
Draft: May 1, 2008 1

Workflow Agents vs. Expert Systems:
Problem Solving Methods in Work Systems Design

William J. Clancey
NASA Ames Research Center &

Florida Institute for Human & Machine Cognition
Maarten Sierhuis

RIACS, NASA Ames Research Center
Chin Seah

QSS, NASA Ames Research Center

Prepared for special issue of Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing (AIEDAM) — “Problem Solving Methods: Past, Present, and Future,”

Spring 2008

Corresponding Author:
William.J.Clancey@NASA.gov
Intelligent Systems Division, M/S 269-3
NASA Ames Research Center
Moffett Field, CA 94035
650-604-2526, fax 4-4036

Short Title: “The Role of Method Abstraction in Work Systems Design”
Number of pages (excluding title, abstract, and biographies): 55
Number of figures: 2

Draft: May 1, 2008 2

Workflow Agents vs. Expert Systems:
Problem Solving Methods in Work Systems Design

Abstract

During the 1980s, a community of artificial intelligence researchers became

interested in formalizing problem solving methods as part of an effort called “second

generation expert systems” (2nd GES). How do the motivations and results of this

research relate to building tools for the workplace today? We provide an historical review

of how the theory of expertise has developed, a progress report on a tool for designing

and implementing model-based automation (Brahms), and a concrete example how we

apply 2nd GES concepts today in an agent-based system for space flight operations

(OCAMS).

Brahms’ incorporates an ontology for modeling work practices, what people are

doing in the course of a day, characterized as “activities.” OCAMS was developed using

a simulation-to-implementation methodology, in which a prototype tool was embedded in

a simulation of future work practices. OCAMS uses model-based methods to

interactively plan its actions and keep track of the work to be done. The problem solving

methods of practice are interactive, employing reasoning for and through action in the

real world. Analogously, it is as if a medical expert system were charged not just with

interpreting culture results, but actually interacting with a patient. Our perspective shifts

from building a “problem solving” (expert) system to building an actor in the world.

The reusable components in work system designs include entire “problem solvers”

(e.g., a planning subsystem), interoperability frameworks, and workflow agents that use

and revise models dynamically in a network of people and tools. Consequently, the

research focus shifts so “problem solving methods” include ways of knowing that models

Draft: May 1, 2008 3

do not fit the world, and ways of interacting with other agents and people to gain or

verify information and (ultimately) adapt rules and procedures to resolve problematic

situations.

Keywords: Work systems design, work practice simulation, model-based automation,
problem solving agent, situated cognition

Draft: May 1, 2008 4

Introduction
During the 1980s, a community of computer scientists working with the area of

artificial intelligence became interested in formalizing problem-solving methods (PSMs)

in an effort called “second generation expert systems” (2nd GES; David et al., 1993).

What motivated this abstraction process and what did it accomplish? How do problem

solving methods relate to building tools for the workplace today? Indeed, what have we

learned about problem solving since the 1980s? To answer these questions, we provide an

historical review of how the theory of expertise has developed, a progress report on tools

for designing and implementing model-based automation, and a concrete example how

we apply 2nd GES concepts today.

The 2nd GES effort often involved analyzing the expert systems built in the 1970s to

abstract their design and operation (e.g., Clancey & Letsinger, 1981). The motivations

included: producing higher-level frameworks that would make building expert systems

more efficient (called “knowledge acquisition”), making the programs more robust and

powerful (by incorporating general principles rather than many isolated facts and

heuristics), facilitating explanation of reasoning to users (especially in instructional

applications), and facilitating reuse of the constructs in developing other expert systems

(through PSM libraries).

The 2nd GES analytic effort was part of the study of human problem solving (Newell

& Simon, 1972), which showed that there were patterns, called “methods,” by which

people applied and configured finer-grained “operators” in a process called “search in a

problem space.” Analyzing dozens of programs in different domains, ranging from

Draft: May 1, 2008 5

medicine to physics, and spanning a variety of kinds of problems (e.g., troubleshooting,

design), 2nd GES researchers identified these additional patterns:

o All expert systems are “model-based”—the representation methods of AI

programming, specifically in expert systems, introduces a new modeling

method to science and engineering, namely a means of modeling processes

qualitatively (Clancey, 1986; 1989) in contrast with purely numeric

programming.

o Domain ontologies should be represented separately from the procedures that

manipulate models, facilitating explanation and reuse (Clancey & Letsinger,

1981).

o Solving particular problems (e.g., diagnosing a patient) involves creating

situation-specific models; this is formalized most clearly in the blackboard

architecture (Nii, 1986), which makes explicit the posting and comparison of

model components (“hypotheses”) (Clancey, 1992).

o Processes for manipulating models can be abstracted on different levels

ranging from graph operators to entire frameworks for doing diagnosis,

design, etc. (Clancey, 1985; Clancey & Barbanson, 1993).

People summarized the conclusions of 2nd GES research in different ways, because

models and procedures for manipulating models vary a great deal and have been

represented in very different formalisms. Frameworks for organizing modeling languages

and methods are provided by Chandrasekaran & Johnson (1993) and Clancey (1992).

Depending on theoretical and practical objectives, different analytic perspectives will be

preferred and useful. However the motivations of 2nd GES were broadly shared and not

Draft: May 1, 2008 6

much in dispute, and the representation of domain entities and processes in classification

and causal models seemed tractable. Instead, the debate and ambiguities concerned how

to abstract and describe the procedures that manipulated models in the expert system (i.e.,

the PSMs).

Two decades later, software engineering has not been transformed into a process of

assembling PSMs from a library, as 2nd GES researchers imagined. Has there been a

failure to appreciate the benefits of a PSM library or was the vision incomplete? We

argue that there is a parallel between the limitations of expert systems and limitations of

the value of PSMs for software engineering. Evaluating the success of “the PSM

movement” requires also evaluating the success of “the expert system movement.” These

limitations are founded in the narrow view of expertise that led 2nd GES researchers to

believe that all software tools would be (or at least could contain) expert systems. The

limitations in the “cognitivist” (Wallace, et al., 2007) view of knowledge, expertise, and

problem solving—epitomized by the expert systems movement—explain why PSMs as

conceived in David, et al. (1993) play only a small part in practical tools in the

workplace.

On the other hand, the motivations for 2nd GES are just as important and useful today,

and the effort to abstract, formalize, and reuse software components in program libraries

(e.g., for C++, JAVA) has in some respects accomplished what we hoped in the 1980s.

Yet writing complex systems remains a craft; it seems we are always striving for the

imagined libraries of modeling components. Is a kind of 3rd GES effort required or is

invention and tedious adaptation inherent in the problem of developing software tools?

Draft: May 1, 2008 7

To answer this question, we provide a broad review of problem-solving abstraction;

the development of knowledge engineering tools; the shift in perspective about models,

knowledge, and work from goals and reasoning to activities and interactive behavior; and

the development of a tool for building work systems by modeling practice, called Brahms

(Clancey, et al., 1998; 2005b; Seah, et al., 2005; Sierhuis, 2001; Sierhuis, et al., 2003).

We provide an example of how Brahms has been used to design and implement a

workflow tool for communications between NASA’s Mission Control ground support

and the astronaut crew of the International Space Station (ISS; Clancey, et al., in press).

We analyze the use of abstraction in this workflow tool and relate its architecture and

methods to 2nd GES terminology.

We conclude that the motivations of 2nd GES and PSM abstraction in particular has

been transformed from configuring a problem solver to a higher-level problem of

designing agents in a work system. The reusable components in work systems design

include entire “problem solvers” (e.g., a planning subsystem), interoperability

frameworks (relating hardware and software on different platforms), and interactive

systems (“workflow agents”) that use and revise models dynamically in a network of

people and tools.

Historical Review of Problem Solving Methods

Problem Solving is Reasoning
The idea of problem solving methods is continuous with the long-term interest in

mechanizing human reasoning (see for example, the review by Agre, 1997). The

premises are simple and powerful: Good judgment is principled – knowledge is true

belief — reasoning is mental. In the cognitivist paradigm, represented especially well by

Draft: May 1, 2008 8

Newell & Simon (1972), logical reasoning, formulated most notably by Whitehead &

Russell (1910), is the essence of cognition, connecting perception and action. In early

modeling frameworks, called the “Logic Theorist” and “General Problem Solver,”

theorem proving was the problem being studied. In subsequent frameworks (e.g.,

Green,1969), theorem proving then becomes a method for solving real-world problems:

States in the world and goals are expressed in predicate calculus, and developing a plan

of action to achieve a goal is reformulated as finding the states and actions (functions)

that satisfies a theorem.

Thus, the “logicist” formulation became the foundation of cognitivism (Wallace, et

al., 2007), the analytic framework in which human “knowledge” consists of facts and

rules (axioms and theorems in predicate calculus), and “reasoning” is logical

manipulation (e.g., resolution theorem proving). These researchers viewed problem

solving as logical, mental manipulation of beliefs about representations.1

The Power of Generality: Heuristic Methods
Abstracting and generalizing is an essential aspect of human learning, in formulating

a scientific model, a policy or law, or even an everyday principle for managing one’s day.

People naturally express models of the world and behavior as generalizations that in

logical terms involve predicates and variables (e.g., “For every weekday, if 4 PM > Time

1 For example, when Simon and Lea (1974) emphasized the role of what they called

“information gathering” in problem solving, they didn’t mean observing the world, but

rather “the degree of similarity or difference between the expressions contained in a

given knowledge state and the goal expression” (p. 333)—information about mental

constructs, as a measure of progress in a theorem proving process.

Draft: May 1, 2008 9

> 7 PM, then avoid the freeways.”). Thus, the vision of Newell and Simon in their

magnum opus (1972) was that a single program that represented and manipulated

generalizations (theorems) could be directly applied to solve many problems in different

domains, hence the name “General Problem Solver.” They demonstrated generality by

applying the GPS method in cryptarithmetic and chess.

Most notably, Newell and Simon (1972) formulated the problem solving process as a

variety of methods such as “generate and test” and “recognition.” They define a method

as “a collection of information processes that combine a series of means to attain an end”

(p. 91). Their focus was not on the generality of the domain knowledge per se (that the

theorems had variables and hence were general was essential for playing different games

of chess, for example). Rather they focused on the generality of the “heuristic search”

problem solving method (Newell & Simon, 1972, p. 101). This method was expressed as

a program with steps such as “select-operator” and “decide-next-step.” They emphasized

that the formulation of heuristic search that they presented is an “encompassing scheme

from which more methods can be derived,” depending on the application. They also list

some known alternative realizations of the undefined processes; for example, “decide-

next-step” could be carried out by a fixed strategy of “always continue (one-level

breadth-first search).”

