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tion against overheating and thereby
damaging nearby instrumentation leads
through the use of conventional furnace
brazing or any other technique that in-
volves heating the entire BBS and its sur-
roundings. The problem is further com-
plicated by another application-specific
prohibition against damaging the thin
tantalum thermocouple sheaths through
the use of conventional welding to join
the thermocouples to the ring. 

The first BBS rings were made of
graphite. The tantalum-sheathed ther-
mocouples were attached to the graphite
rings by use of high-temperature graphite
cements. The ring/thermocouple bonds
thus formed were found to be weak and
unreliable, and so graphite rings and
graphite cements were abandoned. 

Now, each BBS ring is made from one
of two materials: either tantalum or a

molybdenum/titanium/zirconium alloy.
The tantalum-sheathed thermocouples
are bonded to the ring by laser brazing.
The primary advantage of laser brazing
over furnace brazing is that in laser braz-
ing, it is possible to form a brazed con-
nection locally, without heating nearby
parts to the flow temperature of the
brazing material. Hence, it is possible to
comply with the prohibition against
overheating nearby instrumentation
leads. Also, in laser brazing, unlike in
furnace brazing, it is possible to exert
control over the thermal energy to such
a high degree that it becomes possible to
braze the thermocouples to the ring
without burning through the thin tanta-
lum sheaths on the thermocouples.

The brazing material used in the laser
brazing process is a titanium-boron
paste. This brazing material can with-

stand use at temperatures up to about
1,400°C. In thermal-cycling tests per-
formed thus far, no debonding between
the rings and thermocouples has been
observed. Emissivity coatings about
0.001 in. (≈0.025 mm) thick applied to
the interior surfaces of the rings have
been found to improve the perform-
ance of the BBS sensors by raising the
apparent emissivities of the rings. In
thermal-cycling tests, the coatings were
found to adhere well to the rings. 

This work was done by Jeff Farmer and
Chris Coppens of Marshall Space Flight
Center and J. Scott O’Dell, Timothy N.
McKechnie, and Elizabeth Schofield of
Plasma Processes Inc. For further informa-
tion, contact Sammy Nabors, MSFC Com-
mercialization Assistance Lead, at
sammy.a.nabors@nasa.gov. Refer to MFS-
32095-1.

Wrap-Around Out-the-Window Sensor Fusion System
Lyndon B. Johnson Space Center, Houston, Texas

The Advanced Cockpit Evaluation
System (ACES) includes communica-
tion, computing, and display subsys-
tems, mounted in a van, that synthe-
size out-the-window views to
approximate the views of the outside
world as it would be seen from the
cockpit of a crewed spacecraft, aircraft,
or remote control of a ground vehicle
or UAV (unmanned aerial vehicle).
The system includes five flat-panel dis-
play units arranged approximately in a
semicircle around an operator, like
cockpit windows. The scene displayed
on each panel represents the view
through the corresponding cockpit

window. Each display unit is driven by
a personal computer equipped with a
video-capture card that accepts live
input from any of a variety of sensors
(typically, visible and/or infrared
video cameras). 

Software running in the computers
blends the live video images with syn-
thetic images that could be generated,
for example, from heads-up-display out-
puts, waypoints, corridors, or from satel-
lite photographs of the same geo-
graphic region. Data from a Global
Positioning System receiver and an iner-
tial navigation system aboard the re-
mote vehicle are used by the ACES soft-

ware to keep the synthetic and live views
in registration. If the live image were to
fail, the synthetic scenes could still be
displayed to maintain situational aware-
ness.

This work was done by Jeffrey Fox, Eric A.
Boe, and Francisco Delgado of Johnson Space
Center; James B. Secor II of Barrios Technol-
ogy, Inc.; Michael R. Clark and Kevin D.
Ehlinger of Jacobs Sverdrup; and Michael F.
Abernathy of Rapid Imaging Software, Inc.
Further information is contained in a TSP (see
page 1).

Rapid Imaging Software, Inc. has re-
quested permission to assert copyright for the
software code. MSC-24020-1

Wide-Range Temperature Sensors With High-Level Pulse 
Train Output
John H. Glenn Research Center, Cleveland, Ohio

Two types of temperature sensors have
been developed for wide-range tempera-
ture applications. The two sensors meas-
ure temperature in the range of –190 to
+200 °C and utilize a thin-film platinum
RTD (resistance temperature detector)
as the temperature-sensing element.
Other parts used in the fabrication of
these sensors include NPO (negative-
positive-zero) type ceramic capacitors
for timing, thermally-stable film or wire-

wound resistors, and high-temperature
circuit boards and solder.

