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Abstract

The Ares V Cargo Launch Vehicle (CaLV) is NASA's primary vessel for safe, reliable delivery of the Lunar
Surface Access Module (LSAM) and other resources into Earth orbit, as articulated in the U.S. Vision for Space
Exploration.' The Ares V launch concept is shown in Figure 1. The foundation for this heavy-lift companion to the
Ares I Crew Launch Vehicle (CLV) is taking shape within NASA and with its government and industry partners.
This paper will address accomplishments in the Ares V Launch Vehicle during 2006 and 2007 and offer a preview
of future activities.
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Figure 1. Ares V launch concept.

When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost
360 feet tall (Figure 2). It will lift 136 metric tons (300,000 pounds) to a 30-by-160 nautical mile orbit at 28.5-
degrees inclination, or 55 metric tons (120,000 pounds) to trans-lunar injection. As first envisioned by the
Exploration Systems Architecture Study (ESAS) in summer 2005, the Ares V consisted of two 5-segment Reusable
Solid Rocket Boosters (RSRB) flanking a 27.5-foot-diameter Space Shuttle-derived External Tank (ET) delivering
liquid hydrogen/liquid oxygen (LOX/LH2) to a cluster of five RS-25 Space Shuttle Main Engines (SSME),
redesigned to be low-cost and expendable.'` The upper stage, known as the Earth Departure Stage (EDS), would be
powered by two LOX/LH2 J-2S engines, evolved from the J-2 engine used in the Saturn launch vehicle upper
stages.
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Figure 2. NASA concept of the Ares V on the launch pad.

As part of NASA's systems engineering approach, Marshall Space Flight Center's Exploration Launch Projects
Office in early 2006 streamlined its Ares I design, development, test, and evaluation (DDT&E) hardware plan so
that the first stage booster and upper stage engine are largely extensible to the Ares V booster stage and EDS
propulsion elements, saving billions in nonrecurring costs. Figure 3 shows the launch vehicles' common elements.
The RS-25 also was replaced by the LOX/LH2 RS-68 engine, developed by the U.S. Air Force and currently in use
on the Boeing Delta IV heavy-lift vehicle, reducing technical, schedule, and cost risk. The benefits and challenges of
using common hardware are documented in the CLV/CaLV Commonality Assessment .3
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Figure 3. Expanded views of Ares 1 and Ares V show common hardware.
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The RS-68 is the most powerful liquid oxygen/liquid hydrogen booster in existence, capable of producing 650,000
pounds of thrust at sea level. In contrast, the SSME is capable of producing 420,000 pounds of thrust at sea level,
although it operates at a higher level of efficiency than the RS-68. The ESAS had initially rejected the RS-68
because its lower specific impulse (Isp) and size were not compatible with the 27.5-foot core stage propellant tank
and payload requirements of the reference Ares V. The ESAS theorized that the high-performance RS-25 might be
redesigned as an expendable model (RS-25F) to reduce manufacturing costs by roughly half. However, current
estimates suggest that the RS-68 modified to meet NASA standards will cost significantly less than a modified
SSME. This represents a major savings on recurring costs, especially considering that each Ares V mission will use
five main engines at a nominal rate of two missions annually over a decade.

Further analyses show the cost, technical, schedule, and safety and reliability risks associated with redesigning and
mass-producing the RS-25 are greater than the risks and costs associated with scaling up the Ares V Core Stage
from 27.5 feet to 33 feet to hold the additional propellants needed to accommodate the RS-68 engine's reduced Isp
and make room for the larger nozzle and exhaust clearances needed for the five-engine cluster. Analyses also noted
that the RS-68 production line was developed with a goal of delivering 40 engines annually and is currently
delivering 7 per year for Department of Defense and commercial missions. Additionally, improvements proposed by
Boeing will make it feasible for the RS-68 to exceed the Ares V payload requirements.