In summary, it was clear from early on, at least a decade before the term “expert

system” was coined, that problem solving programs could be constructed from a general

problem solving method, consisting of mental operations, variously called “heuristics,”

“operators,” and “methods” (cf. Newell & Simon, 1972, pps, 101-103, 416-417) that are

general processes, instantiated and combined in different ways, depending on the task

Draft: May 1, 2008 10

environment. The overall program is referred to as a “heuristic;” thus for example, they

refer to “the heuristic of means-ends analysis” and also “the basic system of heuristic of

GPS.” This wording, where “heuristic” means “discovery” or “exploratory searching”—

hence in effect, “system of discovery”—sounds awkward today because a different

interpretation emerged in applying the framework to real-world problems in the 1970s.

Then “heuristic” shifted from meaning the model manipulation operators to meaning the

domain relations that the operators manipulated, aka “domain knowledge.”

Building Expert Systems: Heuristic Knowledge
Edward Feigenbaum, a student of Simon’s, moved the mechanization of problem

solving from logic and chess, which were than characterized as “game playing”, to the

broader realm of scientific human expertise, starting with chemistry (Feigenbaum, 1977).

In 1965 Feigenbaum, et al. (1971) at Stanford started developing DENDRAL, a program

for inferring molecular composition from spectral analysis, using the Plan-Generate-and-

Test method, a variation of GPS. They concluded that real world problem solving, that is,

problems that involved modeling empirical phenomena, was greatly aided by including

more domain relationships, in particular uncertain syllogisms called “production rules.”

These rules were called “heuristics,” emphasizing that they made the search process

tractable.

After DENDRAL, a broader effort in domains of medicine and biology was initiated

as the Heuristic Programming Project in 1970. The body of domain heuristics became

known as a “knowledge base” in the early 1970s, and the HPP was renamed the

Knowledge Systems Laboratory in 1982. Because computer scientists worked with

experts to formulate these rules, the common view was that an expert’s knowledge

Draft: May 1, 2008 11

consists of production rules stored in long-term memory, and thus problem solving

involves instantiating rules into chains of inference relating facts to actions.2

At the same time, an alternative formulation based on the notion of “schemas” or

“frames” developed most notably at MIT (Minsky, 1985) and Yale (Schank, 1982). In

this framework, expert knowledge consists of concepts that describe patterns in objects

and events through relations (or attributes). Problem solving instantiates schemas and

relates them to interpret situations, construct designs, formulate plans, etc.

At the same time, the GPS formulation of operators and methods for applying

operators was formalized in another framework called the “blackboard architecture” (Nii,

1986), a shared “working memory” in which operators post, relate, and refine alterative

models of the world and actions. In related work, Pople (1977) formalized diagnosis as

operators for constructing disease models that provided multiple and alternative

explanations of or causal processes.

Researchers also recognized that generalizing heuristics made knowledge bases more

concise and the generalizations might be useful across domains. For example, Davis

(1980) formalized metarules that could heuristically control how more specific domain

rules were applied. Also in the 1970s, researchers applying educational psychology to

computer-aided instruction emphasized “strategic knowledge,” “problem solving

strategy,” and “meta-cognition” as powerful ways of thinking that could be taught

(Greeno, 1980).

2 Representing concepts and their relations (attributes) in “semantic networks,” which

dominated in the 1960s (e.g., see Minsky, 1969), was useful for tasks such as question

answering; problem solving required conditional and higher-order associations.

Draft: May 1, 2008 12

In summary, the idea of “problem solving methods” had different levels of

emphasis—from heuristic processes that manipulated operators, to simply logical

inference, to domain-general methods of analysis (e.g., Papert’s (1972) “thinking like a

mathematician”). Researchers agreed on the overall methodology: formalizing problems

in some representational language, abstracting domain knowledge and the problem

solving procedure. But the different domain representations, inference methods, and

analytic perspectives led to a Babel of languages and terms. A workshop was held to

relate the perspectives (Hayes-Roth, et al., 1983); in some respects its effect was to

promote the 2nd GES analytic effort.

The Modeling Perspective
Neomycin (Clancey & Letsinger,1981), a 2nd GES, was one of the first efforts to

bridge between different problem solving formulations, proving that a domain ontology

and diagnostic procedure were implicitly represented in Mycin’s production rules.

Clancey (1984) formulated this procedure as a Hypothesize-Refine-Test method inspired

by the terminology of GPS, implemented as a hierarchical set of “tasks” consisting of

metarules for constructing a situation-specific model (e.g., a patient diagnosis) from the

domain model. Clancey (1985; 1986; 1989; 1992) also claimed that all expert systems

necessarily contained models and that all heuristic programs were necessarily

constructing situation-specific models by applying operators that manipulated a general

model of facts and associations.

The “model construction operators” framework claims that whether one views

knowledge-based programs as modeling human knowledge or just as automation tools—

and whether one views “knowledge acquisition” as extracting what was already stored in

Draft: May 1, 2008 13

the expert’s brain or collaboratively developing new theories of a domain and expert

behavior (Clancey, 1993a)—expert systems are computer programs that contain domain

models and procedures for manipulating models to apply them in specific situations. The

kinds of problems (the modeling purpose) and the kinds of modeling methods fall into

general categories, leading to the System-Task-Operator formulation of problem solving:

1) Problem solving involves modeling one or more systems in the world.3

2) The task is the purpose, what one wants to do with the system, that is, “the

problem”: diagnosis, repair, configuration (design, modification, and/or plan),

and control.4

3) Knowledge representation languages (e.g., production rules, schemas) provide

a means of modeling processes occurring in the system (Clancey, 1989) using

qualitative relations (e.g., type, cause, part-of, adjacency, co-occurrence).

4) Problem solving procedures (methods) consist of operators for manipulating

models (e.g., chaining situation-specific models of different systems together

in the Heuristic Classification Method).5

3 A system could be a naturally occurring physical system (e.g., the human body),

designed artifact (e.g., a computer system), formally defined (e.g., a chess game), or

some combination (e.g., a work process involving human behavior and computer tools).

4 Predicting the future state of a system is useful for many tasks, but not in itself a

“problem.”

5 “The typology of problem tasks refers to why the system is being modeled; the typology

of inference methods refers to how the model is developed” (cite AIJ retrospective).

Generally speaking, when 2nd GES researchers referred to PSMs, they described what

Draft: May 1, 2008 14

As detailed later, the enduring value of these methods for developing sophisticated

automation systems seems assured. However, by the late 1980s a different perspective on

knowledge and expertise suggested that problem solving consisted of much more than

manipulating models, and thus experts could not easily be replaced by expert systems,

and fitting such tools into the work place required much more than reliable machines and

good interfaces.

Theoretical Rebuttal: Reasoning is an Interactive Behavior
From the very start, the logicist view was controversial. For example, the philosopher-

educator, Dewey (1896), argued that inquiry consisted of reasoning-in-action in an early

critique of stimulus-response theory, and criticized Russell’s equating reasoning with

logic (Dewey, 1939). Wittgenstein (1953) rejected his own early support for Russell and

like Dewey argued against a reductionist view of concepts and rule following (see also

Wallace & Ross, 2006, p. 142). Damasio (1994) argued that emotion was essential to

judgment, undermining the emotion vs. logic dichotomy that dominated the study of

human intelligence. Many more trends of thought throughout the 20th century in

ethology, cybernetics, anthropology, and systems theory built on a modeling framework

often called “systems thinking.” These fields, operating unknown to mainstream

cognitive psychologists and AI researchers, developed a theory of cognition that placed

were variously called procedures, methods, or operators that combined how processes are

modeled (the representation of the system being reasoned about) with how the models

were manipulated. This is not necessarily wrong or unexpected, for operators for

manipulating models would necessarily be stated in terms of the relations in the model

(e.g., causality, subtype, temporality, adjacency).

Draft: May 1, 2008 15

human knowledge, memory, and reasoning within a complex system of biological,

psychological, and social processes (Clancey, in press). This perspective eventually

became known in the fields of AI and cognitive science as “situated cognition.”

From the perspective of expert systems research, the essential claim of situated

cognition is that human knowledge cannot be equated with models, or put another way

conceptualizing does not consist of simply retrieving and instantiating stored relational

networks and procedures. In effect, the nature of human conceptualization has never been

properly understood or replicated because the nature of memory as a storage place is

incorrect (Clancey, 1997a; 1999).

The implications for advancing theories of knowledge and action are immense. For

example, the nature and role of consciousness becomes clearer: In attentively controlling

behavior, a person is always conceiving “what I am doing now” (WIDN; Clancey, 1999),

the present activity. This ongoing conception is effectively the construction of identity, a

social-psychological construct. In particular, this conception must relate constraints of

multiple, blended identities, involving different and perhaps conflicting obligations

(accountability) and methods (what I might do now). This understanding of WIDN is

dynamically and mutually developing within the conception of “the situation” (Clancey,

2004).

Knowledge systems developers had a great deal of difficulty at first understanding the

situated cognition perspective because it violated the very assumptions of the information

processing paradigm. “Situated” does not just mean located in the world (which is of

course true) or “extracting information from the surrounding physical world”

(Chandrasekaran & Johnson, 1993). Rather the person’s perceiving, interpreting, and

Draft: May 1, 2008 16

acting is conceptually organized with respect to WIDN. Behavior is situated because the

person is acting while (and by) dynamically conceiving what constitutes “the situation.”

Reflective feedback (Schön’s [1987] “knowledge-in-action”) is potentially fast (e.g., in

dance or conversation) and often involves different conceptual organizers acting

sequentially and/or simultaneously. Conceiving itself occurs in experience as a

(necessarily conscious) behavior. You only know what you are going to say when you

say it (even when you say it to yourself first). Action changes perception, and hence the

conception of activity changes what constitutes information. (See Clancey [1997a, 1999]

for discussion and references.)

Furthermore, not every human activity (the conception of WIDN) involves a problem

to be solved (Clancey, 2002). Activity theory, another parallel school of thought dating

from 50 years before Newell and Simon, provides a much broader view of motives,

goals, and operations, including non-problematic goals (e.g., reading a magazine to

relax), how conceptualization of the social setting affects the choice of methods (i.e.,

norms), and how a structured environment can provide an interactive scaffolding for

guiding information gathering and reasoning (Hutching & Palen, 1997).

