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COOLIBG C ~ C r ~ R I S T I C S  OF TJB V-1650-7 ENGINE 

I - COOLANT-FLOW DISTRII3UTION9 CYLINDER TEM'ERATUIIES, APJD 

gEAT El3JECTIONS AT TYPICAL OPERATING COrJDITIONS 

By John He Povolny and Louis J. Bogdan 

An invest igat ion vas c~nduc ted  .to determine the coolant-flow 
d i s t r ibu t ion ,  the cylinder temperatures, and the  heat re jec t ions  of 
the  V-1650-7 englne . The t e s t s  were run a t  several  power l eve l s  
varying from minimum f u e l  c o n s ~ ~ r ~ ~ ~ t i o n  t o  war emergency power and a t  
each power l eve l  the  coolant flows correszondedl t o  the  extremes of 
those l i k e l y  t o  5e encountered In  typ ica l  a i rplane i n s t a l l a t i ons ,  
A mixture of 30-3ercentethylene glycol acd 70-percent water was 
used a s  the  coolant. The temperature of each cylinder was measured 
between the  exhaust valves, between the  intake valves, i n  the center 
of t he  head, on the exhaust-valve guide, at the  top  of the  ba r r e l  on 
the exhaust side,  and on each exhaust spark-plug gasket. 

For an increase i n  e q i n e  power from 628 t o  approximately 
1700 brake horsepower the average temperature f o r  the  cylinder heads 
between the exhaust valves increased from 43y0 t o  517O F, the  engine- 
coolant heat  r e j ec t i on  increased from 12,600 t o  22,700 Stu. per millute, 
the o i l  heat  r e j ec t i on  increased from 1030 t o  4600 Btu per minute, 
a.nd the  aftercooler-coolant  heat r e j ec t i on  increased from 450 t o  
3500 Btu -per minute. 

A t  tlne request of the A i r  Fb t e r i e i  Command, Army A i r  Forces, an  
invest igat ion has been conducted a t  the  IWA Clevel.and laboratory on 
a d,vnamometer t e s t  stand t o  determlns the  cooling charac te r i s t i cs  of 
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the  V-1650-7 engine. The r eau l t s  of t h s  f i r s t  phase of t h i s  inves t i -  
gation,  which consi.sted of a determination of the coolant-fl.ow d i s -  
t r ibu t ion ,  the cylinder temperatu-res, and the  hea.t reJect ion t o  t he  
engine coolant, t o  the o i l ,  and t o  the  af tercooler  coolant a t  t yp i ca l  
ogera.ti.ng conditions, a r e  re lo r ted .  A range of power outputs from 
630 t o  1700 brake h.orsepower was covered with engine coolant flows 
a t  each power correspond.ing t o  the extremes of those l i k e l y  t o  be 
encountered i n  t yp i ca l  a i r ~ l a n e  inst.zl3 a t  ions . Both, a f te rcoo le r  and 
engine coolants consisted of a mixture of 30-percent ethylene a lyco l  
and 70-percent water. I n  order t o  obta in  a comprel~ensive survey, the  
temperatures of each cylinder were measured a t  s i x  d i f fe ren t  locations.  

APPARATUS NJD IIJSTRmIENTATI ON 

Engine 

The V-1650-7 engine is  a 12-cylinder, liquid-cooled engine with a 
bore of 5.4 inches and a stroke of 6.0 inches. I t  i s  f i t t e d  with a 
two-stage su-percharger having impelier diamaters of 1 2 . 0  and 
1.0.2 inches. The two impellers are  mova.l;ed on tlie same shaf t  and can 
be operated a t  a speed of e i t h e r  5.802 o r  7.349 times the engine speed, 
A liquid-type af tercooler  is  %.riterposed between the  supercharger out- 
l e t  and the  intake mznifold, The spark timing i s  controlled by tbe  
t h r o t t l e  posi t ion and var ies   fro^ 29' B,T .C. f o r  ful l -c losed t h r o t t l e  
t o  approximately 45' B.T.C. f o r  half-open t o  full-open t h r o t t l e ,  Both 
the  intake and exhaust s ~ a r : ~  plugs a re  .time& t o  f i r e  simultaneously, 

