
Abstract
Consistency-based diagnosis relies heavily on the
assumption that discrepancies between model pre-
dictions and sensor observations can be detected
accurately. When sources of uncertainty like sensor
noise and model abstraction exist robust schemes
have to be designed to make a binary decision on
whether predictions are consistent with observa-
tions. This risks the occurrence of false alarms and
missed alarms when an erroneous decision is made.
Moreover when multiple sensors (with differing
sensing properties) are available the degree of
match between predictions and observations can be
used to guide the search for fault candidates. In this
paper we propose a novel approach to handle this
problem using Bayesian networks. In the consis-
tency-based diagnosis formulation, automatically
generated Bayesian networks are used to encode a
probabilistic measure of fit between predictions
and observations. A Bayesian network inference
algorithm is used to compute most probable fault
candidates.

1 Introduction
Consistency-based diagnosis techniques [Hamscher, et al.,
1992] compare model predictions against sensor observa-
tions for isolating faults. Structural and behavioral models
are used to predict system behavior under hypothesized no-
minal and faulty conditions. The hypotheses whose predic-
tions best match the sensor observations are reported as the
diagnosis. Rather than look at a pre-enumerated set of hypo-
theses, these approaches use techniques like conflict di-
rected search and backtracking to maintain a short list of
consistent hypotheses. This has been applied to discrete [De
Kleer and Williams, 1987; Williams and Nayak, 1996; Ku-
rien and Nayak, 2000], discrete-event [Sampath et al.,
1996], continuous [Gertler, 1988; Mosterman and Biswas,
1999] and hybrid [Narasimhan and Biswas, 2003] domains.
 One of the assumptions in these approaches is that we can
say with absolute certainty if predictions and observations
are consistent with each other. For example, the Living-
stone 2 system [Kurien and Nayak, 2000] uses monitors to
make this decision and the TRANSCEND system [Moster-

man and Biswas, 1999] uses a symbol generation scheme to
make a decision that is statistically robust. If any inconsis-
tencies are detected, information about the inconsistencies
(including variables involved in the inconsistencies and pos-
sibly the direction or magnitude of the inconsistencies) is
used to guide the search for alternate fault candidates. Fault
candidates that resolve the observed discrepancies (resolv-
ing conflicts entailed by the discrepancies for example) are
generated according to some user-defined criteria (typically
based prior probabilities and size of the chosen candidates.

However in a lot of situations it may be very difficult to
determine if model predictions exactly match sensor obser-
vations. Some reasons for this difficulty include (i) imper-
fect/abstract models resulting in imprecise predictions, (ii)
sensor noise resulting in imprecise observations, and (iii)
uncertain operating conditions and environment resulting in
imprecision predictions and observations. An error in mak-
ing this binary decision (either reporting a discrepancy when
there is none or not reporting a discrepancy when one ex-
ists) will result in erroneous diagnosis results. Additionally
the actual degree of fit between predictions and observations
for individual variables might provide useful diagnostic
information allowing us to limit the search for fault candi-
dates (resulting in faster diagnosis).

Some probabilistic approaches address this problem by
setting up a Bayesian formulation (as opposed to the consis-
tency-based approach) to solve problem [Dearden and Clan-
cy, 2002; Hofbaur and Williams, 2004;]. Typically candi-
dates have weights/probabilities associated with them and
these weights are updated at each time step based on the
model and observed values. Candidates that represent faults
may be introduced in several ways including importance
sampling [Dearden and Clancy, 2002] and using a consis-
tency-based diagnosis scheme [Narasimhan, et al., 2004].

In this paper we propose an alternate approach using
Bayesian networks, which attempts to solve this problem
within a consistency-based framework but using a Bayesian
network as a component. In our approach, a consistency-
based diagnosis engine is the driving force. The engine is
responsible for maintaining a set of candidates “consistent”
with the observations seen so far. At each time step the en-
gine tests each candidate for consistency with the current
observations. Rather than looking for a binary decision on
the consistency of the candidate, the consistency test is used

Using Bayesian networks for Candidate Generation in Consistency-based Diagnosis

Sriram Narasimhan & Ole Mengshoel
UC Santa Cruz & USRA RIACS

M/S 269-3, NASA Ames Research Center,
Moffett Field, CA 94043

Sriram.narasimhan-1,ole.j.mengshoel@nasa.gov

to provide probabilistic measure of the degree of fit between
predictions and observations for each observed variable.
The engine then utilizes a Bayesian network (BN) that en-
codes the structure associated with the current model as well
as probabilistic information in the form of prior probabilities
of faults and the probability of fit for observable variables
(computed in the consistent testing step earlier). The BN can
then be queried for the most probable assignment of values
to all variables, a subset of which correspond to faults in the
system. This information can then be used to update the
candidate set maintained by the diagnosis engine.

