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Abstract—Coupled resonators exhibit coherence effects
which can be exploited for the delay or advancement
of pulses with minimal distortion. The bandwidth
and normalized pulse delay are simultaneously
enhanced by proper choice of the inter-resonator
couplings.

I. INTRODUCTION

The strongly modified dispersion associated with
whispering-gallery-mode resonances in ` coherently
coupled micro-resonators can be used to slow or advance
pulses of light with minimal loss and pulse distortion, via
effects such as coupled-resonator induced transparency
[1] and gain-assisted superluminality [2], analogous to
effects in atomic systems [3, 41. These structures are
therefore promising for applications such as all-optical
buffers and delay lines [5-8], differential sensing and
laser gyroscopy [9-11], high fidelity image processing
[12], and optical computing schemes [13], but tend to
suffer due to their small bandwidth and normalized pulse
time delay. Recently attention has focused on expanding
the useable bandwidth of slow and fast light materials [7,
14, 15]. In this paper, we demonstrate that proper choice
of the couplings between resonators can simultaneously
increase bandwidth and pulse delay, resulting in devices
that can better accommodate the high bit content and
bandwidth demands of modern communications systems.
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Fig. 1. Two coupled ring-resonators

Il. RESPONSE FUNCTION FOR TWO RESONATORS

The response of two coupled-resonators, one of which
is coupled to an excitation waveguide as shown in Fig. 1,
can be readily solved by iterative or matrix techniques
[16-18].	 The complex electric-field transmission

(EJE; ) across such a structure is given by the Airy

expression
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is the complex transmittivity through the first resonator,
O, = 2zn,L, I Ao are the single-pass phase-shifts, rj are

the coupler reflection coefficients, a^- = exp(-a,.L, /2)

are the single-pass attenuation coefficients, n j are the
refractive indices, a, are the loss coefficients, Li are the
circumferences of the resonators, and j =1, 2 specifies
the first (furthest from the excitation waveguide) or
second (closest to the waveguide) resonator. We will
assume the resonators have identical optical path lengths
(they are co-resonant) so that we can drop the subscript
from the single-pass phase shifts. The transmittance is
given by Tz (0) = z2 .

If the complex transmittivity f is expressed as a

	

phasor, i.e., a = zcos 0 ieffl z' + z sin 0 ieef li"	 then the
response can be plotted on an Argand diagram. It can be
shown that extremes in transmission occur when

dr I

do a[z do] 	 (3)

i.e., when a 1 df1 d¢ , while dispersion reversals occur
when

o(eff)

	

ddb = 
zx^ =0or oo ,	 (4)
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i.e., when i 11 daldo, or when the structure is critically-
coupled to the excitation waveguide, i.e., T = 0. The

derivative dO ('ff) IdO (the phase time) thus determines
the amount of pulse advancement or delay that occurs.
The difference in transmittance at 0 0 and at the

extremes of Eq. 3, 0 =0,,,  determines whether induced
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Fig. 2. Spectral response for a single resonator (dashed

lines), and two coupled resonators (solid lines). Top:
transmission Argand diagrams. The plots are parametric,
starting on-resonance (0 = 0) , as indicated by the dot, and

proceeding counterclockwise around the loop over a range of
27r. Bottom: spectra of the transmission and phase.

transparency or induced absorption occurs on-resonance.
The transition between the two effects occurs at
AT = T2 (0) - T2 (asp) = 0 which corresponds to

2r2 (1- a  a2
rt 2a

1 r2 (1-az)+a2 ^1 a^)^1+r2)	
(5)

At this value of the inter-resonator coupling, neither
induced transparency nor induced absorption occur, and

instead the transmission spectrum is flattened as shown in
Fig. 2. Moreover, for two resonators there are two loops,
rather than one, in the Argand diagram, and the inner
loop forms an almost perfect circle, indicative of the
flattened spectrum. One can readily verify that
1-2 (0) = T2 (0,, ) from this graph because 0 (e'f) (0sp ) ;Z^ 7[

for this particular case. The broadening of the spectrum
is also accompanied by an increase in the time delay, as
evidenced by the increased slope do

(eff) Ido in the case

of the coupled resonators.
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Finally, we note that this same principal can be used to
broaden and flatten the spectrum when the resonators
incorporate an amplifying medium. In this case, the
dispersion is anomalous and a pulse advancement rather
than delay occurs.

III. CONCLUSION

The response of two coupled resonators exhibits
coherence phenomena such as induced transparency and
absorption and gain-assisted superluminality in analogy
with multilevel atomic systems, which can be exploited

for the delay or advancement of pulses in optical systems
with minimal pulse distortion. Proper choice of the inter-
resonator coupling can simultaneously increase the
bandwidth and the normalized pulse delay (or
advancement) which is crucial to increasing the storage
capacity of these devices for the resolution of data packet
contention issues in communications systems.
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•	 I Slow-Light Optical Buffer (SLOB)

5/ow-Light
Element

O

â Resolution of data packet contention via slow (or fast) light buffer
â Requires broadband controllable delay (or advancement) of at least

1 packet length, i.e., thousands of pulse widths, with minimal pulse
distortion and attenuation.

â What sort of element can be used? No current material meets need.
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â Single optical resonators can delay or advance pulses of light,
albeit with some absorption.

â Advantage: Periodic resonances from tunable all-solid-state
structures. Not. restricted to atomic absorption lines.

â Problems Narrow bandwidth. Delay limited to about one pulse
width when critically-coupled. Advancement less than delay.

â Question: How to increase the bandwidth w/o sacrificing delay?
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Tu phase shift results afte r
1 = 21 passes across coupler!
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Coupled-Resonator-Induced Absorption
(CRIA)	 D.D. Smith, H. Chang, JMO 51, 2503 (2004).
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* Like RA, abut can be fast Or 510W depending on coupling.
+ Considerable absorption
* Requires waveguide-coupled resonator to be strongly
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â Bandwidth AND delay both increase!
â FSR-Limited to THz modulations
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Perfect Concentric Circle = No
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CRI T / CRIA transition =:;)^ Minimum Pulse Distortion!
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of 14 pulse lengths by 100

CR/T/CR/A structures

â Pulse delay increased by using sequence of resonators



Bandwidth AND Pulse Delay simultaneously increased while
pulse distortion minimized by operating at CRIT / CRIA
transition.

Can use multiple coupled resonators to further increase
bandwidth, but pulse delay still limited to a few pulse lengths.

A resonator chain or SCISSORS structure can be used to

â A. Odutola /Alabama A&M University

â R. W. Boyd, A. Schweinsberg, G. Gehring /
University of Rochester