The coolant flow path through the cylind-er bank is schematically 
shown i n  f i gu re s  1 end 2. The coolant is  d i s t r i bu t ed  t o  the s i x  bar-  
r e l s  of each cylinder bank by m external  coola.nt branch tube, This 
cool.ant branch tube, which i s  connected t o  the discharge of the engine 
coolant pump, has three  ou t le t s ,  each of which supplies coolasst t o  two 
adjacent cylinder bar re l s .  After  enter ing the ba r r e l s ,  the  coolant 
f l o t ~ s  around each oylinder b ~ r r e l  and up i n to  the cylinder head through 
14 conflector tubes. The coolant then passes over tho cylinder heads 
and is discharged a t  a s ingle  ou t l e t  a t  the forward end of the cyl-in- 
der bank. Two pressure-equalizins holes (a3out 5/8-in. diameter) a r e  
yrovided a t  the  bottom o-f each brot11; between the  two pa i r s  of adjacent 
cyl3nders t ha t  a re  not supplied by a common branch-tube o u t l e t ,  It 
may be seen from f igure  2 t ha t  the  flow over each cylinder head is  
equal t o  the  t o t a l  of a l l  the flows through the  connector tubes 
upstream of the cylinder head i n  question, 
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For convenient identification, the  manufacturert s designation 
of the  banks and cylinders is used, Thus, when facing the r ea r  of 
the  engine, the right-hand bank is designated bank A and the left-  
hand bank is 'designated bank B. The cylinders of each bank are  num- 
bered from 1 t o  6 s t a r t ing  at the  f ront  of the  engine. 

Flow-Distribution Setup 

A bench setup i n  which the  connector tubes i n  bank B were c a l i -  
brated with water a t  room temperatare was used t o  determine the 
coolant -f low dis tr ibut ion tk~rough the engine. A s  shown i n  f igures  3 
and 4, pressure taps were ins ta l led  both across the  bar re l  i n l e t s  and 
across the connector tubes. The numbering system f o r  identifying the 
connector tubes is shown i n  f igure  4. Thin-plate or i f ices  were 
ins ta l led  i n  the connector tubes t o  give a measurable pressure drop, 
A thin-plate  o r i f i ce  was also ins ta l led  i n  the  water supply l ine  t o  
measure the t o t a l  flow of water t o  the bank. 

Engine Setup 

The t e s t  setup is shown in  f igure 5. The V-1650-7 engine on 
which the investigation was cond.ucted was mounted on a dynamometer 
stand equipped with a 3000-horsepower eddy-current water-gap dyna- 
momet e r  , 

The inlet-manifold pressure of the engine w a s  measured at the  
priming-pipe fi l ter-housing f i t t i n g  and the inlet-manifold tempera- 
t u r e  was measured with a s ingle, unshielded, iron -cons tantan thermo- 
couple located approximately 10 inches downstream of the aftercooler 
ou t l e t .  The f u e l  used w a s  AN-F-28, bendment 2; the flow was meas- 
ured with calibrated rotameters. 

Combustion-air and exhaust systems. - Combustion air was supplied - 
t o  the  engine by the  laboratory cent ra l  system and was metered by 
means of i n  adjustable o r i f i ce  ins ta l led  i n  the supply duct, A f i i t e r  
was ins ta l led  i n  the duct between the o r i f i ce  and the carburetor. The 
temperature and the  pressure at the carburetor i n l e t  were maintained 
at the  desired values by means of automatic equipment, A i r  tempera- 
tu res  at the  o r i f i ce  and a t  the carburetor were measured with thermo- 
couple rakes. 

The engine exhaust stacks, which were so  constructed tha t  the  
s tack  openings were equal in  area t o  the ewine  exhaust-port open- 
ings, were par t ly  water-jacketed and were connected t o  a header of 
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12-inch diameter with f lexible  hoses. The headers were co.nnected t o  
the laboratory central  exhaust system b~ means of which the desired 
exhaust pressures could be maintained. The spark plugs, and the 
thermocouple leads were shielded from the unjacketed portion of ths  
exhaust stacks. 

