The First Prediction of a Rift Valley Fever Outbreak

Classification: Biological Sciences (Major), Sustainability Science, Ecology, Applied Biological Sciences, Environmental Sciences

Assaf Anyamba§, Jean-Paul Chretien², Jennifer Small¹, Compton J. Tucker¹, Pierre Formenty², Jason H. Richardson⁴**, Seth C. Britch⁶, David C. Schnabel⁶, Ralph L. Erickson¹, and Kenneth J. Linthicum⁵

1NASA Goddard Space Flight Center, Biospheric Sciences Branch, Code 614.4, Greenbelt, MD 20771, USA, 2Department of Defense Global Emerging Infections Surveillance & Response System, Division of Preventive Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910 USA, 3Bio-risk Reduction for Dangerous Pathogens (BDP), Department of Epidemic and Pandemic Alert and Response (CDS/EPR), World Health Organization, 20 Avenue Appia, CH-1211, Geneva 27 – Switzerland, 4Department of Entomology & Vector-borne Disease, U.S. Army Medical Research Unit – Kenya, APO AE 09831-4108, 5USDA-ARS Center for Medical, Agricultural, & Veterinary Entomology, 1600 SW 23rd Dr, Gainesville, FL 32608 USA; 6U.S. Army Medical Research Unit – Kenya, Unit 54109 Box 401 APO AE 09831-410.

The authors declare no conflict of interest.

§ To whom correspondence should be addressed. E-mail: asaph.anyamba-1@nasa.gov

Presently at the Armed Forces Research Institute of Medical Sciences (AFRIMS), U.S. Army Medical Component, 315/6 Rajvithi Road, Bangkok 10400, THAILAND.
El Niño/Southern Oscillation (ENSO) related climate anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.

Rift Valley fever | El Niño | Horn of Africa | Vegetation Index | risk mapping

\body

Rift Valley fever is a viral disease of animals and humans that occurs throughout sub-Saharan Africa, Egypt and the Arabian Peninsula. Outbreaks of the disease are episodic and closely linked to climate variability, especially widespread elevated rainfall that facilitates Rift Valley fever virus transmission by vector mosquitoes (1-3). A Rift Valley fever outbreak in 1997-1998 was the largest documented outbreak in the Horn of Africa and involved five countries with a loss of ~100,000 domestic animals, ~90,000 human infections (4), and had a significant economic impact due to a ban on livestock exports from the region (5).
The 1997-1998 epizootic/epidemic was important in explicitly confirming the links between episodic Rift Valley fever outbreaks and El Niño/Southern Oscillation (ENSO) phenomena which are manifested by episodic anomalous warming and cooling of sea surface temperatures in the eastern equatorial Pacific Ocean (2). Other vector-borne diseases have also been associated with ENSO-related variations in precipitation (6-11). Concurrently anomalous warm sea surface temperatures in the equatorial eastern-central Pacific Ocean region and the western equatorial Indian Ocean result in above-normal and widespread rainfall in the Horn of Africa (2). This excessive rainfall is the principal driving factor for Rift Valley fever outbreaks there (1, 3).

Each of the seven documented moderate or large Rift Valley fever outbreaks that have occurred in the Horn of Africa over the last 60 years have been associated with ENSO-associated above normal and widespread rainfall (2, 12) (Fig.SI-1). Exceptions to this can occur but are localized, such as the 1989 Kenyan outbreak that was related to local heavy rainfall at the focus of the outbreak (13, 14). Earth observation by satellite remote sensing over the last ~30 years has enabled systematic mapping of driver indicators of climate variability including sea surface temperature patterns, cloud cover, rainfall, and ecological indicators (primarily vegetation) on a global scale at high temporal and moderate spatial resolutions (2, 15-18). These systematic observations of the oceans, atmosphere, and land have made it possible to evaluate different aspects of climate variability and their relationships to disease outbreaks (16), in addition to providing valuable long-term climate and environmental data.