Situated cognition is not a behaviorist movement, as the cognitivists feared (Vera &

Simon, 1993), but rather one that more radically turns from behaviorism than information

processing was able—by emphasizing that information is not given, or simply

“extracted,” rather, the environment is both dynamically perceived in action and modified

in action (dynamic interaction).6 In contrast, cognition in the conventional information

processing paradigm is more reactive, assuming a kind of given stimulus and a packaged

6 See discussion of ecological psychology in Clancey (1997a).

Draft: May 1, 2008 17

response (a plan), such that human problem solving can be replicated and improved upon

(not just modeled) by situation-action (stimulus-response) rules and stored schemas.

Cognitivism thus narrowed the study of problem solving to the internal (mental)

manipulation of models of the world and behavior, viewing the getting of information

and subsequent action as the inputs and outputs of reasoning. As many have noted, this

dichotomy between “mental processes” and “behavior” is just a continuation of

Descartes’ separation of mind and body (e.g., Damasio, 1994; Wallace, et al., 2007). If

problem solving (reasoning) is actually a behavior, then the notion of “problem-solving

method” can be greatly broadened and hence very different kinds of abstractions

formulated for software engineering. In particular, as explained below, analyzing work in

terms of activities—what people do and how they conceive of what they are doing—

provides a context for how tasks are discovered, defined, and handled.

As has been shown in two decades of Applications of AI conferences, we can develop

useful model-based tools. But these tools operate within a complex system involving

other tools and human interactions. For example, Mycin’s design assumed a culture has

already been taken, presuming a certain medical setting with sophisticated caretakers,

even if they are not antimicrobial experts. Developing tools that fit into a workplace

involves a more sophisticated theory of problems and problem solving than was assumed

in first developing expert systems.

Most importantly, the analytic perspective “technical rationality” (Schön, 1987) is

reductionist because it presumes that gathering and interpreting information and decision

making always has a routine character. Ethnomethodologists have shown how everyday

work requires deciding how to categorize “situations” and deal with conflicts and

Draft: May 1, 2008 18

shortcomings in procedures (Clancey, 2006). Choosing among courses of action requires

interpreting how actions will be evaluated in the current social-organizational context.

For example, medical practitioners need to relate the choice of tests to the policies of the

patient’s insurance company. This involves judgmental reasoning to be sure, but moves

beyond scientific models of the human body to a realm of negotiation and compromise

(consider the work of patients themselves in attempting to overturn insurance decisions).

Model-based automation can be very powerful for handling routine work, but there must

be means for non-programmers to revise ontologies and rules, monitor the program, and

modify operations on a case-by-case basis. This in turn requires new roles, work

processes, and organizational policies, leading to an analytic framework called “work

systems design”—a far broader problem than the view of automation expressed in the

effort we called “building expert systems.”

In summary, the limitations of expert systems stem from the limits of process models,

procedures, and policies for detailing in advance how work must be (or could be) done.

As conceived by people, the meanings of these formalizations (whether conceptual

networks or texts) are not reducible to more models. People necessarily and

opportunistically reconceive what categories and rules mean, and they often do this with

other people. Even if one rejects the strong claim—that in principle human

conceptualizations cannot be reduced to concept-relation networks7—and even allowing

that meanings, justifications, sources etc. can be modeled so automation is more adaptive

to circumstances—the automation cannot itself be left alone. For the seeable future at

7 Despite the promise of neural net mechanisms (e.g., Elman, 2004), we have not yet

figured out how to replicate human conceptualization (Clancey, 1999).

Draft: May 1, 2008 19

least, interactions with people are required so they can ensure that models, procedures,

and policies embedded in automation tools are properly interpreted and adapted in

practice. This interaction itself must be flexible and sensitive to contexts. The expert

system must become an actor in a “web of practices” (Wallace & Ross, 2006), an agent

that can interact with people and other tools in a dynamic physical-organizational work

system. As Pollack (1991) said, “We want to build intelligent actors, not just intelligent

thinkers. Indeed, it is not even clear how one could assess intelligence in a system that

never acted – or, put otherwise, how a system could exhibit intelligence in the absence of

action.” Put another way, we need to formalize automation behaviors with respect to

human activities.

Brahms: Modeling and Facilitating Human Activities

Motivation for Simulating Work Practice
In the early 1990s AI researchers at NYNEX Science & Technology Research Center

in New York City were unsuccessful in fielding an expert system. An anthropologist was

hired to study the knowledge and work relationships of line craftsmen in Manhattan. She

brought to the AI group three areas of new expertise: 1) a work practice analysis

approach that related tools to how the work was actually done, 2) an ethnographic

method for gathering information about the workplace, and 3) a participatory design

approach for bringing workers into the tool development process.

At the same time, the NYNEX Expert Systems group was competing with other

systems analysts who espoused the “business process re-engineering” approach of

modeling and optimizing workflows, using a business process modeling tool called

Sparks (Clancey, et al., 1998; Sierhuis & Clancey, 1997). To be competitive, the team of

Draft: May 1, 2008 20

AI and social scientists needed to advocate their work system redesigns using a similar

simulation that predicted timelines and costs. From the social scientists’ perspective, the

main requirement was to make social processes visible—put people on the screen so

workers could participate in the modeling process and visualize how the graphics related

to their own roles and situations.

The new team of AI expert systems developers and social scientists hired by Sachs

used Sparks to model work practices as best they could, but were hampered by the lack of

explicit modeling constructs for representing people, tools, documents, workplace

layouts, communications, and movement of people and objects in geographic space. They

were attempting to model not the idealized and abstracted “work flow” of business

processes, but how artifacts and information were actually modified and conveyed by

interactions among people and automated tools. For example, a work practice model

would represent not just that a job order moved from one business functional unit to

another (e.g., sales to provisioning to installation), but how the order was represented in a

document and transmitted by fax, and how the manager of a particular business office

would handle the incoming faxes.

Using Sparks, it was particularly difficult to explicitly represent how three or more

people coordinated their actions (e.g., in testing a circuit across Manhattan) without jury-

rigging the constructs in Sparks’ manufacturing-inspired paradigm that centered on

functional changes to the product as opposed to behaviors of the people. Multitasking,

informal assistance (working on a task to which you were not assigned), dealing with

breakdowns (e.g., inconsistent orders), interruption and resumption of activities (e.g.,

when answering a phone call) were all very difficult to express in Sparks’ assembly-line

Draft: May 1, 2008 21

framework. In effect, business process modeling tools enabled representing how work

flows through an organization, but not the work people were actually doing so that jobs

and information actually moved along from one person or tool to the next (Wynn, 1991).

A work practice simulation has advantages over a model that only represents formal

organizational roles and procedures:

o Reveals informal practices–what is not in the procedures but affects the

quality of the work, including informal assistance, learning, sharing of

information, workarounds, variations for efficiency, ways of satisfying the

customer when the rules cannot be strictly followed, etc.

o Reveals tacit assumptions about work that a functional abstraction into tasks

and methods ignores, e.g., who notices that an order fax arrives and how are

questions about the order resolved?

When informal and tacit aspects are revealed (i.e., logistic issues and hidden side-

benefits are articulated) then we can be more confident that workers’ methods are not

obstructed and are appropriately supported when new roles, procedures, schedules, tools,

documents, etc. are introduced.

Modeling work practice requires representing details of workflow coordination that

business process models usually omit (e.g., fax machines) and moving beyond individual

reasoning to simulate interactions among groups (e.g., office workers). The essence is

always to understand and model how work actually gets done, not just what is supposed

to happen. The key constructs in a work practice model are:

o Activities (chronological behaviors of people), not just tasks (functional

transformations of work products). Activities (conceptualizations of WIDN)

Draft: May 1, 2008 22

are effectively subsumed and simultaneous on different organizational and

temporal levels: Living and working in New York, working for NYNEX,

Installing a circuit for a customer on-site, Testing the circuit. Personal

activities (e.g., Being a Parent) are dynamically blended with these work

activities during the day (e.g., how a call from home is handled may depend

on the ongoing work activity or may override work concerns).

o Tools, Documents, Communications, Areas, Objects with behaviors,

Movements. Using these constructs, one models facilities, object layouts in

space, vehicles, communication devices, etc.

In summary, a work practice simulation simulates behaviors of people, which

includes simulating their reasoning about objects in a simulated environment. The

emphasis is on chronological behaviors of people (how they organize their time, e.g.,

“reading email first thing in the morning”) instead of only functional behaviors

(transformations of work products, e.g., “filing out a purchase order”) as in business

process models, or just reasoning as in expert systems. Of course, some activities (e.g.,

constructing a plan, troubleshooting a device) are like expert system tasks. In effect, the

nature of the domain broadens: A work practice simulation models the structure and

behavior of human organizations, which includes modeling the structure and behavior of

objects (e.g., an electronic circuit) that reasoning operates upon. Because a work system

includes objects, models, procedures, and policies, and a simulation of work must show

how tasks are performed, a work practice model contains models of problem solving

within it.

Draft: May 1, 2008 23

Brahms: A Work Practice Modeling Approach
In late 1992 NYNEX and the Institute for Research on Learning formed a partnership,

with a primary objective of developing a work systems design simulation tool that would

facilitate work practice analysis, ethnography, and participatory design. In developing the

tool, which became known as Brahms, it was apparent from early on that the modeling

language must enable representing interactions between people doing activities, objects

having structure and behaviors, and geographic areas in which people and objects were

located and moved. Although the AI members of the group could not fully explain at the

time how the social scientists’ concept of “activities” related to “tasks” of expert systems

(Clancey, 1997b), it was possible to develop an architecture that incorporated the desired

constructs for modeling chronological behaviors.

Three existing computational ideas were merged in the Brahms architecture:

o Neomycin’s “metacognitive” architecture was adapted for its flexibility for

organizing and controlling high-level processes. Neomycin’s strategic

methods called “tasks”8 became Activities in Brahms; Metarules became

Workframes; “end-conditions” became Detectables).

o Activities are activated and “running” in a subsumption architecture (Brooks,

1991) instead of being invoked like functions (e.g., like Neomycin’s “tasks”).

o Following the “Distributed AI” approach (Bond & Gasser, 1988), agents and

objects interact in a modeled environment—blending ideas from Cohen, et

al.’s (1989) simulation of fire-fighting, SimLife’s simulation of animals (a

8 In Clancey’s (1992) reformulation, Neomycin’s “tasks” were renamed “methods.”

Draft: May 1, 2008 24

game by Maxis), and the then nascent work on “simulating societies” (Gilbert

& Doran, 1993)9.

