Lunar Commercialization Workshop

Gary Martin
Ames Research Center
Lunar Commercialization Workshop Agenda

- Overview and workshop description
 - 20 minutes
- Development of Business Plans
 - 120 minutes
- Presentation of business plans to panel
 - 60 minutes - split evenly among the teams
- Wrap-up and discussion
 - 10 minutes
Lunar Commercialization Workshop Description

Goals
- Explore viability of using public-private partnerships to open space frontier

Rules
- Form 3 teams - each team represents a space entrepreneurial company
- Create innovative business plans for commercialization of the Moon
 - Business concept description, market strategy
 - Return on investment, pricing, schedule
 - Competition and other impediments
 - Operations and management plan
- Present plan to panel - scored against each of the four elements
- Best plan awarded prize
Lunar Commercialization Workshop - Scoring

- Create an innovative business plan
 - Business concept description, market strategy
 - Describe the product/service
 - Describe the customer profile
 - What is your marketing strategy?
 - What is your business model?
 - Return on investment, pricing, schedule
 - What services would you provide and what are their cost to you
 - What do you charge for the services?
 - What is your return on investment - over what time period?
 - Competition and other impediments
 - Who is your competition?
 - What are your major risk areas?
 - Operations and management plan
 - What facilities/infrastructure needs?
 - Who is your management team and what is their experience?
Public-Private Partnerships

- Government procures what it needs from private industry instead of developing and operating the mission on its own

- **Benefits to Government**
 - Usually cheaper over the life cycle
 - Government does not have to conduct operations and maintain infrastructure
 - Ability to leverage resources with commercial sector

- **Benefits to Industry**
 - Gain expertise, helps develop new sector
 - Develop infrastructure and retire risk
 - Commercial success is critical to opening the space frontier
Open Architecture: Infrastructure
Open for Potential External Cooperation

- Lander and ascent vehicle
- EVA system
 - CEV and Initial Surface capability
 - Long duration surface suit
- Power
 - Basic power
 - Augmented
- Habitation
- Mobility
 - Basic rover
 - Pressurized rover
 - Other, mules, regolith moving, module unloading
- Navigation and Communication
 - Basic mission support
 - Augmented
 - High bandwidth
- ISRU
 - Characterization
 - Demos
 - Production

- Robotic Missions
 - LRO- Remote sensing and map development
 - Basic environmental data
 - Flight system validation (Descent and landing)
 - Lander
 - Small sats
 - Rovers
 - Instrumentation
 - Materials identification and characterization for ISRU
 - ISRU demonstration
 - ISRU Production
 - Parallel missions
- Logistics Resupply
- Specific Capabilities
 - Drills, scoops, sample handling, arms
 - Logistics rover
 - Instrumentation
 - Components
 - Sample return

US/NASA Developed hardware
Lunar Commercialization

- Lunar Commercialization complements national Lunar objectives
 - Early, small scale Lunar transportation enabled by private sector
 - Commercial delivery system -- “FedEx Lunar”
 - Near-term technology demonstrations on the Lunar surface
 - Constellation technology risk reduction
 - Early start to Lunar science campaign
 - Enable more commercial opportunities relative to the moon
 - Commercial Lunar communications, navigation
Possible Lunar Commercialization Elements

- Utilize emerging commercial capability to land payloads on the Moon
- Includes lunar data purchase and/or agency lunar instrument delivery
- Cost to agency that is less than a dedicated NASA robotic mission ($100M+ if conducted by Agency)
- Operations could begin in 2010 timeframe
- Small payloads ($100M or less)
- Frequent, multiple flights
- Commercially-leveraged: Open Competition for lunar transportation services
- Fixed price service
- Industry provides the “Fed-Ex” to the surface
Lunar Commercialization

Exploration Demand

- The Constellation Program Office has identified lunar data needs, of which a subset would require in-situ measurement
 - Dust characterization & mitigation
 - Landing site reconnaissance
 - Lunar model validation (tie to ground truth)
 - Local radiation measurement
 - Spacecraft charging evaluation
 - Regolith handling/site preparation
 - ISRU characterization and demonstration
 - Hydrogen form and location characterization
 - Lighting perspective (permanent low incidence at poles)

Technology demonstration

- Communications (surface mobile comm)
- Mechanisms (1/6G performance, dust impact on lifetime)
- Materials (dust compatibility)
- Thermal (surface influence, radiator dust exposure)
- Navigation and guidance (Precision Landing)
- Propulsion (system performance, plume interaction)
- Mobility (traction, dust impact)
- Power (Re-charging mobile robotic assets, fuel cell tech)
- Avionics (Open architecture, Rad hard)
- Cryo handling & storage (test demo)
- ECLSS (water loop performance in 1/6g, dust filters)
Lunar Commercialization

- **Science Demand**
 - Exploration of the South Pole-Aitken Basin remains a priority
 - Diversity of lunar samples is required for major advances
 - The Moon may provide a unique location for observation and study of Earth, near-Earth space, and the universe
Commercial Capability

- Market Supply side - transportation
 - Google Lunar X-Prize (GLXP): Astrobotic Tech, Odyssey Moon, others
- Individual instruments delivered near term at an estimated cost on order of $1M to $3M dollars per kilogram
- Launch is clearly a large expense, and a significant portion of the total mission costs
 - Falcon 9 / Minotaur V class
 - $25M - $35M
 - TLI: 465 kg (1025 lbm)
 - Possible to fly as secondaries
 - Secondary payload adapter (ESPA)
 - 180kg
 - ~$2M
Good Luck