Engine coolant system. - A schematic diagram of the engine cool- ---.-- 
ant system i s  shown. i n  figure 6,  A n  ~lux l l i a ry  pump was placed i n  
ser ies  with the engine ~wnp t o  permit the coolant flax? t o  be varied 
independently of t:ie engine speed. The coolant flow was measured with 
a venturi. A t h ro t t l e  valve ins ta l led  downstrew of the venturi was 
used t o  increase the tkroat pressure enough t o  prevent cavitation. 
The system pressure was regulated with a compressed-air-bleed combina- 
t ion  on the coolant expansion tank, A centrifugal-type vapor separa- 
t o r  was ins ta l led  i n  each of the block-outlet l ines  to  remove a i r  or  
any vapor tha t  may have formed during runs i~ which boiling occurred. 
Vent l ines  were run from both the vapor separators and the block out- 
l e t s  t o  the ex~ans ion  tank. Sight glasses were ins ta l led  i n  both s e t s  
of vent l ines  t o  permit visual observation of the coolant. 

The coolant-temperature control unit  consfsted of two a i r c ra f t -  
type coolers connected i n  para l le l  md  a theo-way, air-operated, 
t h e m o ~ t a t i c a l l ~  control.led mixj.ng val-ve ins ta l led  a t  the junction of 
the main l ine  from and the 'by-pass l ine  around tho coolers. Water was 
used a s  the cooling medium i n  the coolers and was meterod with ca l i -  
brated rotameters. The coolant used was a mixture of 30-percent 
AN-E-2 ethylene glycol and 70-percent water with 0,2 percent by volume 
of sodium mercapto5enzothiazole (NaMBT) added as  a corrosion inhibi tor .  
Prossure taps and themocoupl.es were ins ta l led  i n  the coolant asld 
cooling-water l ines ,  a s  shown i n  f igure 6. 

Lubricating o i l '  .-- system. - A schematic diagram of the lubricating 
o i l  system including thermocou-ple axla pressure-tsp locations i s  shown 
i n  figure 7. A flow-rate and o i l - leve l  indicator-similar t o  the one 
clescribed i n  reference 1 was. incorporated i n  the reservoir tank, The 
temperature-control unit  was similar t o  that  f o r  the coolant system. 
A f f l t e r  unit was ins ta l led  i n  the engine out let  l i ne  'and- a chip 
detector was ins ta l led  i n  the drain pluli; of the f i l t e r .  The lubri-  
cat ing o i l  uged was Navy 1120. 

' AfterCooler coolant ,system. ; Figure 8 i s  a schematic diagram of 
the aftercooler coolant system, I n  addition t o  passing through the 
aftercooler unit, the aftercooler coolant a l so  passed &roue;h:a cooling 
jacket tha t  surrounded the supercharger, The af tercooler  coolant flow 
lras regulated by means of a th ro t t l e  valve and metered with a 
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calibrated venturi. The temyerature-control unit  consisted of water- 
cooled coolers and a three-way mixi.ng valve tha t  were similar t o  
those i n  the engine coolant system, The expansion tank i s  incor- 
:)orated i n  the housing of th.e aftercooler uni t  and a r e l i e f  valve 
s e t  t o  rel ieve a t  a pressure of 20 pounds per square inch gage is 
mounted on the ta.nk, The composition of the coolant used was the 
same as  tha t  used i n  the engine coolant system. Therrnocouples and 
-Dresswe taps were located i n  the aftercooler-coolant and cooling- 
water l ines ,  as shorn i n  figure 8. 

Temperature Measurements 

Thermocouples - f o r  liquid-tempera Lure measurement, - Two types 
of thermocouple, iron-constas~tan and copper-constantan, were ins ta l led  
i n  the engine-coolant, aftercooler-coolant, lubricating-oil ,  and 
cooling-water l ines  i n  the locations shown i n  f igures  6 t o  8. The 
iron-constantan thermocouples were connected t o  both a self-balancing 
recording ~otent iometer  and t o  a self-balancing direct-reading poten- 
tiometer. The copper-con3tanta.n thermocouples were connected t o  a 
portable precision-type potentiometer and balance was indicated on 
a light-beam galvanometer to  p0vide  an accurate determination of 
the temperature differences across the engine znd the coolers, 