Key concepts in modeling human behavior are made explicit in the Brahms language

to constitute a particular type of multiagent system:

o Groups of Agents with individual Beliefs interact while doing personal and

inherited group Activities.

o Behaviors in Activities represented as conditional actions (Workframes),

which are sequences or alternative ways of doing something; Activities can be

aborted, interrupted and resumed.

o Inference occurs within the context of Activities (Thoughtframes)

o Perceiving is an experience while acting (Detectables within Workframes)

o World Facts (the modeler’s God’s eye view of the environment) are

distinguished from agent Beliefs about the world (e.g., the simulation may

represent that an object is in a location with a state, but an agent may have

arbitrary beliefs about the object)

9 Brahms was first presented at the Second International Conference on Multiagent

Systems in 1996. The ideas of “multiagent systems” and “agent-based modeling” were in

the air when the architecture was invented in early 1993. For example, Carley (1990)

presents a “socio-cognitive model of the interface between self and society,” combining

social and cognitive model constructs. However, her formalism does not have the

construct of an “agent” with simulated behaviors in a simulated the environment.

Individuals only interact in an abstract sense, which causes “exchange of information.”

Draft: May 1, 2008 25

o Conceptual Objects represent mental constructs about Agents, Groups, and

Activities (e.g., jobs, phases in an activity: preparation for, during, and after

journey of STS to ISS); objects may be an instance of a class.

o Agents and Objects are contained within Areas; an area may be an instance of

an area class, Part Of another area or connected by a Path.

Brahms is a natural extension of the knowledge-based systems concept, applied to

modeling people at work. In original inspiration, each agent in Brahms is like one

knowledge-based system, but not all agents are people: Some devices with sensors and

complex behaviors are modeled as agents (e.g., robots); simpler objects (or systems

modeled as simple objects) can have behaviors, too (e.g., an email program).

In 1998 Brahms development shifted from IRL/NYNEX to NASA Ames Research

Center. Sierhuis (2001) simulated aspects of Apollo lunar operations, followed by

simulations of mission operations on the ISS (Acquisti, et al., 2002), a Mars analog

habitat (Clancey, et al., 2005b), and planning operations for controlling the Mars

Exploration Rover (Seah, et al., 2005). Amazingly, the notion of geography shifted from

Manhattan to the moon and Mars. Modeled objects shifted from telephones to robots.

Simulations of operations showed lack of connectivity and how breakdowns in flows

(e.g., missing steps in procedures) were detected and handled in practice.

In summary, the Brahms modeling framework constitutes a schema for simulating

work practice, very much in the spirit of the 2nd GES effort to develop domain-general

abstractions, but shifting from a focus on modeling problem solving processes to

modeling work systems. In effect, a model of work practice involves modeling how

problems arise and are recognized, formulated, and resolved; the roles of different people

Draft: May 1, 2008 26

and the tools they use (e.g., the instruments that provide data input to expert systems),

and the environment in which all this occurs. This notion of problem solving is much

broader than is formalized in the model manipulation processes of PSMs.

Using Agents to Implement Automation Tools
Modeling problem solving as it occurs in the world, within activities, provides a

context for defining automation, specifically model-based tools. In an elegant

formulation, a prototype tool can be embedded in the Brahms work practice simulation,

prompting the modeler to investigate and determine, for example, how information is

gathered to use a tool and how tools are interactively related to the work of other people

and tools, which might involve documents, communicating, networks, and so on. Thus a

tool can be designed to fit the work practice, and then extracted from the simulation and

deployed as an agent-based workflow system.

We began the simulation-to-implementation approach in the Mobile Agents Project

(2001-2006), where we used the Brahms architecture as a runtime system to develop a

series of distributed workflow tools (Clancey, et al., 2005b). In the runtime configuration,

one or more agents are located on a given computer platform and communicate in real

time with each other and to get data from and control external devices and software

systems. Thus, runtime agents are interacting processes that interpret data, communicate,

and take action in the world and may cause their platform to move (e.g., a robot) or be

moved about in the world (e.g., a computer on a backpack). Generally, each person using

Mobile Agents has a “personal agent” with which he or she communicates by voice

and/or a GUI. The “world facts” of the Brahms simulation are replaced by the world

Draft: May 1, 2008 27

itself, which must be inspected, instrumented, and manipulated by the agents in order to

get information.

In the Brahms runtime configuration, an “agent” is a subsystem within a larger

environment of agents. Comparing to Schreiber, et al. (1994, p. 29), “A KBS

[knowledge-based system] is only one agent among many—human and nonhuman—and

carries out only a fraction of the organization’s tasks,” we would say that a workflow tool

consists of many agents, each of which is a KBS. Correspondingly, a workflow tool

constructed from Brahms doesn’t consist of a set of modules such as “Inference,”

“Communication,” and “Domain Knowledge Base”—the common components of an

expert system—but has a higher-level physical and functional architecture (e.g. the

rover’s agents include a “navigation agent,” “panoramic camera agent,” and “a speech

agent”). Each agent has inferential, communication, and belief maintenance capabilities

provided by the Brahms Virtual Machine (engine; Sierhuis, et al., 2007). In particular,

depending on its roles and location in the real world, including other systems to which it

is coupled, each agent attends to different data, forms its own beliefs, and carries out its

own activities. Diagrams of a Brahms multiagent system (see Figure 1 for the OCAMS

tool described subsequently) show how the agents are distributed on platforms and their

functional interactions; we also represent resulting behaviors in timelines (the

AgentViewer; Sierhuis, et al., 2007).

In summary, just as an expert system was not in general conceived as being

embedded in a work system, a library of PSMs is not sufficient for building workflow

tools. The expert system notion of an “executive” interpreting data and applying schemas

Draft: May 1, 2008 28

or rules applies most directly to the functions of the Brahms Virtual Machine.10 The

Agent-Thoughtframe-Belief framework is based on the architecture of expert systems,

but is contained within a broader work system schema (group, agent, activity, detectable,

communication act, area, movement) that enables simulating parallel, dynamic

interactions among people and objects in their environment.

<< INSERT FIGURE 1 HERE >>

Practical Perspectives: Insights from Using Brahms in Practice
Distinguishing Brahms from other NASA tools (Freed, et al., 1998) and cognitive

task analysis (Vicente, 1999) led us to better articulate the practical nature of activity

models and use of simulation for work systems design. That is, we came to understand

how to disentangle a number of theoretical and technical issues by recognizing how

modeling, tools, and simulations are successfully configured in practice.

Perspective on Models (circa 2001)
o Activities and tasks are analytic abstractions (Clancey, 2002). There is no

single, correct way to model and simulate work. The choice of analytic

perspective(s) depends on the purpose of the model. Also, we can derive

workflow diagrams from Brahms simulation runs; because these sequences

are not necessarily built into the model, their emergence in particular cases

can provide new information about the work system design.

o A Brahms model is not the actual knowledge, conceptualizations, situations,

people, communications, etc. of practice—it is just a model. Because

10 The Brahms Virtual Machine achieves a parallel, discrete simulation by managing

communications, belief revision, agent movements, activity/workframe activations,

scoping of detectables, and application of thoughtframes (Sierhuis, et al., 2007).

Draft: May 1, 2008 29

cognitivism equated human knowledge with models11, the model was viewed

not just as a process theory to be evaluated contextually, but as the very stuff

of cognition itself—so it necessarily was either correct, incomplete, or wrong.

Perspective on Tools
o People in their everyday lives create models as tools, including models of

other people’s behavior and knowledge (Schön, 1987). Models are guides or,

broadly speaking, maps that people interpret through conceptualizations.

o In predictable, patterned work settings with well-defined operations, models

can be used to automate the work—to replicate routine human behavior. But

when a model-based program is put into different value-laden and non-routine

contexts, its operation may be interpreted as wrong and/or requiring a

workaround. This means that at a minimum we must build into the tools and

work practices means for adapting and/or circumventing the automation.

o Consequently, building workplace tools requires working with the people who

will use them, not just the people who are being replaced (if any). Contrast

11 Vera and Simon (1993) wrote: “Patterns of neurons and neuronal relations… bear a

one to one relationship to the Category 4 [stored programs and data] symbol structures in

the corresponding program” (p. 120). They provided no neuropsychological evidence of

this isomorphism. But when Clancey (1993b) said that “Every act…is a new neurological

coordination” citing neuropsychological models by Edelman and Freeman, as well as the

psychological analyses of Dewey, Bartlett, Sacks, and Vygotsky, Vera and Simon

replied, “He provides no evidence for these flat assertions” (p. 124).

Draft: May 1, 2008 30

building a medical expert system by working with nurses who will use the

tool, not just interviewing physicians (e.g., Greenbaum & Kyng, 1991).

Perspective on Simulation
o In shifting from a model of mental processes to a model of work systems, the

issue of building knowledge bases is replaced by designing work systems

(e.g., including roles, facilities, operational procedures). We move from a tool

for building tools to a tool for simulating tools and the context in which they

will be used. We develop Brahms simulations to get insights about the

workplace, particularly how problems are solved in practice, and thus

guidance for knowing what tool to build.

o A practical simulation is not just descriptive, but makes predictions about

timing, flows and bottlenecks, and costs. This resolves a scoping issue: What

aspects of human life should we simulate if we are not (just) developing a

model of the technical domain and reasoning? A good approach is to design

the simulation to provide metrics that answer questions having a bearing on

proposed changes to the work practices (e.g., schedules, automation, roles,

product flows).

o A work practice model reveals unanticipated or missing interactions. By not

directly modeling (building in) the workflows that form the backbone of a

product-centered simulation, a work practice simulation enables evaluating

more basic aspects of how the work comes together (e.g., whether work

schedules of different roles interact to cause delays).

Draft: May 1, 2008 31

EXAMPLE: The OCAMS Workflow Automation Tool
In this section we illustrate and develop some of the points about problem solving and

tools further by analyzing a mission operations workflow tool developed at NASA using

the Brahms modeling and simulation tool. We describe the context and design

constraints, the methodology, the use of abstraction in the solution, and the practical

implications for the “library of methods” approach.

Objectives
The project is to automate some (and eventually perhaps all) of the file management

operations between support groups and the astronauts onboard the International Space

Station, as performed by a job position called the OCA Officer.12 The broader

organizational objective is to improve efficiency of mission operations by reducing

personnel costs by 30% by 2012. A secondary objective is to bring NASA’s research

results into practical application by establishing partnerships between research and

operations organizations. Demonstrating practical applications of agent-based systems

integration in ground flight operations will promote the use of such tools in lunar surface

operations (prototyped in the Mobile Agents field experiments).