Due to schedule and budget priorities, Ares V design remains at an earlier stage in development than Ares I. Many
of the technical successes of the Ares 1 during the past year involving the 5-segment RSRB and J-2X engine are
shared by the Ares V because of the decision to maximize commonality between the two launch vehicles. NASA has
completed studies to determine mutual requirements between the Ares 1 and Ares V systems. Engineering analyses
are under way on induced loads, structural dynamics, aerodynamics, base heating, and acoustics. Additionally,
studies are now under way on how the switch to a 33-foot tank will affect manufacturing tooling at Michoud
Assembly Facility and operations at Kennedy Space Center. However, most of the Ares V activity to date is related
to the RS-68 engine.

NASA and the U.S. Air Force Space and Missile Center are currently pursuing an interagency agreement to develop
RS-68A and RS-68B variants, respectively, of the RS-68 engine for the Delta IV and Ares V, leveraging the work of
each organization in a synergistic fashion (Figure 4). For example, the Air Force is investigating fixes for known
issues, such as turbine blade cracking, eliminating gas generator igniter debris, bearing material changes, cavitation
suppression, and improved temperature and hot gas sensors, while NASA is exploring modifications such as
reducing free hydrogen around the Core Stage base at ignition, reduced helium purge usage, and development of a
long-duration nozzle. This arrangement reduces NASA's DDT&E investments and provides a unique opportunity to
obtain early flight data from Delta IV missions, reducing technical and schedule risk. The Air Force benefits from
additional risk reduction testing and NASA-funded performance improvements.
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Helium spin-start duct
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sequence modifications. to
help minimize pre-ignition
free hydrogen

Higher element density
main injector improving
Specific Impulse by = 2%

Redesigned turbine nozzles
to increase maximum power
level by = 41.

Redesigned turbine seals to
significantly reduce helium
usage for pre-launch

Other Changes:
Bearing material change
New GG igniter design
Improved OTP temp sensor
Improved hot gas sensor
2°d stage FTP blisk crack mitigation
Cavitation Suppression
ECU parts upgrade

Included in RS-68A upgrades
May be included in RS-68A upgrades

s Increased duration capability
—	 ablative nozzle

* RS-68A Upgrades

Figure 4. RS-68 engine, showing major planned modifications.

The U.S. Vision for Space Exploration sets a goal of returning to the Moon no later than 2020 and extending the
human presence across the solar system and beyond. The work already under way on the Ares V Core Stage is on
track to meet that commitment.
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Agenda

♦ Overview of the Ares Launch Vehicles

♦ Ares V design approach & evolution

♦ 2006-2007 progress

♦ Forward work and conclusions
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The Lunar Mission Scenario
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Overview of the
Exploration Launch Projects Architecture

♦ Safe, reliable, affordable space transportation
♦ Based on heritage hardware and legacy knowledge
♦ Separates cargo from crew
♦ Ares V (left) delivers heavy exploration cargo to Low Earth Orbit (LEO)
♦ Ares I (right) delivers crew and cargo to LEO for International Space

Station and lunar missions
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Composite Shroud
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♦ Ares I

. 1 Shuttle-derived Reusable Solid
Rocket Booster (RSRB) First Stage

• 1 J-2X L0x/LH 2 Upper Stage Engine

Ares V
♦ Core Stage

• 5 RS-68 LOx/LH2 Core Stage engines
. 2 Ares 1-derived RSRBs

♦ Earth Departure Stage (EDS)
• 1 J-2X LOx/LH2 Upper Stage Engine

• Common hardware and procedures
with Ares I to reduce development and
operations costs

Depending on length of on-orbit LEO loiter time
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Ares V mission profile
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Refining the Concept

♦ Exploration System Architecture
Study

• Ares V baseline: 2 RSRBs, 5 Space
Shuttle Main Engines (SSMEs), 27.5
foot diameter Shuttle-derived Core
Stage

♦ Bottom-Up Review
• RS-68 Expendable Exploration

Launch Vehicle (EELV) engine
replaces SSME

- Fewer parts
- Less labor
- Simpler to modify
- Synergy with USAF engine upgrades
- Delta IV flight experience reduces

technical risk
• 33 foot diameter Saturn V-class Core

Stage
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Heritage Hardware: RS-68 Upgrades

