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A Low Cross-Polarization Smooth-Walled
Horn with Improved Bandwidth

Lingzhen Zeng, Charles L. Bennett, David T. Chuss, and Edward J. Wollack

Abstract

Corrugated feed horns offer excellent beam symmetry, main beam efficiency, and cross-

polar response over wide bandwidths, but can be challenging to fabricate. An easier-to-

manufacture smooth-walled feed is explored that approximates these properties over a finite

bandwidth. The design, optimization and measurement of a monotonically-profiled, smooth-

walled scalar feedhorn with a diffraction-limited — 7° FWHM is presented. The feed was

demonstrated to have low cross polarization (<-30 dB) across the frequency range 33-45

GHz (30% fractional bandwidth). A return loss better than -28 dB was measured across the

band.

Index Terms

antenna, feed, horn, millimeter-wave, optimization.

I. INTRODUCTION

ANY precision microwave applications require feedhorns with symmetric E- and

H-plane beam patterns that possess low sidelobes and cross-polarization control.

A common approach to achieving these goals is a "scalar" feed, which has a beam response

that is independent of azimuthal angle. Corrugated feeds [1] approximate this idealization

by providing the appropriate boundary conditions for the HE,, hybrid mode at the feed

aperture. Alternatively, an approximation to a scalar feed can be obtained with a multimode

feed design. One such "dual-mode" horn is the Potter horn [2]. In this implementation, an

appropriate admixture of TM11 is generated from the initial TE11 mode using a concentric

step discontinuity in the waveguide. The two modes are then phased to achieve the proper
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field distribution at the feed aperture using a length of waveguide. The length of the phasing

section limits the bandwidth due to the dispersion between the modes. Lier [3] has reviewed

the cross-polarization properties of dual-mode horn antennas for selected geometries. Other

authors have produced variations on this basic design concept [4], [5]. Improvements in the

bandwidth have been realized by decreasing the phase difference between the two modes by

27r [6], [7].

To increase the bandwidth, it is possible to add multiple concentric step continuities with

the appropriate modal phasing [8], [9]. A variation on this technique is to use several distinct

linear tapers to generate the proper modal content and phasing [10], [11]. Operational

bandwidths of 15-20% have been reported using such techniques. A related class of devices

is realized by allowing the feedhorn profile to vary smoothly rather than in discrete steps.

Examples of such smooth-walled feedhorns with —15% fractional bandwidths exist in the

literature [12], [13].

In this work, we describe the design and optimization of a smooth-walled feed that has

a 30% operational bandwidth, over which the cross-polarization response is better than -30

d13. The optimization technique is described, and the performance of the feed is compared

with other published dual-mode feedhorns. The feedhorn described here has a monotonic

profile that allows it to be manufactured by progressively milling the profile using a set of

custom tools.

II. SMOOTH-WALLED FEEDHORN OPTIMIZATION

The performance of a feedhorn can be characterized by angle- and frequency-dependent

quantities that include beam width, sidelobe response and cross-polarization. Quantities such

as return loss and polarization isolation that only depend on frequency are also important

considerations. All of these functions are dependent upon the shape of the feed profile. In
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the optimization approach described, a weighted penalty function is used to explore and

optimize the relationship between the feed profile and the electromagnetic response.

A. Beam Response Calculation

The smooth-walled horn was approximated by a profile that consists of discrete waveg-

uide sections, each of constant radius. With this approach, it was important to verify that

each section is thin enough that the model is a valid approximation of the continuous profile.

For profiles relevant to our design parameters, section lengths of Al < a,/20 were found to

be sufficient by trial and error, where a, is the cutoff' wavelength of the input waveguide

section. It is possible in principle to dynamically set the length of each section to optimize

the approximation to the local curvature of the horn. This would increase the speed of the

optimization; however, for simplicity, this detail was not implemented in our study.

For each trial feedhorn the angular response was calculated directly from the modal

content at the feed aperture. This in turn was calculated as follows. The throat of the

feedhorn was assumed to be excited by the circular waveguide TE11 mode. The modal

content of each successive section was then determined by matching the boundary conditions

at each interface using the method of James [14]. The cylindrical symmetry of the feed limits

the possible propagating modes to those with the same azimuthal functional form as TE11

[15]. This azimuthal-dependence extends to the resulting beam patterns, allowing the full

beam pattern to be calculated from the E- and H- plane angular response. Ludwig's third

definition [16] is employed in calculation of cross-polar response. We note that an additional

consequence of the feedhorn symmetry is that to the extent that the E- and H-planes are

equal in both phase and amplitude, the cross-polarization is zero [17]. Changes in curvature

in the feed profile can excite higher order modes (e.g., TE12 and TM12 ), the presence of

which can potentially degrade the cross-polarization response of the horn.
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B. Penalty Function

We constructed a penalty function to optimize the antenna profile. The penalty function

with normalized weights, aj , is written as

N M
x2 

= E E (ajOj (fi)2)