Design Constraints
The project has the following design constraints:

o Automate routine operations of the OCA officer: mirroring,13 archiving,

up/downlink to the ISS, notification.14

12 OCA = Orbital communications adapter, a card used that effectively enables a personal

computer to FTP files on a satellite network. OCAMS = OCA Mirroring System.

13 Mirroring involves replicating on a local network, called the Mirror LAN, the file

operations performed on the ISS file system.

Draft: May 1, 2008 32

o Enable the OCA officer to retain responsibility and authority by allowing for

manual overrides of all system operations.

o Enable OCA officers to modify how the system operates without

programming (sustainability and adaptability in practice).

o Be sensitive to the current practices for workflow (e.g., receipt of new jobs

and transmission of results), timing, communications, and authority for

variances in routines.

o Respect the work practices of shift handovers that involve restarting software

tools, recording file management statistics in a handover log, retaining records

of incomplete work or unresolved problems, etc.

Simulation to Implementation Methodology
We partnered with operations personnel to create two simulations: current operations

(in which mirroring is done manually) and future operations (in which mirroring is done

with a distributed multiagent workflow tool). The future operations simulation effectively

includes the OCAMS tool used by a simulated OCA officer; it includes a prototype GUI

by which someone can control the automation to understand what is happening. Both

simulations model work shifts, handovers between OCA officers, and maintaining

handover logs. The current and future simulations ran on one month of previously

recorded data, allowing comparisons of the OCA Officer’s work with and without the

14 Notification includes speaking on the “voice loop” (a programmable network of

intercoms), modifying a Flight Note (a message posted in a workflow tool), sending

email, telephoning someone, and broadcasting a remark outloud in the room).

Draft: May 1, 2008 33

tool, based on actual data about the work products of an ISS mission (Clancey, et al., in

press).

Subsequently the agents comprising the tool were extracted from the future

simulation and reconfigured on multiple platforms. This overall approach of transforming

a current simulation into a future simulation and then a tool is called “simulation to

implementation,” and represents an important example of how models can be reused for

design within a project (contrasted with the PSMs library idea of reuse across projects).

Analysis of File Management Process
Table 1 details how the work of ISS file management can be abstracted into an

ontology of file types and handling methods. The principles for doing the three file

management operations (mirroring, archiving, and notifying) are not based on the

encoding of the file (e.g., a text document vs. a JPG image), but the functional relation of

the file to the mission (operational plans/procedures and software, private data, and

exceptions to these).15 The 31 file types are acronyms assigned by OCA officers (e.g.,

JEDI for certain procedures; NAV for antivirus software; BME is medical; NFH for

“news from home”). Files may be transferred up to the ISS (uplink), down to earth, or

both.

15 Not shown are file name templates used to recognize the file type. The input to

OCAMS is a log of operations carried out by the OCA officer in transferring files

between the ground and ISS. OCAMS infers the file type from the file path and name

(e.g., a file name of the form “DOUG/flights/…pkg” is file type DOUG and should be

mirrored).

Draft: May 1, 2008 34

By examining the file type ontology, we can better understand the role of PSMs

(either actual or potential) in the construction of OCAMS. The ontology can be

summarized by the following four principles:

1) Operational data is mirrored and archived. Medical or personal data is neither

mirrored nor archived.

2) Most down-linked items are not mirrored. Exceptions: a) Files that stay

onboard after downlink; b) Changes the crew has made to the onboard

software that must also be implemented on the Mirror LAN.

3) Exception to archiving: Keep a rolling archive of imagery because of the

volume.

4) Items deleted onboard are also deleted on the Mirror LAN.

<< INSERT TABLE 1 HERE >>

Without considering exceptions, the principles given above suggest these categories:

1. <Operational: UP: Mirror: Archive>

2. <Private: BOTH: Don’t Mirror: Don’t Archive>

3. <Operational: DOWN: Don’t mirror: Archive)

But of the 60 possible combinations of {Transfer x Mirror x Archive x Notify}, 11

categories are actually required to cover the 31 file types. The exceptions and variations

in notification cause file handling to be highly dependent on the type of file and

customer. For example, notification must take into account how the file was delivered

and whether the customer is on the voice loop system. We find some principles (e.g.,

modify the flight note if any). But when we add further exceptions (e.g., is this a shuttle

flight or a “stage” in the ISS expedition?), we end up with seven categories that are

Draft: May 1, 2008 35

exceptions to the rules. Not surprisingly, the OCA officers’ manual provides one

procedure per file type, rather than a set of principles (e.g., “what to do with a down-

linked image file” or “how to handle operational software data”).

Clancey (1992, pp 15-16) found that the relations required in an ontology depended

on the modeling purposes (e.g., diagnosis, teaching, knowledge acquisition). We find in

OCAMS this same process-specific, conditional character—for each function added

(mirroring, archiving, notifying) the ontology becomes more branched and specific, such

that 3 categories cover only 12/31 = 38% of the file types, and 8 more categories are

required to cover the remaining 62%. Six categories include only one or two file types,

and most are exceptions to the general rule of “mirror uplinks, don’t mirror downlinks.”16

Following the four principles listed above, we could probably write rules to infer

whether a new file type provided by a customer is mirrored, archived, and how the

customer is notified. But this much is obvious to the customer, too. Automation to infer

file handling is not required, a customer could add new file types to the system by filling

out a simple form like Table 1.

Further modeling and automation could eliminate the need for a flight controller to

approve modifications to the OCAMS rules operation, but this would clearly fall into the

realm of a more advanced tool, after OCAMS has been deployed and its methods and

16 Every combination of {Direction x Mirror} occurs except BOTH/DOWN,

DOWN/YES, and UP/NO, fitting the principle to mirror uplinks (hence the rule is

BOTH/BOTH or BOTH/DOWN) and not to mirror downlinks (hence the rule is

BOTH/UP and DOWN/NO). But there are exceptions, namely BOTH/BOTH for

software configuration files (which violates both rules) and BOTH/YES (for email).

Draft: May 1, 2008 36

capability accepted and understood in practice. That is to say, the nature of the file

management work system, which already has a practice for changing procedures, suggests

a manual method for updating at first, rather than attempting to eliminate human checks

and balances.

Towards a Work Systems Design Library: Components Reused in
OCAMS

Can we relate the design of OCAMS to the generic tasks and problem solving

methods of 2nd GES? A first step is to ask what components are reused in Brahms models

and workflow tools, besides of course the work practice schema in the Brahms language.

Here are examples from OCAMS that relate to systems integration:

o Agents that communicate with external systems (Comm Agents) inherit

behaviors from a group (AbstractCommunicationAgent) that handles memory

management and supports both simulation and real-time modes.

o An FTP client library has been reused in multiple Mobile Agents

configurations.17

o The Brahms “base library” includes:

o Basic file operations (copy, delete, checksum verification, etc)

represented as a Brahms Input/Output group with file manipulation

Java activities that other Brahms agents can inherit.

17 One of the first examples of an “intelligent agent” was a program that managed files

using FTP (Anderson & Gillogly, 1976). A favorite joke was that if the agent were told to

move a directory in the most efficient manner possible, it might first delete all the files.

Draft: May 1, 2008 37

o A Brahms Communicator group with activities to create and read

Communicative Acts (inspired by Searle’s [1969] speech act theory

and based on the FIPA standard agent communication language for

multi-agent systems).

o A Brahms JavaUtility group with activities to manipulate Java objects,

read Java object values, and manage properties.

We have used a table-driven method for different purposes in Brahms models. For

example, in OCAMS and two previous simulations of operations, a spreadsheet

representing a work schedule for one or more groups is interpreted to initialize agent

beliefs about what activities are done when (i.e., the schedule timeline) (Seah, et al.,

2005). Some of the specific workframe and thoughtframes that relate to schedules are

reused. We expect that this method for modeling scheduled operations will play a role in

most mission simulations, and more generally applicable for scheduling an agent in any

domain.

In OCAMS the table-driven method is also adapted to generate thoughtframes and

workframes about file types and handling rules (beliefs about attribute/values of file

paths, file names, file extensions, etc.). That is, the spreadsheet serves as a knowledge-

acquisition method by organizing information required from domain specialists, a means

of presenting the model to others, and a means for changing the model (an agent’s initial

beliefs and activities).

After building a variety of mission operations simulations, it seems clear that the

simulating and automating workflow operations requires agents to maintain beliefs about

the work in process, represented as sets of objects (e.g., the files being uplinked and

Draft: May 1, 2008 38

downlinked), constituting a central part of the agent’s “situation-specific model” of the

work system. Other aspects of the SSM include beliefs about the shift schedule (who is

coming in to take over the role). We can expect these constructs to be adapted in the

future.

In summary, the Brahms language enables formalizing and reusing model constructs,

realizing the 2nd GES concept of representational tools with components more specific

than “inference rule” and “schema.” However, 2nd GES research especially focused on

abstraction of methods for manipulating models. Of what value is abstracting tasks and

methods in developing a system like OCAMS?

Applying the System-Task-Operator Framework to OCAMS: From
Expert Systems to Workflow Systems

Representing an ontology of file types and different file handling operations as agents

(mirroring, monitoring, archiving) derives directly from 2nd GES approach of developing

a domain ontology and functional (task-specific) operators. Here is how OCAMS fits the

System-Task-Operator framework:

o The system being modeled is the ISS file system, including workstations,

directory structure, and types of files. These file types are related to types of

customers (e.g., physicians, mission planners) and two broad functions in

which the files play a part (operational and medical/personal).

o With respect to the ISS file system, the task is configuration—

assembling/maintaining another file system with certain properties (mainly

mirroring the ISS file system minus medical/personal files and images). Put

another way, the configuration task here is to replicate a given structure (the

ISS file structure) on a “mirror” server, in which the structure of the secondary

Draft: May 1, 2008 39

system (the Mirror LAN) is subject to certain general constraints (namely,

what file types are mirrored), which constitute “configuration rules.”

The problem-solving method is simple classification: The file name defines the file

type and this defines how the file is to be configured in the Mirror LAN (the options are:

Copy, Unzip and monitor for errors, Delete, and Do nothing).

