The application layer provides application programs that a robot can execute. Examples of application programs include those needed to perform such prescribed maneuvers as avoiding obstacles while moving from a specified starting point to a specified goal point or turning a robot in place through a specified azimuthal angle. Each robot is provided with application software representing its own unique set of commands. The software establishes a graphical user interface (GUI) for exchanging command information with external computing systems. Via the GUI and its supporting interface software, a user can select and assemble, from the aforementioned set, commands appropriate to the task at hand and send the commands to the robot for execution. System software that interacts with the R4SA software at all three levels establishes a synchronized control environment.

The R4SA software features two modes of execution: before real time (BRT) and real time (RT). In the BRT mode, a text configuration file is read in (each robot has its own unique file) and then device-driver-layer, device-layer, and application-layer initialization functions are executed. If execution is successful, then the system jumps into the RT mode, in which the system is ready to receive and execute commands.

One goal in developing the R4SA architecture was to provide one computer code for many robots. The unique executable code for each robot is built by use of a configuration feature file. The set of features for a given robot is selected from a feature database on the basis of the hardware and mechanical capabilities of that robot. Recompilation of code is straightforward: modifications can readily be performed in the field by use of simple laptop-computer development and debugging tools.

This work was done by Hrand Aghazarian, Eric Baumgartner, and Michael Garrett of Caltech for NASA’s Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1).

The software used in this innovation is available for commercial licensing. Please contact Karina Edmonds of the California Institute of Technology at (626) 395-2322. Refer to NPO-41796.

R4SA for Controlling Robots

NASA’s Jet Propulsion Laboratory, Pasadena, California

The R4SA GUI mentioned in the immediately preceding article is a user-friendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data.

The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.

This work was done by Hrand Aghazarian of Caltech for NASA’s Jet Propulsion Laboratory. Further information is contained in a TSP (see page 1).

The software used in this innovation is available for commercial licensing. Please contact Karina Edmonds of the California Institute of Technology at (626) 395-2322. Refer to NPO-41797.

Bio-Inspired Neural Model for Learning Dynamic Models

This model could be a basis for fast speech- and image-recognition computers.

NASA’s Jet Propulsion Laboratory, Pasadena, California

A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be “hardware-friendly” in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

It is necessary to present a large amount of background information to give meaning to a brief summary of the present neural-network model:

- A dynamic model to be learned by the present neural-network model is of a type denoted an internal model or predictor. In simplest terms, an internal model is a set of equations that predicts future measurements on the basis of past and current ones. Internal models have been used in controlling industrial plants and machines (including robots).
- One of the conclusions drawn from Pavlov’s famous experiments was the observation that reinforcers of learning (basically, rewards and punishments) become progressively less efficient for causing adaptation of