	

(1)
i=1 j=1

where i sums over a discrete set of (N) frequencies in the optimization frequency band,

and j sums over the number (M) of discrete parameters one wishes to take into account

for the optimization. In the parameter space considered, this function was minimized over

the frequency range 1.25 f, < f < 1.71 f, (A f / fo=0.3) to find the desired solution. Results

reported here were obtained by restricting this penalty function to include only the cross-

polarization and return loss with uniform weights (M = 2). Additional parameters were

explored; however, they were found to be subdominant in producing the target result. These

functions were evaluated at 13 equally-spaced frequency points in Equation 1. The explicit

forms used for 0 1 (f) and A 2 (f) are

	

01( 
f) _ XP(f) —XPo if XP(f) > XPo, 	

(2)
0	 if XP(f) <XPo,

02( 
f) 	 RL(f) — RLo if RL(f) > RLo, 	

(3)
0	 if RL(f) < RLo,

where X P(f ) and RL(f ) are the maximum of the cross-polarization X P(f ) =Max[X P(f , 0)]

and return loss at frequency f, respectively. XPo and RLo are the threshold cross-polarization

and return loss. If either the cross-polarization or return loss at a sampling frequency were

less than its critical value, it was omitted from the penalty function. Otherwise, its squared

difference was included in the sum in Equation 1.
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Feedhorn beam calculation method from James [141
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Fig. 1. The feedhorn profile was represented by a series of thin, concentric waveguides. The modal content
and corresponding beam properties were calculated by matching boundary conditions at the waveguide
interfaces. At each stage of optimization, the penalty function defined in Equation 1 was minimized. The
first stage optimization was done using a 20-point natural spline parameterization; during the second stage
each section of the 560-point approximation of the feedhorn was permitted to vary in radius.

C. Feedhorn Optimization

As shown in Figure 1, the feedhorn was optimized in a two-stage process that employed a

variant of Powell's method [18]. Powell's method is a rapidly-converging method for finding

the minima of a multi-variable function without explicit analytical expressions for its partial

derivatives. In this method, every variable of the function is varied during the optimization.

Generically, this algorithm can produce an arbitrary profile. To produce a feed that is

easily machinable, we restricted the optimization to the subset of profiles for which the

radius increases monotonically along the length of the horn. Without this constraint, this

method was observed to explore solutions with corrugated features and the serpentine profiles

explored in [19].

The aperture diameter of the feedhorn was initially set to — 4A,, but was allowed to vary

slightly to achieve the desired beam size. A single discontinuity exists between the circular

waveguide and the feed throat. The remainder of the horn profile adiabatically transitions

to the feed aperture. The total length of the feedhorn from the aperture to the single mode

waveguide was fixed at 12.3 A, during optimization. This length is somewhat arbitrary, but

chosen to produce a diffraction-limited beam in a practical volume.
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The approach of [12] was followed as an initial input to the Powell method. Specifically,

the feed radius, r, is written analytically as a function of the distance along the length of

the horn, z, as:

r(z) —	
0.293+ 0.703 sin0_75 (0.255z)	 0 < z < 6.15,	 (4)

0.293 + 0.70311 + [0.282(z — 6.15)] 2 1
1
/

2 6.15 < z < 12.30,

where parameters are given in units of A,. This profile was then approximated by natural

spline of a set of 20 points equally-spaced along the feed length. Throughout the optimiza-

tion, we explicitly imposed the condition that radius of each section be greater than or equal

to that of the previous section. This sampling choice effectively limits the allowed change

in curvature along the feed profile. In the first stage of optimization, both X Po and RLo

were set to -30 dB. The minimum of the penalty function was found by the modified Powell

method in this 20-dimension space.

In the second stage of the optimization, the number of points explicitly varied along the

profile was increased to 560. The modified Powell method was used to optimize the profile

in this 560-dimensional space. In this phase, both of X Po and RLo were decreased to -34

dB.

In principle, it is possible to use either of these techniques alone to find our solution.

There are enough degrees of freedom in the 20-point spline to do so and the 560-point

technique should be able to recover the solution regardless of the starting point. We found,

however, that the 20-point spline did not converge readily to the final profile given the initial

conditions above, but rather converged to a broad local minimum. In addition to finding

the general features of the desired performance, this first phase of optimization provided a

significant reduction in the use of computing resources compared to the slower 560-paint

parameter search.
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Fig. 2. The initial, intermediate and final profiles are shown. All dimensions are given in units of the cuttoff
wavelength of the input circular waveguide.

Figure 2 shows the initial, intermediate, and final feedhorn profiles. It is possible to

approximate the final profile with a 20-point spline. The final profile of the feed is repro-

duced with a low-spatial frequency error of — 0.015A, This effect has a negligible influence

on the modeled performance. This suggests that the optimization procedure could be done

completely using a spline with fewer than 20 points if the location of the spline points were

dynamically varied. Future optimization algorithms could be made more efficient by imple-

menting this approach. Figure 3 shows the improvement in cross-polarization for the two

stages of optimization. The return loss is also shown for the initial profile, the intermediate

optimization, and the final feedhorn profile.