In this paper we will focus on a specific consistency-
based diagnosis system called HyDE [Narasimhan and
Brownston, 2007] and show our approach works in that
framework. However the ideas are general and can be
adapted to other consistency-based diagnosis systems. We
will describe the makeup of the BN, how it can be con-
structed automatically from existing models in the HyDE
framework (this is the only part that would be different for a
different diagnosis technology) and how it can be integrated
with a consistency-based diagnosis engine. Initial experi-
ments, with a two tank system, show a significant improve-
ment in the diagnostic accuracy, when our novel approach is
used.
 The rest of paper is divided as follows. Section 2 presents
some back ground on BN and the consistency-based diagno-
sis paradigm we will be assuming. Section 3 presents the
Hybrid Diagnosis Engine (HyDE) and its diagnosis archi-
tecture. Section 4 presents our novel approach of using BN
for candidate generation. Section 5 presents some examples
and results from using this combined approach. Section 6
presents conclusions and scope for future work.

2 Background

2.1 Consistency-based Diagnosis
Several interpretations of consistency-based diagnosis exist
in the literature [Hamscher, et al., 1992]. In order to take
into account the hybrid and dynamic nature of the systems
being diagnosed, we will be using the following representa-
tion of consistency-based diagnosis as our basis. We assume
that the consistency-based diagnosis uses a “generate and
test” paradigm to detect and isolate faults. The diagnosis
engine maintains a set of consistent candidates which is
updated at each time step by adding or pruning candidates
based on the observations from sensors. The candidates
represent hypotheses about faults that have occurred in the
system with associated time stamps. At each time step can-
didates in the candidate set are tested for consistency against
observations available at that time step. If a candidate is
found to be inconsistent, it is dropped from the set. New
candidates are generated by backtracking in the model from
the point of inconsistency (typically an intermediate step of
generating conflicts is used). The newly generated candi-
dates can be tested and added to the candidate set if found to
be consistent with observations. The test for consistency
uses models that can be used to predict what the system is

expected to do. The predictions can be compared against
observations to check for consistency.

2.2 Bayesian networks
A Bayesian network (referred to as BN in the rest of this
paper), or a belief network, is a probabilistic graphical mod-
el that represents a set of variables and their probabilistic
independencies. The term "Bayesian networks" was coined
by Judea Pearl [Pearl, 1985] to emphasize three aspects:

1. The often subjective nature of the input informa-
tion.

2. The reliance on Bayes's conditioning as the basis
for updating information.

3. The distinction between causal and evidential
modes of reasoning, which underscores Thomas
Bayes's posthumous paper of 1763.

Bayesian networks are directed acyclic graphs whose
nodes represent variables, and whose arcs encode condition-
al independencies between the variables. Nodes can
represent any kind of variable, be it a measured parameter, a
latent variable or a hypothesis. If there is an arc from varia-
ble x1 to another variable x2, x1 is called a parent of x2, and
x2 is a child of x1. Associated with each variable xi is a joint
probability distribution which specifies the probability of xi
taking each value in its domain for all possible value as-
signments for the parents of xi.

Efficient algorithms exist that perform inference and
learning in Bayesian networks. Because a BN is a complete
model for the variables and their relationships, it can be
used to answer probabilistic queries about them. For exam-
ple, the BN can be used to find out updated knowledge of
the state of a subset of variables when other variables values
(called evidence) are known. This process of computing the
posterior distribution of variables given evidence is called
probabilistic inference.

Formally, BN can be defined as BN = ({X},{E},{P})
where X={x1,x2,…,xm} are the m variables in the BN with
associated conditional probability distributions
P={p1,p2,…,pm} and E={e1,e2,…,en} represent the n arcs
between variables in {X} with ei = xj→xk for i≠k.