* Redesigned turbine
nozzles to increase
maximum power
level by - 4%

Redesigned turbine
seals to significantly
reduce helium usage
for pre-launch

Other RS-68A upgrades or
that may be included:

• Bearing material change
• New Gas Generator igni-
• Improved Oxidizer Turbc

sensor
• Improved hot gas sensor
• 2nd stage Fuel Turbo Pui

crack mitigation
• Cavitation suppression
• ECU parts upgrade

Helium spin-start
duct redesign,
along with start
sequence
modifications, to
help minimize pre-
ignition free
hydrogen

* Higher element
density main
injector improving
specific impulse by
_2%

ncreased duration
;apability ablative
Nozzle

* RS-68A Upgrades
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Progress and Plans

♦ Obtained "Seed money" for early development
♦ Developed integrated master schedule
♦ Prepared Concept of Operations document
♦ Performed Core Stage design studies
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Progress and Plans (cont'd)

♦ Facilities studies — Michoud Assembly Facility (MAF), Stennis
Space Center (SSC), Kennedy Space Center (KSC)

♦ Free hydrogen study
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Early Testing

♦ RS-68 (left) and J-2X (right) subscale injector testing at MSFC, 2006-2007

♦ 29 RS-68-focused, 32 J-2X-focused

♦ 28 -, 40-, & 58-element injector inserts

♦ Thrust levels: less than 20,000 Ibf

♦ Chamber pressures: 850-1,500 psig

♦ Mixture Ratios: 4.8-6.9

♦ Fuel manifold temperatures: 100-300°.Rankin

♦ Commonality!
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2006 RSRB tests

♦ April (left) and November
(below) tests obtain data on

R	 internal roll torque,
material/design changes for
Shuttle, Ares I and Ares V

♦ Commonality!
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Ares V Consolidated Schedule

Name
2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	 2016	 2017	 2018	 2019	 2020

FY06 FY07 	FY08 	FY09 	FY1 0 	FY11	 FY12	 FY13	 FY14	 FY15	 FY16	 FY17	 FY18	 FY19	 FY20
ATP SRR	 PDR	 CDR	 DCR	 LSAM	 LSAM 4

Ares V Major Milestones VV 	'7 	6 :17 6	 6 16 6
Ares V-^,	 LSAM 1	 LSAM 3

Ares V Risk Reduction

Ares V Design Analysis Cycles Pre-DA;C-O Conceptual Study

DAC-0 Architectural Concept

DAC-1 Requirements

DAC-2	 Preliminary Design Validation

DAC-3 Final Design Validation

Ares V Core Stage ATP SRR	 PDR	 CDR	 DCR

Core Stage Milestones V V	 V

ATP	 PDR:	 CDR	 DCR

Core Stage Engine (RS-68B) V	 V	 V	 17
Core Stage Fab and Delivery Engine Fabrication

Engine Assemby, Test, Checkout, & Deliver
y 

'I

LSAM 1 I	 LSAM 3
Engine deliveries for: 	 L	 IL	 ^	 L	 IL

: MPTA	 Ares V-Y :	I LSAM 2 1 LSAM 4:

Fab GVT CS Test Artic le

Fab MPTA	 _.,.L^ Ship to SSC

MPTA Acceptance Test
CF HF-1	 HF-20

Fab CSi (Ares V-Y)	 Ship to KSC
Ship b SSC

Fab CS2 (LSAM i)	 Ship to KSC

Fab CS3 (LSAM 2)	 Ship to KSC
Shp m SSC

Fab CS4 (LSAM 3^	
Igo ( N Ship to KSC

Sli SSCp

Fab CS5 (LSAM 4)	 Ship to KS9

ATP	 i

Ares V Core Stage Booster

Ares V Earth Departure ATP

Stage

Ares V Earth Departure ATP

Stage Engine delivery req for EDS MPTA
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Summary

♦ Ares V remains the heavy-lift component of NASA's exploration
architecture and a key component of "national strategy"
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For More Information

Phil Sumrall
John.P.Sumrall@NASA.Gov

(256) 544-3135

Ares public website
http://www.nasa.gov/ares

Questions?
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