Thermocouples f o r  engine-temperature measurenent. - The -- "------- -- 
cylinder-themnocouple ins ta l la t ion  is shown i n  f igures  9 and 10. 
Th.emocouples were-located i n  each cylinder between the exhaust 
valves, between the intake valves, i n  the center of the head, on 
the exhaust-valve guide, a t  tlie top of the cylinder barrel  on the 
exhaust side, and on the exhaust-spark--plug gasket. The themno- 
couple holes i n  the cylinder head were d r i l l ed  with the a i d  of j igs 
t o  insure uniformity and accuracy of location. The cylinder-head 
thermocouples were silver-soldered in to  brass plugs and these plugs 
were peened into the bottom of the d r i l l ed  holes. The cylinder- 
bar re l  thermocouples were spot-welded t o  the cylinder l i n e r  and the 
leads were brought through the cylinder coolant jacket by means of 
a pressure-tight f i t t i n g .  The exhaust-spark-plug-gasket thermo- 
couples were silver-soldered in to  a hole d r i l l ed  i n  the edge of the 
g::sket. A l l  of the thermocouple leads were brought to  the outside 
of the engine through s tainless-s teel  tubing, The leads outside the 
engine were insulated with a f l ex ib le  glass  sleeve and protected 
with f lex ib le  ignition-tme slzielding . The temperatures were read 
on the self-balanci,ng direct-reading potentiometer and recorded on 
the self-balancing recording po'centiometer. 
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Flow-Distribution Investigation 

Inasmuch as  both cylinder banks are  similar i n  construction, the 
coolent-flow dis tr ibut ion was determined f o r  only one bank. Tne pres- 
sure drops across both the connector tubes a-nd the barrel  i n l e t s  were 
meas~tred f o r  EL rznge of t o t a l  flows t o  the bank varying from 30 t o  
95 gallons per minute. From these data, a plot of the presrjure drop 
across each connector-tube or i f ice  against the t o t a l  flow t o  tlie bank 
was made ( f ig .  11). U s i n g  the value of 2ressure drop and the sloye 

. given by these curves and assuming the same flow coefficrient f o r  a l l  
the conrctor-tube orif ices, tlie flow through eacb cont.:ctor tube wau 
calculated f o r  the various t o t a l  flows t o  the bank. The flow O i s t r i -  
bution t o  the various cylinders within the bank was then determined 
from the calculated flow through the connector tubes on the basis  of 
the following assumptions: (1) The flow over each individual cylinder 
bar re l  leaves the bar re l  th~ough the f o w  connector tubes adjacent t o  
it; f o r  the case where a confiector tu3e is  comon t o  two cyliilders, 
the flow through tha t  connector tube is  equably supplied by each bar- 
r e l ;  and ( 2 )  the f low throuch the pressure-equalizing holes i s  zero, 

T11e t e s t s  were repeated w i t h  the connector-tube o r i f i c s s  removed 
in  order t o  check the e f fec t  on the flow distribution. For each t o t a l  
flow t o  the bank the pressure drop across every ber re l  i n l e t  was the 
same f o r  both the runs with and without the connector-tube or i f ices  
i n  place, The ins ta l la t ion  of the or i f iccs  i n  the coiu?ector tubes 
theref ore did not a f fec t  t h s  coola.nt-f low distribution. 

The pressure drop across the en t i r e  bank was also measured over 
the range of t o t a l  flows investigated anti a calibration ( f i g ,  12) was 
computed f o r  a 30-70 ethylene glycol-water mixture a t  2450 F, This 
cal ibrat ion was used i n  conjunction with the pressure drops across 
the banks measured. during the engine investigation t o  determine the 
division of flow between the banks. 
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Engine Investigation 

Cylinder tem>eratures, and coolant and o i l  heat rejections were 
determined a t  the f o l l o w i ~ g  sea-- level  engine conditions : 

Bower 
condition 

55-percent 
normal 
rated (min- 
imum bsfc) 

Maximum 
cruise 

Normal 
rated 

Take-off or 
mil i tary 
ra t ing  

War emer- 
gency 

a A c t ~ a l  powers measured differed s l ight ly .  

