Monte–Carlo simulation, whereas the Kalman filter
performance is simulated using a linear covariance analysis. Figure 11(a) shows the total system uncertainty
used in these simulations. Figure 11(b) shows the system uncertainties after the scale factor correction from
the Kalman filter. The MEADS primary science objectives are shown in Fig. 12. These plots show the 3σ
performance of the angle of attack, angle of sideslip, dynamic pressure, and Mach number estimates from
the two least–squares formulations and both passes from the Kalman filter. The least–squares solutions
are almost identical in these cases, and an improvement is apparent between the first and second pass of
the Kalman filter solution. These results indicate that the MEADS–only angle of attack objectives are met
through a large portion of the trajectory but begin to grow above the goal of 0.5 deg accuracy in the low
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(b) Corrected System Uncertainties

Figure 11. Pressure System Uncertainties

Mach regime. The same is true of the sideslip results although the growth above 0.5 deg is smaller than that
of the angle of attack. The dynamic pressure objectives are met easily in these cases, however the Mach
number estimates are not met throughout the trajectory. The Mach number results follow basic intuition
that the Mach number is not observable in the high Mach regimes.

The 3σ accuracies of the MEADS secondary objectives are shown in Fig. 13. Specifically, these plots show
the static pressure, density, total pressure, and wind estimate performance. The static pressure results shows
differences between the two least–squares solutions. In the high Mach regime, the estimator formulation using
the static pressure as a solution variable exhibits a higher error than that using the Mach number. This
behavior is likely due to the small pressure ratio combined with small static pressure at these conditions.
Later on, as the static pressure and pressure ratio increases as the Mach number decreases, the observability
on the static pressure is better, leading to better estimates when including static pressure in the solution
set. Given that these estimators perform so differently on estimating the static pressure but the dynamic
pressure estimates are essentially identical is in keeping with the observations made in Sec. II that the
dynamic pressure can be computed accurately even in the presence of large static pressure uncertainties.

The wind estimates from the loosely–coupled IMU/least–squares formulations are poor in the flight re-
gions shown here. This behavior is due to the nearly zero flight path angle in these flight regimes, rendering
the wind estimator nearly singular. In regions below 850 Pa dynamic pressure in the low Mach regime, the
flight path angle is increasing in magnitude, which has the effect of improving the wind estimate perfor-
mance. The density estimates of the loosely–coupled formulation are also poor due to the large errors in the
wind estimates. The tightly–coupled Kalman filter formulations are significantly superior in estimating the
atmospheric winds and densities, and moreover can estimate the downward wind component.

V. Current Status and Future Work

Although the pressure transducers passed acceptance testing, a variety of workmanship issues were un-
covered in the course of conducting the thermal calibration and environmental testing. One transducer failed
completely and all others were disqualified from flight status. New transducers are being manufactured by
the vendor, with increased cleanliness and workmanship oversight from NASA. These will be delivered in
the late summer of 2009. Receipt inspection and preliminary thermal characterization will take place at
NASA-LaRC, and assignments of Flight and Flight Spare will be made. Environmental acceptance testing
will take place at LaRC in the Fall of 2009, with delivery and integration with MSL in early CY 2010.
Preliminary plans are also being made for the acceptance and processing of the flight data following Mars
entry in 2012.

Several potential areas with regard to estimator performance and error modelling can be investigated.
Investigations will be performed to assess estimator performance in regions below dynamic pressure of 850 Pa.
In these regions, especially in the high Mach/high altitude regime, the tube response modelling and thermal
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Figure 12. MEADS Primary Science Objectives

transpiration effects become much more pronounced and therefore an understanding of model uncertainties
needs to be established in order to develop realistic estimator performance results. To this end, a series of
shock tube tests are planned to investigate response model uncertainties. Investigations can be conducted to
determine the feasibility of incorporating the MISP stagnation thermocouple measurements into the Kalman
filter solution, which may give additional observability on the freestream Mach number.
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(b) Density
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(e) East Wind
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Figure 13. MEADS Secondary Science Objectives
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