An obvious reaction to presenting OCAMS as an example for appraising the value of

2nd GES analysis is that OCAMS is not a heuristic program (yet), so the most trivial

method—simple classification—suffices. One could argue that ISS file management is

not the kind of systems modeling task addressed by the 2nd GES analysts.18

However, the file management problem actually being solved by OCAMS is more

complex than it might first appear:

o OCAMS is actually building a physical system (the Mirror LAN), not just a

representation of a design for the file system.

o OCAMS is coordinating the general model (ontology and file handling rules)

with a situation-specific model of the desired configuration (SSM-CONFIG—

what files need to be mirrored, archived, and monitored at this time) with a

18 Errors do occur and put the file system (and agent system) into an uncertain state. But

rather than modeling and reasoning in an expert system “diagnosis and repair” approach,

failure handling is automated in OCAMS by an “administration agent” that simply

restarts the agent processes and redoes the operations in the current “batch” of files.

When more is required, a person usually needs to do something that is out of the scope of

automation (e.g., deciding how to diplomatically handle an ISS crew member’s

overgrown mail file).

Draft: May 1, 2008 40

situation-specific model of the current state of the world (SSM-MIRROR—

the state of the Mirror LAN and SSM-ISS—the state of the ISS file system).

o Besides using simple classification for creating the SSM-CONFIG from the

SSM-ISS, OCAMS uses the methods of queuing, handshake protocol, retry-

iteration, and synchronization to maintain the Mirror LAN system (according

to SSM-MIRROR).

In other words, OCAMS is not just a reasoning system, a model manipulator.

OCAMS is an interactive system, an actor in the world, which uses model-based methods

to plan its actions (SSM-CONFIG) and keep track of the work to be done (SSM-

MIRROR). In some respects, it is as if Mycin were charged not just with interpreting

culture results, but actually treating a patient. More prosaically, this is the difference

between an expert system and a workflow system.

Consequently, the software engineering problems in designing OCAMS are complex

and go well beyond the expert systems framework. In particular, coordinating the

operations of OCAMS agents that run as distributed processes on six or more

workstations is not trivial. File manipulation is the easy part. The dominant effort in

requirements definition and system building involved: 1) Enabling communications

between computers on different networks owned by different organizations, 2) Security

of mission systems and private data using secure communication (SSL), 3) Customization

of file management for special requests, 4) Verification and notification that customer

requests are complete, and 5) Recordkeeping for handover logs and ongoing mission

documentation. These are recurrent software engineering considerations for building

office workflow tools.

Draft: May 1, 2008 41

Because of the advent of distributed computing, the internet, security concerns,

multimodal interfaces, multiple vendor platforms, etc., having a library of PSMs is just

one part of what is required in a practical toolkit for building model-based systems today.

To further understand the requirements, we will consider how extending OCAMS’

functionality involves much more than assembling additional PSMs or configuring them

differently.

A Broader View: The Mission Operations Work System
As we broaden OCAMS’ original mirroring function to cover other work done by the

OCA officer, our perspective of “the system” being reasoned about and manipulated

changes, and the focus on maintaining proper interactions with other players (people and

tools) becomes more central. When we include the customers who are delivering files for

uplink and receiving down-linked files, we see that the work system involves people

performing other roles in the Mission Operations Directorate,19 astronaut family

members, and flight controllers in other countries in support of three to thirteen

astronauts (assuming a full Shuttle flight of seven astronauts occurs with a full contingent

of six onboard the ISS). This is a work system, a distributed collaboration among people

using diverse representations and tools—physicians, aeronautics engineers, planners,

robotics engineers, power and propulsion flight controllers, family members, etc.

19 MOD is the organization within the NASA Johnson Space Center that operates the

Mission Control Center, usually associated with a room with three large monitors called

the Flight Control Center (FCR). The OCA officers work within MCC (a secure

building), but in another room, of one several “backrooms” where people support the

flight controllers in the FCR, whom they can hear and speak to via the voice loop.

Draft: May 1, 2008 42

From this perspective, an extended OCAMS that automates all of the work of the

OCA officer must be designed as an actor (agent) in a work system. This agent would be

responsible for retrieving files from different locations (file servers, hard drives),

interpreting documents, controlling different subsystems (e.g., software programs such as

FTP), creating structured documents (logs), and communicating with people (via a GUI,

email, and perhaps someday by speaking on the voice loop). The comprehensive process

would require multiple ontologies: file types, roles in operations, mission phases.

File management correspondingly becomes a higher-order system configuration

problem—such as prioritizing file transfers for different customers, given limited

bandwidth and fragmented communication windows between the ground and ISS. If

OCAMS were extended so it required such planning, we would probably couple it to a

constraint-based tool, such as SPIFe (McCurdy, et al., 2006), rather than represent a

planning capability in Brahms. Indeed, some of the files managed by OCAMS are

maintained by a model-based scheduler (OSTPV; Frank, et al., in press). This example

suggests, just like the functional-location decomposition of OCAMS into agents, that the

preferred software engineering approach today is not construction of single programs

from components, but integration of modules—often running on different platforms—

that can flexibly communicate in real-time settings.20

20 For example, in problem solving research the notion of “memory” focuses on efficient

matching; for an agent in an operational environment, the practical issue broadens to

storing facts to engage in discourse about events that occurred days or months ago. In

MOD, a flight controller might ask his/her personal agent, “Have we uplinked files like

this to crew members on previous flights?”

Draft: May 1, 2008 43

So again, we see that reusability of components is important, but the systems

engineering problem now includes integration and interoperability of tools or services,

not just copying a formalism used in one program into another. Furthermore, just as the

shift from a product-centered model to a behavioral-practice model constituted a shift

from of detail from functions to transactions (client-server-product relations), this shift to

an agent in a work system must focus on maintenance of transactions, which involves

substantial negotiation of requirements and resources, whose status must be tracked,

confirmed, communicated, and sometimes renegotiated.

Conclusions
In applying 2nd GES methods, we have developed Brahms, a tool for modeling work

practice. Brahms is not a program that automates the design of work systems, which was

the original expert systems vision. Rather, Brahms is a language and tool for expert

designers.21 By enabling designers to model and simulate alternative work system designs

in different scenarios, Brahms serves like any simulation model in science and

engineering. It enables better understanding causal processes (e.g., relations between

roles, schedules, procedures, and workplace automation), measuring work systems flows

(e.g., productivity), identifying bottlenecks, predicting how the work system might fail,

and evaluating hypothesized improvements.

In using the simulation-to-implementation methodology we have found that a work

practice simulation has a range of purposes over time: formalizing a particular aspect of

practice to produce metrics useful for improving how the work is done; modeling and

21 Brahms is currently developed and maintained with the NASA Ames group called

“Work Systems Design and Evaluation.”

Draft: May 1, 2008 44

simulating agents that automate aspects of the work; simulating how a workflow tool

would be used in practice (again with metrics); deploying an agent-based workflow tool

on distributed platforms; and then by comparison with the tool in use, potentially

improving the formalization of work systems and human behavior in the Brahms

language and engine.

In developing OCAMS, we have shifted our perspective from building a “problem

solving” (expert) system to building a workflow system, which inherently must become

an actor in the world. Consequently, the library of reusable components is at a higher

level than the model manipulation processes formalized in PSMs, involving integration

with particular types of subsystems (e.g., handling high-volume telemetry), assisting

people over time (e.g., managing a work plan), relating different representations (e.g.,

maps and databases), communicating in different modes (e.g., email, voice mail,

conversations), and even methods for moving and behaving in location-dependent ways

(e.g., robotic systems that avoid obstacles and follow people).

Nevertheless, the main idea behind 2nd GES research, that abstraction of systems,

tasks, and methods could make building future systems easier, has certainly been central

in our methodology. The abstractions that have guided the development of OCAMS

combine concepts and methods from software engineering and from our own multiagent

systems: 1) a layered architecture, 2) functional decomposition of services into agents, 3)

providing a “personal agent” for interacting with the person using the tool, 4) distributed

implementation capability, 5) abstraction of domain relations into a separate domain

model, enabling, for example, a table-driven process, 6) general methods for systems

integration (namely, using JAVA to write a “comm agent” that mediates between an API

Draft: May 1, 2008 45

and other Brahms agents), 7) handshake communication protocols for tracking the status

of subsystems, 8) categorizing agent messages (e.g., request, information, subscription,

proposal, in the Brahms Communication Library).

Reflecting on the appropriate “grain size” for PSMs (or software reuse more

generally), the trend appears to be towards programs that use specialized representations

(e.g., a science database), carry out high-level modeling tasks (e.g., scheduling), or

mediate between such programs (e.g., Brahms Comm Agents). This confirms the

perspective of Newell and Simon (1972), restated by McDermott (1988), that the reusable

component or method is the overall computational process, a self-contained package

(such as a Brahms agent). Other reports of progress in developing software libraries

affirm our experience that a significant opportunity for abstraction and reuse lies in

higher-level components (Choo & Skura, 2004, p. 4):

SciBox uses the data analysis components from [the System Independent] layer to

build data analysis packages specific to space operation simulations but not

specific to any particular space mission. Examples of SciBox software

components are common mathematical algorithms used in celestial mechanics

and astronomy, map projection, coordinate transformation, and scheduling and

commanding.

From yet another perspective, the Brahms work systems ontology (i.e., groups,

agents, activities, workframes, etc.) for simulating practices remains fixed across domains

and applications, providing an interesting twist on the idea of formalizing PSMs

(Clancey, et al., 1998; Sierhuis, 2001). Brahms is analogous to the knowledge

engineering tools used in the 1980s with their built-in abstractions for modeling and

Draft: May 1, 2008 46

reasoning about causal processes. However, Brahms’ framework is in effect a language

for modeling problem solving methods, but in a much broader sense intended in the

1980s, namely how models are created, manipulated, and used when detecting and

solving problems in the real world—work practice.

We conclude with a claim and a hypothesis. Our claim is that work on 2nd GES was a

reasonable, well-grounded engineering phase of research that aimed to analyze expert

systems, abstract methods, and potentially make system building more efficient through

tools with libraries of PSMs. Our hypothesis is that such libraries never became widely

used in software engineering for multiple reasons:

o The dominant challenge in developing a new workplace tool is proper

integration into a complex, distributed work system involving people and

other tools;

o The most obvious automation opportunities can be handled algorithmically

because people need to be responsible for value-based judgments requiring

diplomacy and sensitivity (e.g., how to handle a new astronaut’s request to

introduce a new procedure) and people usually need to be involved where

physical reconfigurations are required (e.g., substituting a new computer);

o When components are “reused” they are usually large programs (e.g., a

planner) or hardware (e.g., camera) integrated into a larger workflow system,

and such integration is specialized because it involves representational

mapping between ontologies (e.g., integrating a camera with email and a

database; Clancey, et al., 2005a).