In most semi-arid areas, precipitation and green vegetation abundance are major determinants of arthropod and other animal population dynamics. There is a close relationship between green vegetation development, and breeding and upsurge patterns of some insect pests and vectors of disease such as mosquitoes and locusts (1, 17-19). The successful development and survival of mosquitoes that maintain transmit and amplify the Rift Valley fever virus is closely linked with rainfall events, with very large
The development of warm ENSO conditions, indicated by anomalous warming of sea surface temperatures (>1°C) in the eastern-central Pacific region and the concurrent anomalous warming of sea surface temperatures (>0.5°C) (2) in the western equatorial Indian Ocean region (Fig. 1) during the September 2006 to November 2006 period (Fig. 2), enhanced precipitation over the central and eastern Pacific and the western Indian Ocean extending into the Horn of Africa. These anomalous patterns of precipitation are
evident in outgoing longwave radiation, often used as a proxy for large-scale convection and rainfall in the tropics (16, SI2, SI3) (Fig. 3). Persistent anomalous positive sea surface temperatures in the western Indian Ocean, and central and eastern Pacific, beginning in August 2006 resulted in above normal precipitation manifested by negative anomalies in outgoing longwave radiation (-20 to -80 W/m²) (Fig. 3). For the Horn of Africa, seasonal total rainfall for the September – November 2006 short-rains season exceeded ~600 mm in some locations (Fig. SI-3), resulting in excess rainfall amounts on the order of ~400 mm during the same period (Fig. 4). Most of this rainfall fell over Rift Valley fever endemic areas in this region. As during previous periods of elevated and widespread rainfall, the excess rainfall resulted in anomalous vegetation growth with departures ranging between 20 to 100% above normal (Fig. 5) as illustrated by satellite derived NDVI anomalies (12, 24).

Persistence of elevated and widespread rainfall resulted in abundant vegetation growth from September through December 2006, and created ideal conditions for the flooding of dambo formations which serve as mosquito habitats in this region. Dambos are low-lying areas that flood in the wet season and form as essential part of the soil catenas in East and Southern Africa (20). The flooding of dambos induces the hatching of transovarially infected Aedes mcintoshi mosquito eggs that are dormant in the soil, producing infected adult females in 7-10 days that can transmit Rift Valley fever virus to domestic animals (1, 22, 25). After a blood meal the Aedes mosquitoes will lay infected eggs on moist soil at the edge of mosquito habitats but appear to not be an efficient secondary vector of the virus between infected and non-infected domestic animals and humans (25, 26). However, Culex species mosquito vectors subsequently colonize these flooded dambos and, with a delay of several weeks, large populations of these mosquitoes emerge and efficiently transmit the virus from domestic animals which amplify the virus to non-infected domestic animals and humans (22, 25, 26). Using information gained from previous Rift Valley fever outbreaks (2, 12, 25, Fig. SI-
and the analysis of satellite data, we mapped areas at elevated risk of Rift Valley fever activity and issued monthly early warning advisories over the Horn of Africa region starting in September 2006 (15, 16).

Our Rift Valley fever risk mapping method is first set in motion by the concurrently warmer sea surface temperatures in the central and eastern Pacific, and in the western equatorial Indian Ocean of >1 °C and >0.5 °C, respectively. Historical observations and experience have shown that these concurrently warmer sea surface temperatures are leading indicators of excessive rainfall in the Horn of Africa and thus elevated risk of Rift Valley fever activity in that region (2, 24). To identify specific areas in the Horn of Africa where excessive rainfall occurs, we use NDVI time series data as a surrogate for rainfall and ecological dynamics. These areas are defined by mean annual NDVI values ranging between 0.15 and 0.4 and mean annual total rainfall ranging between 100 to 800 mm (12, SI Text). The persistence of greener-than-normal conditions over a 3 month period in the endemic region identifies areas with ideal ecological conditions for mosquito vector emergence and survival (12, 27). Based upon the presence and persistence of anomalous green vegetation from October through December 2006, most of the central Rift Valley, eastern and north-eastern regions of Kenya, southern Ethiopia, most of central Somalia, and northern Tanzania were identified as areas at elevated risk for Rift Valley fever outbreaks (Fig. 6). Such maps are routinely produced every month to guide vector surveillance in the region. Using our early warning advisories issued in early November 2006 of the elevated risk of Rift Valley fever outbreaks (15), the Global Emerging Infections Surveillance & Response System and the Department of Entomology & Vector-borne Disease, U.S. Army Medical Research Unit – Kenya initiated entomological surveillance in Garissa, Kenya in late November 2006, weeks prior to subsequent reports of unexplained hemorrhagic fever in humans in this area.
The first human cases of Rift Valley fever in Kenya were reported from Garissa in mid-December 2006 with the index case in Garissa having an estimated onset date of 30 November 2006 (28). The disease was initially identified by reports of abortions, followed by observation of clinical signs and symptoms, and then by detection of RVF virus or detection of RVF specific antibody. In general, although false positives of particular human or animal specimens can occur, false reporting of a RVF outbreak after appropriate laboratory confirmation was not reported during this outbreak (29). The early warning enabled the government of Kenya, in collaboration with the World Health Organization, the US Centers for Disease Control and Prevention, and the Food and Agricultural Organization of the United Nations to mobilize resources to implement disease mitigation and control activities in the affected areas and prevent its spread to unaffected areas.