A t  each gower corldition one run was made a t  each of the two 
coolant flows l i s t ed .  These coolant flows are  consfdered t o  corre- 
s~~oxld t o  the extremes of those encountered i n  typical  a i q l a ~ e  ins ta l -  
la t ions and were determined from consideration of the pump charactier- 
i s t i c s  and the coolant-systeg resistance of several afrplane ins ta l -  
la t ions.  The coolant-outlet temperature was regulated t o  247' +lo F 
aEd a block-outlet pressure of 30 pounds per square inch gage was 
mzintained f o r  a l l  runs. T'ne o i l - in l e t  temperature was held a t  
173' F and the carburetor a i r  was controlled a t  €30' F. The 
pressure a t  the carburetor i n l e t  and i n  the exlmu-st header was main- 
tained a t  one atmosphere. The engine was operated i n  low blower and 
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t h e  aftercooler coolant temperature was regulat'ed t o  give the manifold 
temperatures l i s ted .  These manifold tem~eratures  are the rate& values 
given by the manuf'actwer f o r  the various gower conditions. 

The heat re ject ions t o  the coolant and o i l  were determined i n  two 
ways: (1) from the measured flow and temperatwe r i s e  of the coolant 
and the 04.1,  and (2)  from the measured flow and temper~twre r i s e  of 
the coolant- and the oil-coollng waters, 

RESULTS AND DISCUSSION 

Coolant-Flow Distribution Data 

The r e su l t s  of the flow distribuL-ion t e s t s  on the cylinder bank 
are  shorn in figure 13, where the flow t o  each cylinder is  given a s  
a percentage of the t o t a l  flow to  the bank. This curve applies over 
the en t i re  range of flows tested. 

It can be seen from the figme tha t  the flow pattern f o r  the 
cylinder barrels  i s  irregular.  Tne flow over the b a r r e h  ranged from 
about 12  ~ e r c e n t  of the t o t a l  flow f o r  cy2i.nder 5 t o  32 ~ e r c e n t  f o r  
cylinder 1. The flow over the heads progressively increased from 
cyl i~ider  t o  cylinder w i t h  cylinder 6 receiving about 12 percent and 
cylinder 1 receiving about 76 percent of the t o t a l  coolant flow t o  
the bank. 

The division of flow between the two banks remained constant f o r  
the ent i re , range of t o t a l  f lows from 91  t o  209 $allons per minute. 
Ba.dc A received 4'7 percent and bstnk i3 53 percent of the 'total coole.nt 
flow to  the engine. 

C ylillder-..Temgera-I;ure Data 

The cylinder-temperature d ~ t a  i s  summarized i n  table I. The 
maximm, minimum, and aveyage temperatures f o r  each thermocot~ple 
location are 1-isted f o r  each run and the cylinder i n  which the maxi- 
mum and the minTmm temperatu-res occurred ere noted i n  each case. 

Temperature distribution. - Figures 1 4  md  15 show the tempera- -.-- 
t w o  d is t r ibut ion  among the cylinders a t  the various thermocouple 
locations f o r  minimum brake s-iecif i c  f u e l  consumption and war-- 
emergency-power conditions, r e spc t ive ly .  The temperature- 
dis t r ibut ion patterns f o r  both :lower conditions a re  similar, but the 
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s p e a d  (difference between the maximum and minimum temperature) 
increased with power. For the head temperature between the exhaust 
valves, the spread ranged from ayproximately 40' F ($1SI0 t o  458' F) 
st 630 brake horsepower t o  ap:.roximately 60' F (488' t o  546' F) at 
1690 bralie horsepower. Comparison of these temperature-distribution 
$atterns with the coolant-flow dis tr ibut ion presented i n  f igure 13 
shows that  the tem~erature-distribution patterns f o r  the cylinder 
head betweon the exhaust valves, i n  the center of the head, and a t  
the exhaust-valve guide appear t o  be affected by the coolant-flow- 
dis t r ibut ion pattern; whereas those f o r  the cylinder liead between 
the intake valves, on tlm exha~~st-spark-plug gasket, and a t  the top 
of the barrel  on the exhaust side do not. The temperature- 
dis t r ibut ion patterns f o r  the exhaust-spark-plug-gasket location are 
more e r r a t i c  than those fo r  the other locations in  the cylinder heads. 
Subsequent t e s t s  have shown tha t  an individual gasket temperature may 
vary a s  much as  f30° F depending upon the location of the thermocouple 
on the -periphery of the s p a r k - p l ~ ;  gasket or  upon the amount of 
exhaust-gas leakage past the exhaust-stack gaskets. 