Draft: May 1, 2008 47

More broadly, by outlining the historical development of problem solving research,

expert systems, and situated cognition, we argued that PSMs are not adequate for

modeling how people discover, articulate and solve problems, that is, the practice of

human problem solving. The issue is not so much that people might model the world

differently (an issue central to developing instructional programs), but that simulating

what people are doing in the course of a day is better characterized in terms of

“activities,” rather than only “solving problems.” The methods of practice are interactive,

employing reasoning for and through action in the real world. Interactive methods relate

internal system models to actions in the world in a manner that carries out the agent’s

responsibilities in a sustained way over time, including direct observation,

communicating with people and other tools, coping with failure (retrying, reconciling

models and reality), and detecting when assistance is required. The twist is that a problem

solver must not just model the world to reason about it, but actually uses such models to

keep the world in order.

In conclusion, the analytic thrust of 2nd GES research was appropriate and still makes

sense, however the belief that many practical tools would be constructed from PSM

primitives alone was wrong. Automation tools are not standalone problem solvers—

whether diagnosticians, therapists, or designers—but like human physicians and

engineers, such tools are properly conceived as agents, which are frequently interacting

with people and other systems, to categorize, negotiate, and communicate their requests

and contributions in the work environment. This cooperative endeavor can be viewed as a

higher-order “modeling problem” of configuration, diagnosis, planning, and so on. But

the work itself is emergent, out of the control of any particular person or tool. Thus for an

Draft: May 1, 2008 48

“expert system” the most practical, reusable methods are ways of interacting with people

and other systems to handle discrepancies between models (beliefs, plans, procedures,

theories) and the world. In the expert systems formulation, the paradigm is applying a

model to solve a problem. In practice, expertise includes knowing how to deal with

models that don’t apply, such as seeking supervisory assistance for dealing with a

procedural category that doesn’t fit the current situation, negotiating with peers across

disciplines or shifts about who will take responsibility for certain problems, and

understanding economic and political perspectives by which actions will be evaluated.

These concepts—assistance or permission, responsibility, and non-technical

perspectives—move work practice into the realm characterized by Simon as “ill-

structured problems” (1973). Complex events can call into question the validity of

models and policies. “Tear” in models (Burton & Brown, 1979, p. 95) is sometimes

handled by creating new categories, giving new interpretive twists to rules and

procedures by blending otherwise conflicting values, and other methods of deferring,

reassigning, or even defining away the problematic situation.22 Such adaptation can be

difficult when different analytic perspectives (e.g., scientific, ethical, economic, political

world views) are at cross purposes (Schön, 1987). Here, in saying that cognition is

situated we mean that expertise is inherently distributed, not all technical, and

dynamically constructed in an ongoing social process. Ill-structured problems transcend

22 Here we are reminded of the Columbia disaster, in which a simulation model was

interpreted to argue that foam could not damage the Space Shuttle, and hence

photographs of possible damage (taken from Earth) would not be necessary (Columbia

Accident Investigation Board, 2003).

Draft: May 1, 2008 49

the ontology and library of methods. The problem solver asks: Are my models adequate?

Have I interpreted them appropriately? Do I need to work harder to prove my proposed

actions are valid? As software engineers move into this realm, with programs becoming

actors in the workplace, the challenge of designing problem solving agents is to facilitate

human responsibility, not just by automating routine tasks, but by deferring to people

when necessary, and revealing how the models might be wrong.

Acknowledgements
OCAMS has been developed in partnership with the OCA officers in Mission

Operations Directorate of NASA Johnson Space Center, particularly Chris Buckley,

Deborah Hood, Skip Moore, Fisher Reynolds, and Karen Wells. We are grateful for the

vision and support of Tim Hall and Brian Anderson at NASA JSC and Mike Shafto at

NASA Ames. Mike Scott and Ron van Hoof (QSS Group, NASA Ames) have played key

roles in implementing Brahms and OCAMS. This work has been supported in part by

funding from NASA’s Constellation Program.

Draft: May 1, 2008 50

References

Acquisti, A., Sierhuis, M., Clancey, W. J., and Bradshaw, J. M. (2002). Agent-based

modeling of collaboration and work practices onboard the International Space Station.

Proc. Eleventh Computer-Generated Forces and Behavior Representation Conf, pp.

181-188.

Bond, A. H. & Gasser, L. (1988). Readings in Distributed Artificial Intelligence. San

Mateo, CA: Morgan Kaufmann.

Anderson, R. H. (1977). The Use of Production Systems in RITA to Construct Personal

Computer “Agents.” SIGART Newsletter, 63 (June), 23-28.

Anderson, R. H. & Gillogly, J. J. (1976). Rand intelligent terminal agent (RITA): Design

philosophy. RAND Report R-1809-ARPA, The Rand Corporation.

Brooks, R.A. (1991). How to build complete creatures rather than isolated cognitive

simulators. In Architectures for Intelligence (VanLehn, K., Ed.), pp. 225-239.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Burton, R. R., & Brown, J. S. (1979). An Investigation of Computer Coaching for Informal

Learning Activities. Int. J. of Man-Machine Studies, 11 (1), 5-24.

Carley, K. (1990). Group Stability: A Socio-Cognitive Approach. In Advances in Group

Processes, Advances in Group Processes: Theory and Research (Lawler, E. J.,

Markovsky, B., Ridgeway, C., Walker, H. A., Eds.), Vol. 7, pp. 1-44. Greenwich, CT:

JAI Press.

Chandrasekaran, B. & Johnson, T. R. (1993). Generic Tasks And Task Structures:

History, Critique and New Directions. Second Generation Expert Systems (David, J.

M., Krivine, J. P., & Simmons, R., Eds.), pp. 239-280. New York: Springer Verlag.

Draft: May 1, 2008 51

Choo, T. H. & Skura, J. P. (2004). SciBox: A software library for rapid development of

science operation simulation, planning, and command tools. Johns Hopkins APL Tech.

Dig. 25(2), 154–162.

Clancey, W. J. (1984). Methodology for building an intelligent tutoring system. Method

and Tactics in Cognitive Science, (Kintsch, W., Miller, J. R., and Polson, P. G., Eds.),

pp. 51-83. Hillsdale, NJ: Lawrence Erlbaum Associates.

Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence, 27, 289-350.

Clancey, W. J. (1986). Qualitative student models. Annual Review of Computer Science,

pp. 381-450. Palo Alto: Annual Reviews Inc.

Clancey, W. J. (1989). Viewing knowledge bases as qualitative models. IEEE Expert:

Intelligent Systems and Their Applications, 4 (2), 9-15, 18-23.

Clancey, W. J. (1992). Model construction operators. Artificial Intelligence, 53(1), 1-124.

Clancey, W. J. (1993a). The knowledge-level reinterpreted: Modeling socio-technical

systems. Int. J. of Intelligent Systems, 8(1), 33-49.

Clancey, W. J. (1993b). Situated action: A neuropsychological interpretation (Response

to Vera and Simon). Cognitive Science, 17(1), 8-116.

Clancey, W. J. (1997a). Situated Cognition: On Human Knowledge and Computer

Representations. New York: Cambridge University Press.

Clancey, W. J. (1997b). The conceptual nature of knowledge, situations, and activity. In

Human and Machine Expertise in Context (Feltovich, P., Ford, K., & Hoffman, R.,

Eds.), pp. 247–291. Menlo Park, CA: AAAI Press.

Clancey, W. J. (1999). Conceptual Coordination: How the mind orders experience in time.

Hillsdale, NJ: Lawrence Erlbaum.

Draft: May 1, 2008 52

Clancey, W. J. (2002). Simulating activities: Relating motives, deliberation, and attentive

coordination. Cognitive Systems Research, 3(3), 471-499.

Clancey, W. J. (2004). Roles for agent assistants in field science: Personal projects and

collaboration. IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews (Special Issue on Human-Robotic Interaction). 34(2), 125-

137.

Clancey, W. J. (2005). Towards on-line services based on a holistic analysis of human

activities In Towards the learning GRID: Advances in human learning services. Series

Frontiers in Artificial Intelligence and Applications (Ritrovato, P., Allison, C., Cerri,

S. A., Dimitrakos, T., Gaeta, M., Salerno, S., Eds.), pp. 3-11. Amsterdam: IOS Press.

Clancey, W. J. (2006). Observation of work practices in natural settings. In Cambridge

Handbook on Expertise and Expert Performance (Ericsson, A., Charness, N., Feltovich,

P., & Hoffman, R., Eds.), pp. 127-145. New York: Cambridge University Press.

Clancey, W. J. (in press). Scientific antecedents of situated cognition. To appear in

Cambridge Handbook of Situated Cognition (Robbins, P., & Aydede, M., (Eds.). New

York: Cambridge University Press.

Clancey, W. J. & Barbanson, M. (1991). TOPO: Implications of the system-model-

operator metaphor for knowledge acquisition. IEEE Expert, 6(5), 61-65.

Clancey, W. J. & Letsinger, R. (1981). NEOMYCIN: Reconfiguring a rule-based expert

system for application to teaching. Proc. of Seventh IJCAI, pp. 829-826.

Clancey, W. J., Sachs, P., Sierhuis, M., & van Hoof, R. (1998). Brahms: Simulating

practice for work systems design. Int. J. Human-Computer Studies, 49, 831-865.

Clancey, W. J., Sierhuis, M., Alena, R., Berrios, D., Dowding, J., Graham, J. S., Tyree,

K. S., Hirsh, R. L., Garry, W.B., Semple, A., Buckingham Shum, S.J., Shadbolt, N.

Draft: May 1, 2008 53

and Rupert, S. (2005a). Automating CapCom using Mobile Agents and robotic

assistants. American Institute of Aeronautics and Astronautics 1st Space Exploration

Conf. NASA TP 2007-214554, Available: http://ntrs.nasa.gov.

Clancey, W. J., Sierhuis, M., Damer, B., and Brodsky, B. (2005b). The cognitive

modeling of social behavior. In Cognitive modeling and multi-agent interaction (Sun,

R., Ed.), pp. 151-184. New York: Cambridge University Press.

Clancey, W. J., Sierhuis, M., Seah, C., Buckley, C., Reynolds, F., Hall, T., and Scott, M.

(in press). “Multi-Agent Simulation to Implementation: A Practical Engineering

Methodology for Designing Space Flight Operations.” Engineering Societies of Agents

Workshop, Athens, Greece.

Cohen, P. R., Greenberg, M. L., Hart, D. M., & Howe, A. E. (1989). Trial by fire:

Understanding the design requirements for agents in complex environments. AI

Magazine 10(3), 34-48.