The evolution of rainfall over the Horn of Africa during December 2006 to March 2007 followed the movement of the Inter-tropical Convergence Zone into the southern hemisphere. From December 2006 through March 2007 most of the rainfall was concentrated over Tanzania and southwards (27, Fig. SI-5). Using combined information on risk mapping from December 2006 and January 2007, we issued another alert on the potential of Rift Valley fever activity in northern Tanzania (27, Fig. SI-6). From mid- to late January 2007 there were reported cases of Rift Valley fever in the Arusha region of northern Tanzania (29, 30) including human hospital cases and disease in the domestic animal populations. By mid-February 2007, 9 out of 21 administrative regions of Tanzania had reported cases of Rift Valley fever in both livestock and human populations (28). The outbreak tapered off with the waning of the warm ENSO event (Fig. 1) and subsequent reduction in rainfall and drying conditions over most of the Horn of Africa region during the March – May 2007 period (27, Fig. SI-7). There were reported human cases of Rift Valley fever in Burundi in mid-May 2007, thought to have resulted from the consumption of infected animals imported from Tanzania (30). This
emphasizes the importance of timely early warning with geographic specificity of Rift Valley fever outbreaks to stop the export of potentially infected livestock to areas where the disease is not present.

In contrast to the 1997-1998 outbreak (4), the early warning described herein for late 2006 and early 2007 enabled vector surveillance activities to be initiated in Kenya and Tanzania 2 to 6 weeks before the human disease cases were identified. After the early identification of Rift Valley fever transmission between the end of November and early December 2006 in Kenya, enabled by the early warning, subsequent enhanced surveillance activities and additional mitigation activities were implemented, including: animal movement restrictions/quarantines; distribution of mosquito nets; social mobilization and dissemination of public information related to reducing human contact with infected animal products and mosquito vectors; and specific domestic animal vaccination and mosquito control programs in at-risk areas. Starting in mid-December 2006, most of the reported human Rift Valley fever cases were from eastern Kenya, especially the Garissa area, with limited reports from Somalia, and no reports from southern Ethiopia. This lack of disease surveillance information from Somalia and southern Ethiopia was not surprising given an ongoing conflict between Ethiopia and Somalia at this time (29).

From December 2006 to May 2007, Rift Valley fever human cases were reported in Somalia (114 cases reported, 51 deaths), Kenya (684 cases reported, 155 deaths), and Tanzania (290 cases reported, 117 deaths) (29). A post-outbreak mapping of human case locations on the aggregate potential Rift Valley fever risk map from September 2006 to May 2007 found 64% of the cases were reported in areas mapped to be at risk within the Rift Valley fever potential epizootic area, while 36% were reported in adjacent areas not mapped to be at risk of Rift Valley fever activity (Fig. 7). However, the spatial distribution of these case locations shows that most of the cases in non-risk
areas were in close proximity (< 50 km) to areas mapped to be at risk. We are thus confident that most of the initial Rift Valley fever infection locales were identified.

We hypothesize that the disease outbreak was more widespread than reported because of civil and military conflicts in the region (especially in Somalia) and limited health infrastructure in many locales. Our risk mapping predictions performed better in Kenya and Somalia than in Tanzania. This could be due to several factors including: (1) misclassification of the potential Rift Valley fever epizootic area in Tanzania and coastal Kenya, so that areas prone to Rift Valley fever activity may not have been included, and (2) delayed disease control response to the outbreak in Tanzania, with movement of animal and human cases outside of the affected areas. Large areas of Somalia have been subject to civil conflict over the last several years and there is no government infrastructure in place to collect epidemiological data. Additionally, a number of areas in northern and eastern Kenya were inaccessible under widespread flood conditions, and there were no reports from southern Ethiopia.

Conclusion

This report documents the first prospective operational prediction of a Rift Valley fever outbreak in animals and humans. As in previous Rift Valley fever outbreaks in the Horn of Africa (Fig. 1), the convergence of ENSO conditions in the eastern Pacific and concurrent warming of sea surface temperatures in the western equatorial Indian Ocean region was the trigger mechanism behind this outbreak. The late 2006-early 2007 outbreak adds to the historical evidence that interannual climate variability associated with ENSO has a large influence on Rift Valley fever outbreaks in the Horn of Africa through episodes of abnormally high rainfall there. This demonstrates that satellite monitoring and mapping of key climate conditions and land surface ecological dynamics are an important and integral part of public health surveillance and can help reduce the impact of vector-borne disease outbreaks such as Rift Valley fever. This is
one of many societal benefits that result from a robust earth observing system that monitors key climate variables in a systematic and sustained fashion.

METHODS

Detailed Data sources, Methods, Analysis descriptions See SI Text.