The first type of temperature sensor
is a relaxation oscillator circuit using
an SOI (silicon-on-insulator) opera-
tional amplifier as a comparator. The
output is a pulse train with a period
that is roughly proportional to the tem-
perature being measured. The voltage
level of the pulse train is high-level, for
example 10 V. The high-level output

makes the sensor less sensitive to noise
or electromagnetic interference. The
output can be read by a frequency or
period meter and then converted into
a temperature reading.

The second type of temperature sen-
sor is made up of various types of mul-
tivibrator circuits using an SOI type
555 timer and the passive components
mentioned above. Three configura-
tions have been developed that were



The need for autonomous navigation
and intelligent control of unmanned sea
surface vehicles requires a mechanically
robust sensing architecture that is water-
tight, durable, and insensitive to vibra-
tion and shock loading. The sensing sys-
tem developed here comprises four
black and white cameras and a single
color camera. The cameras are rigidly
mounted to a camera bar that can be re-
configured to mount multiple vehicles,
and act as both navigational cameras and
application cameras. The cameras are

housed in watertight casings to protect
them and their electronics from mois-
ture and wave splashes.

Two of the black and white cameras
are positioned to provide lateral vision.
They are angled away from the front of
the vehicle at horizontal angles to pro-
vide ideal fields of view for mapping and
autonomous navigation. The other two
black and white cameras are positioned
at an angle into the color camera’s field
of view to support vehicle applications.
These two cameras provide an overlap, as

well as a backup to the front camera. The
color camera is positioned directly in the
middle of the bar, aimed straight ahead.
This system is applicable to any sea-going
vehicle, both on Earth and in space.

This work was done by Eric A. Kulczycki,
Lee J. Magnone, Terrance Huntsberger,
Hrand Aghazarian, Curtis W. Padgett,
David C. Trotz, and Michael S. Garrett of
Caltech for NASA’s Jet Propulsion Labora-
tory. For more information, contact 
iaoffice@jpl.nasa.gov.
NPO-46372

A Robust Mechanical Sensing System for Unmanned Sea
Surface Vehicles 
NASA’s Jet Propulsion Laboratory, Pasadena, California 
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Terminal Descent Sensor Simulation
NASA’s Jet Propulsion Laboratory, Pasadena, California 

Sulcata software simulates the opera-
tion of the Mars Science Laboratory
(MSL) radar terminal descent sensor
(TDS). The program models TDS radar
antennas, RF hardware, and digital pro-
cessing, as well as the physics of scatter-
ing from a coherent ground surface.
This application is specific to this sensor
and is flexible enough to handle end-to-
end design validation. Sulcata is a high-
fidelity simulation and is used for per-
formance evaluation, anomaly
resolution, and design validation. 

Within the trajectory frame, almost
all internal vectors are represented in
whatever coordinate system is used to

represent platform position. The tra-
jectory frame must be planet-fixed.
The platform body frame is specified
relative to arbitrary reference points
relative to the platform (spacecraft or
test vehicle). Its rotation is a function
of time from the trajectory coordinate
system specified via dynamics input
(file for open loop, callback for closed
loop). Orientation of the frame rela-
tive to the body is arbitrary, but con-
stant over time.

The TDS frame must have a constant
rotation and translation from the plat-
form body frame specified at run time.
The DEM frame has an arbitrary, but

time-constant, rotation and translation
with respect to the simulation frame
specified at run time. It has the same ori-
entation as sigma0 frame, but is possibly
translated. Surface sigma0 has the same
arbitrary rotation and translation as
DEM frame.

This work was done by Curtis W. Chen
of Caltech for NASA’s Jet Propulsion Lab-
oratory. Further information is contained
in a TSP (see page 1).

This software is available for commer-
cial licensing. Please contact Karina Ed-
monds of the California Institute of Tech-
nology at (626) 395-2322. Refer to
NPO-46161.

based on the technique of charging
and discharging a capacitor through a
resistive element to create a train of
pulses governed by the capacitor-resis-
tor time constant.

Both types of sensors, which oper-
ated successfully over the wide temper-

ature range, have potential use in ex-
treme temperature environments in-
cluding jet engines and space explo-
ration missions.

This work was done by Richard L. Patter-
son of Glenn Research Center and Ahmad
Hammoud of ASRC Aerospace Corp. Further

information is contained in a TSP (see page
1). Inquiries concerning rights for the commer-
cial use of this invention should be addressed
to NASA Glenn Research Center, Innovative
Partnerships Office, Attn: Steve Fedor, Mail
Stop 4–8, 21000 Brookpark Road, Cleveland,
Ohio 44135. Refer to LEW-18350-1.