For a l l  the conditions investigated, the maximum temperature was 
meas~~red i n  the cylinder head between th.e exhaust valves on eitller 
one o r  the other of cylinders 6. A t  approximately 1700 brake horse- 
power, t h i s  maximum temperature was 546' F and occurred i n  cylinder A6, 
Subsequent unpublished t e s t s  on t h i s  engine have shorn, however, t ha t  
a considerable increase i n  the cylinder temperatures with engine run- 
ning time occurs (approximatel-y 45' B i n  the hot portion of th.e cylin- 
der head f o r  100 hr running time) ; hence an engine t h a t  has been run 
longer than the one tested ( t o t a l  running time f o r  t h i s  engine, 16 hr) 
woul& probably be hot ter  f o r  th.e same engine and coolant conditions. 

Variation of temperatures with. engine power. - The variation of ---- ^__-I_. . 

the average cylinder temperature with. engine power f o r  a high avld low 
coolant flow a t  each power investigated i s  presented i n  figure 16, 
I n  general, the greater t h e  magnitude of the temperature f o r  a cer tain 
location with respect to  other locations the greater the temperature 
increase with increase i n  engine power, Thus, f o r  an increase i n  
engine Tower from 628 brake horsepower t o  approximately 1700 bycake 
horsepower, the average temperature i n  the cylinder head between the 
exhaust valves increased about 80' F (437' t o  517O F) and the average 
spark-plug-gasket tempe~ature increased about 90° F (from 420' t o  
508' F) ;  whereas the increase i n  average temperature a t  the top of 
the barrel ,  exhaust side, was negligible (from about 265O t o  Z70° F). 
I n  sp i te  of the e r r a t i c  temyerature-distribution pattern of the 
exhaust-spark-plug-gasket temperatures, the average sparlr-plug-gasket 
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data gave a good indication of the temperature leve l  and changes i n  
the temperature of the cylinder head between the exhaust valves. -4 
change i n  the coolant flow from one extreme t o  the other of those con- 
sidered typical  of cu.rrent a i r c ra f t  ins ta l la t ions  resulted i n  negli- 
gible change i n  t l ~ e  average cylinder temperature i n  each case. 

Comparisori of temperatures a t  various locations. - The re l a t ion  
-7. 

between the average cylinder temperature and the temperature of the 
hot test  cylinder fo r  the various locations i n  the cylinder head where 
the temperatures were measured i s  sl~own i n  figure 1T/. A 1 1  of the 
cylinder temperature data f a l l  on the aame s7trai.ght l lne except tha t  
measured a t  the exhaust-valve guide, which was probably influenced by 
the f r i c t i o n  between the valve and the guide. The difference uetween 
the maximum and average temperatures f o r  a l l  of the locations except 
the exhaust-valve guide varied from about 10' t o  about 30' F, depeud- 
ing upon the magnitude of the temperatures involved. 

The re la t ion  between the average temperature i n  the various loca- 
t ions of the cylinder and the average temperature i n  the cylinder head 
between the exhaust valves is  shorn in. f igure 18. I n  every case a 
l inear  re la t ion  was obtained and the slope of the l ine is  greater f o r  
tlze locations where the magnitude of the tem~erature is  greater,  

Heat-Re jection Data 

The heat balance between the o i l  and the oil-cooling water and 
the coolant and coolant-cooling water i s  ahom :i.n figure 19. Good- 
agreement between the two methods of determining the hea% reject ions 
i s  seen t o  ex is t .  