Summary. We mapped and analyzed global satellite-derived time series measurements of sea surface temperatures (SSTs), outgoing longwave radiation (OLR), rainfall and the normalized difference vegetation index (NDVI). Indices of SSTs extracted from the eastern-central equatorial Pacific Ocean and the western equatorial Indian Ocean were used as leading indicators to show that interannual variability in SSTs associated with ENSO is an important factor driving the atmospheric response, as manifested by OLR and rainfall anomaly patterns. The land surface response to these variations in rainfall was captured through NDVI, with greener than normal conditions indicative of above normal rainfall and vice versa. All data were converted into anomaly metrics expressed as differences of monthly measurements from their respective long-term mean values. The combination of excess and widespread rainfall and anomalous vegetation growth created ideal conditions for the emergence of Rift Valley fever virus-carrying mosquito vectors from flooded habitats known as dambos in the Horn of Africa. The Rift Valley fever risk mapping algorithm captured the persistence in greener than normal conditions over a three month period to identify areas with conditions for potential Rift Valley fever activity in the Rift Valley fever potential epizootic/epidemic areas within the Horn of Africa region. These mapped risk data were provided as early warning information to concerned agencies to guide vector surveillance and control, and to structure other mitigation activities. The risk mapping was implemented dynamically using a three month moving window with early warnings issued routinely every month to keep track of changing climatic and ecological conditions, and consequently the changing nature of areas at risk for Rift Valley fever activity in the disease endemic region through time.
Acknowledgements

This research and project is funded in part by the Department of Defense Global Emerging Infections Surveillance & Response System (DoD-GEIS) Program and the United States Department of Agriculture - Agricultural Research Service. We acknowledge the contributions of the U.S. Army Medical Research Unit – Kenya, the World Health Organization’s Department of Epidemic and Pandemic Alert and Response, the Food and Agricultural Organization of the United Nations, The United States Department of Agriculture – Foreign Agricultural Service and the Centers for Disease Control and Prevention.

References

http://www.fao.org/docs/eims/upload//217874/EW_hornafrica_nov06_Rift Valley fever.pdf and Rift Valley Fever Monitor

http://www.ijhealthgeographics.com/content/5/1/60/abstract (2006)

27. Materials and Methods in the Supporting Information section online

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5604a3.htm, 56:73-76.

Archive Number: 20070519.1592, Date published: 19 May 2007.
Figure Legends

Figure 1. Time series plot of western Indian Ocean (WIO: 10°N–10°S, 40°–64°E) and equatorial eastern-central Pacific Ocean sea surface temperature (NINO: 3.4: 5°N-5°S, 170°W -120°W) anomalies. Anomalies are depicted as degree Celsius departures from their respective climatological baseline periods. Convergence of anomalous positive SSTs between the two regions is associated with above normal rainfall over the RVF endemic region of the Horn of Africa.

Figure 2. Seasonal global tropical seasonal sea surface temperature anomalies for September to November 2006 expressed in degrees Celsius with respect to the 1982 – 2006 base mean period. Positive anomalies in the equatorial eastern-central Pacific Ocean are a manifestation of the 2006–2007 warm ENSO event.

Figure 3. Seasonal global tropical outgoing longwave radiation anomalies (watts per square meter) for September to November 2007 computed with respect to the 1979 – 2006 base mean period. Negative OLR anomalies are an indicator of convective activity associated with positive SSTs anomalies in the western equatorial Indian Ocean and the equatorial eastern-central Pacific Ocean regions. Positive OLR anomalies are indicative of severe drought conditions in Southeast Asia.

Figure 4. Seasonal rainfall anomalies in millimetres for the Horn of Africa from September to November 2006 for the Horn of Africa. The anomalies are computed as deviations from the long-term seasonal mean for the period 1995-2006. RVF endemic areas of the Horn of Africa especially eastern Kenya and
Somalia, received an excess of +400 mm of rainfall during this three month period.

Figure 5. Normalized difference vegetation index (NDVI) anomalies for December 2006. NDVI anomalies are computed as percent departures from the 1998-2006 mean period. Positive anomalies are associated with above normal rainfall and are indicative of anomalous vegetation growth creating ideal eco-climatic conditions for the emergence of large populations of RVF mosquito vectors from *dambo* habitats.

Figure 6. Rift Valley fever calculated risk map for December 2006 for the Horn of Africa. The areas shown in red are represent areas of persistent rainfall and vegetation growth from October through December where potential RVF vectors could emerge and transmit the virus to livestock and human populations.

Figure 7. Overall Rift Valley fever risk areas shown in red for the period September 2006 – May 2007 with human case locations depicted by blue and yellow dots. Blue dots indicate areas of RVF human case locations that were mapped to be within the risk areas (red) and within the potential epizootic area shown in green. Yellow dots represent human case locations outside the risk areas. 64% of all human cases fell within the areas mapped to be at risk to RVF activity during this period.

Supporting Information (SI)

- SI Text
- Figs. SI-1 to SI-9
- References
Seasonal Rainfall Anomaly, Mar - May 2007

Rainfall Anomaly, mm

-400 -300 -200 -150 -100 -50 -25 25 50 100 150 200 300 400