III. FEEDHORN FABRICATION AND MEASUREMENT

A feed (Figure 4) that operates in circular waveguide with a TEIl cutoff frequency of

f,=26.36 GHz was fabricated to test the proposed design. The structure was optimized

between 33 and 45 GHz. The prototype feed was manufactured via electroforming in order
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Fig. 3. (Top) The maximum cross-polar response across the band is shown for the three profiles in Figure 2.
Measurements of the maximum cross-polarization are superposed. (Bottom) The return loss measurements
for the final feed horn are shown plotted over the predicted return loss for the initial, intermediate, and final
feedhorn profiles. Frequency is given in units of the cutoff frequency of the input circular waveguide.

to validate the design using a process that allows the feed structure to be measured and

compared to the design profile. The final design profile is well-approximated by splining

the radius (r) as a function of length (z) provided in Table I. The full 560-point profile is

available upon request.

The feedhorn was measured in the Goddard Electromagnetic Anechoic Chamber (GEMAC).

The receivers and microwave wave sources used in the measurement provide a > 50 dB dy-

namic range from the peak response over — 27r steradians with an absolute accuracy of

< 0.5 dB. A five section constant cutoff transition from rectangular waveguide (WR 22.4,

f, = 26.36 GHz) to circular waveguide [20] was used to mate the feedhorn to the rectangular
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waveguide of the antenna range infrastructure. The constant cutoff condition was maintained

in the transition by ensuring acircle = abroadwalisll/7 where aczrcle is the radius of the circular

guide, abroadwall is the width of the broadwall of the rectangular guide, and s ll N 1.841 is the

eigenvalue for the TEll mode [21]. The alignment of the circular waveguide feed interface

was maintained to avoid degradation of the cross-polar antenna response. Pinning of this

interface as specified in [22] or similar is recommended. Beam plots and parameters at the

extrema and the middle of the optimization frequency range are shown in Figure 5 and Ta-

ble II. The cross-polarization response as a function of frequency of this device is compared

to other published implementations of multi-mode scalar feeds (Fig. 6). An HP8510C net-

work analzyer was used to measure the return loss (see Fig. 3) with a through-reflect-line

calibration in circular waveguide. If desired, the match at the lower band edge can be im-

proved by using a transition to a larger diameter guide. The measured observations are in

agreement with theory.

Imperfections in the profile may occur during manufacturing due to chattering of the

tooling or similar physical processes. We performed a tolerance study to determine the effect

of such high-spatial frequency errors in the feed radius. Negligible degradation in perfor-

mance was observed for Gaussian errors in the radius up to 0.002 ae . The feed's monotonic

profile is compatible with machining by progressive plunge milling in which successively more

accurate tools are used to realize the feed profile. This technique has been used for individual

feeds and is potentially useful for fabricating large arrays of feedhorns. Examples include,

fabrication of multimode Winston concentrators [23], [24], direct-machined smooth-walled

conical feed horns for the South Pole Telescope [25], and the exploration of this techneque

for dual-mode feedhorns [10].
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TABLE I

SPLINE APPROXIMATION TO OPTIMIZED PROFILE (IN MILLIMETERS)

Section Length z Radius r

0 0.0 3.334
1 7.0 5.768
2 14.0 7.909
3 21.0 9.901
4 28.0 10.858
5 35.0 11.131
6 42.0 11.269
7 49.0 11.663
8 56.0 11.903
9 63.0 11.957
10 70.0 12.238
11 77.0 12.442
12 84.0 12.760
13 91.0 13.704
14 98.0 15.399
15 105.0 17.012
16 112.0 17.706
17 119.0 20.054
18 126.0 21.747
19 133.0 21.914
20 140.0 21.916

TABLE II

BEAM PARAMETERS

equency Wavelength Antenna Gain Beam Solid Tn -gle-
[GHzj	 [mm]	 [dBi]	 [Sr]

33	 9.09	 21.3	 0.0925
39	 7.69	 22.0	 0.0788
45	 6.67	 24.2	 0.0473

IV. CONCLUSION

An optimization technique for a smooth-walled scalar feedhorn has been presented. Us-

ing this flexible approach, we have demonstrated a design having a 30% bandwidth with

cross-polar response below -30 dB. The design was tested in the range 33-45 GHz and found

to be in agreement with theory. The design's monotonic profile and tolerance insensitivity
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Fig. 4. A smooth-walled feedhorn operating between 33 and 45 GHz was constructed. The horn is 140 mm
long with an aperture radius of 22 mm. The input circular waveguide radius is 3.334 mm.

enable the manufacturing of such feeds by direct machining. This approach is useful in

applications where a large number of feeds are desired in a planar array format.
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