The variation of the heat rejections with engine power is  shown 
i n  figwe 20. For an increase of engine 2ower from 630 t o  approxi- 
mately 1700 brake horsepower, the engine-coolant heat rezection 
increased from 12,600 t o  22,700 Btu per minute, the o i l  heat re jec t ion  
from 1030 t o  4600 Btu per minute, and the aftercooler-coolax~t lzeat 
re ject ion from 450 t o  3500 Btu per minute, Based on a percentage of 
brake horsepower, the engine-coolant heat re ject ion decreased from 47 
to  31 percent, the o i l  heat re ject ion increased from 4 t o  6 percent 
and the aftercooler-coolant heat re ject ion increased from 2 t o  5 per- 
cent f o r  t h i s  same increase i n  power. A change i n  the coolant flow 
from one extreme t o  the other of those considered to  be tyyical  of 
current a i r c ra f t  ins ta l la t ions  caused no change i n  the heat r e  jec- 
t ions . 
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A n  investigation of the cooling character is t ics  of the 
Q-1650-7 engine a t  tyl3ical operating conditions f o r  a range of powers 
from ap?sroximately 630 t o  1700 brake horsepower with a mixture of 
30-gercent ethylene glycol and 70-percent water a s  the coolant gave 
the following re su l t s  : 

I. The coolant-flow dis tr ibut ion aslong the cylinder barrels  was 
i r regular .  The flow over the individual barrels  ranged from about 
12 t o  about 32 percent of the t o t a l  flow to  the bank, The flow over 
the cylinder heads progressively increased from cylinder t o  cylinder 
i n  each bank with cylinder 6 receiving about 1.2 percent and cylinder 1 
receiving about 76 percent of the t o t a l  flow t o  the banlr. 

2.  The temperature-distribution patter:~la appeared t o  be affected 
by the coolant-flow d-istribution pattern f o r  the temperatures meas- 
ured i n  the cylinder head between the exhaust valves, i n  the center 
of the head, and a t  the exhaust-valve guide, but did not appear t o  
be affected by the coolant-flow a is t r ibut ion  pattern f o r  the tempera- 
tures  measured i n  the cylinder head between the intake valves, on the 
exh.zust-s2ark-plug gasket, and a t  the top  of the bar re l  on the exhaust 
side. The difference between tile maximum and minimum temperatures a t  
a gar t  icular  locat ion increased ~.zi-th engine yower, A l inear  re la t ion  
was found to  ex is t  between the maximum average temperatures a t  
eech l o c ~ t i o n  where the temyeratures were measured, and between the 
averrige temperatures f o r  a l l  locations. 

3. For a l l  the conditions investigated, the mnxim~m tenperature 
was m e a s ~ ~ e d  i n  the cylinder head betweel the exhaust valves on e i the r  
one o r  the other of cylinders 6, A t  approximately 1700 brake horse- 
power, t h i s  maximum temperature was 546O F and occurred i n  cylinder A6, 

4. The average temperature f o r  the cylinder heads between the 
exhaust valves increased from 437O t o  517O F f o r  a power increase from 
628 t o  approximate 1 y 1700 brake 11.orseyower. 

5. For a change i n  power from 628 t o  ap~roximately 1700 brake 
horsepower, the engine-coolant heat re ject ion increased from 12,690 
t o  22,700 Btu per minute, the o i l  heat re ject ion from 1030 t o  4600 Btu 
per minute, and the aftercooler-coolant heat re jec t ion  from 450 t o  
3500 Btu per minute. Based. on a percentage of brake horsepower, 
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the  engine-coolant heat  r e j e c t i on  decreased from 47 t o  31 percent, the  
o i l  heat regect ion increased from 4 t o  6 percent, and the  af tercooler-  
coolant heat  r e j e c t i on  incrcasod from 2 t o  5 percent f o r  t h i s  same 
increase i n  power. 

Ai rc ra f t  Engine Research. Laboratory, 
National Advisory Committee f o r  Aeronautics, 

Cleveland, 0h.io. 

"."~ohn H . Povolny, 
BIe chani c a l  E n g i ~ e e ~ .  

J 

Louis J; ~ogdgn ,  
1% ch.ani caL Engineer. 

1. Koffel,  Willtau K , ,  and Bieman, Arnold 3. :  A Unit Laboratory 
Ezgine O i l  System Providi:~q f o r  a Remote Ind ica t ion  of O i l  Flow 
and O i l  Consmption Together with Blow-by Pleasurement, NACA TH 
No. 952, 1944.  