Columbia Accident Investigation Board. (2003). CAIB Report, Volume 1. NASA.

(Available: http://www.caib.us/news/report/volume1/default.html).

Damasio, A. (1994). Descartes’ error: Emotion, reason, and the human brain. New

York: G. P. Putnam’s Sons.

David, J. M., Krivine, J. P., & Simmons, R., Eds. (1993). Second Generation Expert

Systems. New York: Springer Verlag.

Davis, R. (1980). Metarules: Reasoning about Control. Artificial Intelligence, 15, 179-

222.

Dewey, J. (1896). The reflex arc concept in psychology. Psychological Review, 3, 357-

370.

Draft: May 1, 2008 54

Dewey, J. (1939). Experience, Knowledge and Value: A Rejoinder. In Philosophy of

John Dewey (Schilpp, P. A., & Hahn, L. E., Eds.), 3rd ed. La Salle: Open Court.

Feigenbaum, E. A. (1977). The Art of Artificial Intelligence: Themes and Case Studies of

Knowledge Engineering. Proc. IJCAI, pp. 1014-1029

Elman, J. L. (2004). An alternative view of the mental lexicon. Trends in Cognitive

Science, 7, 301-306.

Feigenbaum, E. A., Buchanan, B. G., & Lederberg, J. (1971). On generality and problem

solving: A case study using the DENDRAL program. In Machine Intelligence

(Meltzer, B., & D. Michie, D., Eds), Vol. 6, pp. 165-190. New York: American

Elsevier.

Frank, J., Morris, P. H., Green, J., & Hall, T. (in press). The Challenge of Evolving

Mission Operations Tools for Manned Spaceflight. Proc. 9th iSAIRAS 2008.

Freed, M., Shafto, M. G., Remington, R. W. (1998). Employing Simulation to Evaluate

Designs: The APEX Approach. In Engineering for Human-Computer Interaction

(Chatty, S., & Dewan, P., Eds.), pp. 207-223. Dordrecht: Kluwer Academic.

Gilbert, N. & Doran, J. (1993). Simulating Societies: The computer simulation of social

phenomena. London: UCL Press.

Green, C. (1969). Applications of theorem proving to problem solving. In Proc. of the

Int. Joint Conf. on Artificial Intelligence (Walker, D. E., & Norton, L. M., Eds.), pp.

219-239.

Greenbaum, J., & Kyng, M. (Eds.). (1991). Design at work: Cooperative design of

computer systems. Hillsdale, NJ: Lawrence Erlbaum.

Draft: May 1, 2008 55

Greeno, J. G. (1980). Some examples of cognitive task analysis with instructional

implications. In Aptitude, learning, and instruction: Vol. 2. Cognitive process analyses

of learning and problem solving (Snow, R. E., Federico, P. A., & Montague W. E.,

Eds.), pp. 1-21. Hillsdale, NJ: Lawrence Erlbaum.

Hayes-Roth, F., Waterman, D. A., & Lenat, D., Eds. (1983). Building Expert Systems.

Reading, MA: Addison-Wesley.

Hutchins, E., & Palen, L. (1997). Constructing meaning from space, gesture, and speech.

In Discourse, Tools and Reasoning: Essays on Situated Cognition (Resnick, L., Säljö,

R., Pontecorvo, C., & Burge, B., Eds.), pp. 23-40. Berlin: Springer-Verlag.

McCurdy, M., Pyrzak, G., Ratterman, C., & Vera, A. (2006). The Design of Efficient

Ground Software Tools. In Proc. of the 2nd IEEE Int. Conf. on Space Mission

Challenges For Information Technology, p. 257.

McDermott, J. (1988). Preliminary steps toward a taxonomy of problem-solving methods,

In Automating Knowledge Acquisition for Expert Systems (Marcus, S., Ed.), pp. 225-

256. Boston: Kluwer Academic Publishers.

Minsky, M. (1969). Semantic Information Processing. Cambridge, MA: MIT Press.

Minsky, M. (1985). The Society of Mind. New York: Simon and Schuster.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:

Prentice-Hall.

Nii, H. P. (1986). Blackboard Systems. AI Magazine, 7(2), 38-53 and 7(3), 82-106.

Papert, S. (1972). Teaching Children to Be Mathematicians vs. Teaching About

Mathematics. Int. J. of Mathematics Education and Science Technology, 3, 249-262.

Pollack, M. (1992). The Uses of Plans. Artificial Intelligence, 57, 43-68.

Draft: May 1, 2008 56

Pople, H. E., (1977). The Formation of Composite Hypotheses in Diagnostic Problem

Solving: An Exercise in Synthetic Reasoning. Proc. IJCAI, pp. 1030-1037.

Cambridge, MA.

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in

computers and people. Hillsdale, NJ: Lawrence Erlbaum.

Schön, D. A. (1987). Educating the reflective practitioner: Toward a new design for

teaching and learning in professions. San Francisco: Jossey-Bass.

Schreiber, A. T., Wielinga, B. J., de Hoog, R., Akkermans, J. M., & Van de Velde , W.

(1994). CommonKADS: A comprehensive methodology for KBS development. IEEE

Expert, 9(6), 28-37.

Seah, C., Sierhuis, M., & Clancey W. J. (2005). Multi-agent modeling and simulation

approach for design and analysis of MER mission operations. Proc. Int. Conf. on

Human-Computer Interface Advances for Modeling and Simulation, pp. 73-78.

Searle R. (1969). Speech Acts: An Essay in Philosophy of Language. Cambridge

University Press.

Sierhuis, M. (2001). Modeling and simulating work practice. Ph.D. thesis, Social Science

and Informatics (SWI), University of Amsterdam, The Netherlands.

Sierhuis, M., & Clancey, W. J. (1997). Knowledge, Practice, Activities, and People. In

Proc. AAAI Spring Symposium on Artificial Intelligence in Knowledge Management

(Gaines, B., Ed.), pp. 142-148.

Sierhuis, M., W. J. Clancey, Seah, C., Trimble, J., & Sims, M. H. (2003). Modeling and

simulation for mission operations work systems design. J. of Management Information

Systems, 19(4), 85-128.

Draft: May 1, 2008 57

Sierhuis, M., Clancey, W. J., & van Hoof, R. (2007). Brahms: A multiagent modeling

environment for simulating work practice in organizations. Int. J. for Simulation and

Process Modeling, 3(3), 134-152.

Simon, H. A. (1973). The structure of ill-structured problems. Artificial Intelligence, 4(3),

181-202.

Simon, H. & Lea, G. (1974). Problem solving and rule induction. Models of Thought

(Simon, H. A., Ed.), pp. 329-346. New Haven: Yale University Press.

Vera, A., and Simon, H. (1993). Situated Action: Reply to William Clancey. Cognitive

Science, 17(1), 117-135.

Vicente, K. J. (1999). Cognitive work analysis: Toward safe, productive, and healthy

computer-based work. Mahwah, NJ: Erlbaum.

Wallace, B., & Ross, A. (2006). Beyond Human Error: Taxonomies and Safety Science.

Boca Raton, FL: CRC Press.

Wallace, B., Ross, A., Davies, J. B., & Anderson T., (Eds.) (2007). The Mind, the Body

and the World: Psychology after Cognitivism. London: Imprint Academic.

Whitehead, A. N. & Russell, B. (1910/1913). Principia Mathematica. Cambridge,

Cambridge University Press.

Wittgenstein, L. [1953] (1958). Philosophical Investigations. New York: Macmillan.

Wynn, E. (1991). Taking Practice Seriously. In Design at Work: Cooperative design of

computer systems (Greenbaum, J., & Kyng, M., Eds.), pp. 45-64. Hillsdale, NJ:

Lawrence Erlbaum.

Draft: May 1, 2008 58

Author Biographies
William J. Clancey works at the NASA Ames Research Center and Florida Institute of

Human and Machine Cognition. He received a BA degree in Mathematical Sciences from

Rice University (1974) and a PhD in Computer Science from Stanford University (1979).

Chief Scientist for Human-Centered Computing, in the Intelligent Systems Division at

Ames, he has extensive experience in medical, educational, and financial software and

was a founding member of the Institute for Research on Learning. He is especially

interested in relating social science and neuropsychology to descriptive (symbolic)

models of cognition to understand the nature of consciousness.

Maarten Sierhuis is a Senior Research Scientist and Lead of the Autonomy and

Decision Support group at RIACS/USRA, located at NASA Ames Research Center. He is

a Co-Principal Investigator for the Brahms project, working in the Work Systems Design

& Evaluation group in the Collaborative and Assistant Systems area within the Intelligent

Sciences Division at NASA Ames Research Center. Previously, he worked at NYNEX

Science & Technology. He received a PhD in Social Science Informatics from the

University of Amsterdam and holds an engineering degree in Informatics from the

Polytechnic University in The Hague, The Netherlands.

Chin Seah is a computer scientist at Science Applications International Corporation

(SAIC), working at NASA Ames Research Center on the Brahms project. He has applied

the Brahms work system design and modeling approach to the Mars Exploration Rover

and International Space Station mission operations. Before joining the Brahms team, he

worked as a business process management consultant at Andersen Consulting and as a

knowledge engineer at Mindbox, Inc. implementing rule-based and case-based expert

Draft: May 1, 2008 59

systems. He has a B.S. in computer engineering from Santa Clara University and an M.S.

in computer information science from the University of Pennsylvania.

Draft: May 1, 2008 1

Figure 1. OCA Mirroring System (OCAMS) using model-based systems integration to

automate some of the file management between ground support and the International

Space Station (ISS).

Draft: May 1, 2008 1

Table 1. OCAMS Ontology of File Types and Handling Procedures. Thirty-one file types

are categorized by the function of the data and/or customer providing or using the data.

Transfer directions refer to “UP” to the International Space Station and “DOWN” from

ISS to the Earth. A mirrored file is copied to a ground-based duplicate of the ISS file

system. An archived file is saved in a dated folder indicating its source. Ground support

customers are notified in different ways, including a workflow “flight note” system, a

speaker-headset intercom (“voice loop”), email, telephone, or by speaking outloud to

someone across the room at another workstation.

File Types Type of Data Transfer

Direction

Mirror? Archive? Notify?

<Symbolic

Name>

{ Operational

Plans &

Procedures

| Operational

Software &

Schedule

Changes

| Personal or

Medical

| Exceptions}

{UP |

DOWN |

BOTH}

{YES |

NO}

{YES |

NO}

{FlightNote

| VoiceLoop

| Email

| Phone |

Outloud}