N A C A  RM No. E 7 E 0 2  

TABLE I - SUMMARY OF CYLINDER-TELBPERATURE 
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C o n n e c t o r - t u b e  o r i  f i  c e  a n d  p r e s s u r e - t a p  i n s t a l  1 a t i o n .  

Cyl i nde r -  b a r r e l  in1 e t s -  
Cy l i nde r -ba r re l  l i n e r  

Cyl i n d e r - b a r r e l  cool  w t  
passage 

,P r essu r e  t ap 
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( b )  C y I  i n d e r - b a r r e l - i n 1  e t  p r e s s u r e - t a p  i n s t a l  I a t  i o n .  

F i g u r e  3 .  - O r i f i c e  a n d  p r e s s u r e - t a p  i n s t a l  I a t i o n .  
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Figure 5 ,  - E n g i n e  mounted f o r  c o o l i n g  investigation. 
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Reservo  i r t a n k  w 
Engi n e  pump 
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F i g u r e  7 .  - S c h e m a t i c  d i a g r a m  o f  l u b r i c a t i n g  o i l  s y s t e r n .  
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F i g u r e  8 .  - S c h e m a t i c  d i  a g r a m  o f  a f t e r c o o l e r  c o o l  a n t  s y s t e m .  
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Cy l i n d e r  

M A T  lONAb A D V  l SORV 
C W M  I T T E E  FOR AERONAUT I CS 

( b )  Top  o f  b a r r e l ,  e x h a u s t  s i  d e .  

F i g u r e  10 .  - i n s t a l  I a t  i o n  o f  t h e r m o c o u p l e s  a t  e x h a u s t - v a l v e  
g u i d e  a n d  t o p  o f  b a r r e l  o n  e x h a u s t  s i d e .  
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Totah flow to banks gal/rnh 

1, - Flow ca1ib~ation of connector-tube osiffces with w a t e ~  a 
room temperatwe* 
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Flgure 12, - V a r l a t f  on of pressure drop across bank with coolant flow 
f o r  38-70 ethylene glycol-water mixture at  2450 F, 
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Figure  14, - Tempera tu re  distribution among c y l i n d e r s  f o r  minimum brake 
spec i f  fc fue  1 consumption power c o n d i t i o n ,  Engine power, 630 brake 
horsepower; engine  speed, 1602 spm; f uel-a i r  r a t  l o ,  0,075; manlf o l d  
temperature, 790 F; coolant-out tempera ture ,  247' F; coolant  flow, 
91 gallons p e r  minute; block-outlet p re s su re ,  30 pounds per square 
inch gage, 
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1 2  3 4 5  6 1 2  3 4 5 6 
Bank A Cylinder Bank B 

Figure 15 - Temperature d i s t r f  but ion among cy l inde r s  fo r  war-emergency- 
power condl t  ion, Engine power, 1690 brake horsepower; e n g b e  speed, 
3000 rpm; fue l -a l r  r a t i o ,  0,090; manif old temperature, 1720 F; coolant- 
out; temperature, 248' F; coolant  flow, 209 ga l lons  per minute; block- 
o u t l e t  pressure 30 pounds per square inch gage, 
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Engine power, bhp 

Figure 16, - Var i a t i on  of t h e  a v e r a g e  c y l i n d e r  t .emperatures  w f t h  
eng lne  power. 
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Average c y l h d e r  temperature, O p  

~ l g m - e  17, - Variatf  on of average c ylfnder  temperature with temperature 
of h o t t e s t  cylinder, 



N A C A  RM N O -  E 7 E O 2  F i g .  18 

4 00 440 4 80 52 0 5 60 
Average cyl lnder-head t e m p e r a t u r e  be tween exhaust v a l v e s ,  OF 

F i g u r e  18, - V a r i a t i o n  of a v e r a g e  c y l i n d e r  t e m p e r a t u r e  w i t h  a v e r a g e  
cy l inde r -head  t e m p e r a t u r e  between exhaust v a l v e s ,  
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Heat ~ e j e c t i o m  ( o i l  and coolant basfs), ~tu/mfn 

Figure 19, - Heat balance between o i l  and 011-cooling water and 
coolant  and coolant-coolfng w a t e ~ ,  
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Figure 20. - Variation of heat r e jec t ions  wfth engfne powes, 