3 Hybrid Diagnosis Engine (HyDE)
Hybrid Diagnosis Engine (HyDE) is a model-based reason-
ing engine for hybrid (discrete + continuous) diagnosis.
HyDE is able to diagnose multiple discrete faults using con-
sistency checking between prediction from hybrid models
and sensor observations. We first describe the models used
by HyDE in its reasoning.

3.1 HyDE Models
A HyDE model is made up of the following elements:

1. The set C of the components of the system.
2. The set L of operating modes of all components

called Locations.
3. The set TR of allowed transitions between the loca-

tions of the same component. Each transition tr Є TR
is of the form lfrom→lto,g where lfrom Є c & lto Є c for

some c Є C and g is a guard indicating the conditions
under which the transition may be taken. An empty
guard is used to encode a special kind of transition
called unguarded transition. Unguarded transitions
can be used represent, among other things, faults in
the system.

4. The set V of variables and the set VD of domains as-
sociated with the variables, specifying the allowed
values (data types) for the variables.

5. The propagation model PM specifies the behavior of
the system within a time step as relations over va-
riables. This includes:

a. Global model PMg = Rg(V), where Rg is the
global set of relations constraining values of
variables. These relations are valid at all
times.

b. Local models PMl = Rl(V) for each l Є L,
where Rl is the set of local relations con-
straining values of variables. These relations
are applicable only when the system (cor-
responding component) is in location l.

6. The integration model IM specifies the evolution of
values each variable across time steps. It specifies
how state variable values at one time step can be
computed from state variable values and derivative
(of state) variable values at the previous time step.

7. The dependency model DM specifies qualitative how
variables in the model are influenced by local rela-
tions.

3.1 HyDE Reasoning
The reasoning algorithm in HyDE (illustrated in Figure 1)

essentially maintains a set of candidates D. The goal of
HyDE is to find the candidates that best match the observa-
tions seen so far. Each candidate contains a possible trajec-
tory of system behavior evolution represented in the form of
a hybrid state (HS) history and transition history. The hybr-
id state is a snapshot of the entire system state at any single
instant. It associates all components with their current loca-
tions and all variables with their current values. The hybrid
state history tracks hybrid states at beginning and end of all
time steps of the system behavior evolution. The transition
history tracks transitions taken by all components at all time
steps. In order to avoid monotonic growth in the histories, a
user-defined parameter called history window is used to
restrict the length of history saved.

At each time step ti in the reasoning process, HyDE tests

each candidate for consistency with observations at ti. This
involves computing the hybrid state at the end of ti (HSti+)
from the HS at the beginning of ti (HSti-) and the model en-
tailed by the HS. A subset of variable values in HSti+ cor-
responds to predictions for observed variables. These pre-
dicted values are compared against corresponding observa-
tions. If they are found to be inconsistent then a candidate
generator is created which finds unguarded transitions (one
or more) that can possibly resolve the inconsistency. A tran-
sition can possibly resolve an inconsistency if the relations
from the source location of the transition directly or indi-
rectly influence the variable found to be inconsistent. Since
multiple transitions may resolve an inconsistency and typi-
cally multiple inconsistencies (across time) may occur after
a fault, a search process is needed to identify the most im-
portant transitions. Importance is judge based on criteria like
maximum prior probability and minimum size. A candidate
manager is responsible for pruning candidates that were
found to be inconsistent and adding candidates by querying
the candidate generators. The reasoning algorithm can be
summarized as follows:
1. Initialize consistent candidate set with the empty candi-

date Dc = {dempty} where dempty = (HS0,{}) and HS0 is
the initial hybrid state of the system which is assumed
to be known and the system is assumed to be in nomin-
al state (no unguarded transitions have been taken).

2. Repeat at each time step ti for each candidate dk Є Dc
2.1. Advance the hybrid state from the end of the pre-

vious time step (HSti-1+) to the beginning of the
current time step (HSti-).

2.2. Compute HS at end of time step (HSti+) from HSti-,
current values of input variables (Uti), global con-
straints (Rg) and local constraints associated with
current system location obtained from HSti- (Rlti).

2.3. Compare sensor values for observed variables Vobs
with predicted values Vobs(HSti+) to identify in-
consistent variables Vinconsistent C Vobs.

2.4. In the dependency model, trace backwards from
each v Є Vinconsistent to identify all local relations
that influence v. The locations associated with
these relations together form a conflict (if the sys-
tem is assumed to be in these locations then v be-
comes inconsistent).

2.5. Possible transitions that can resolve a conflict are
the unguarded transitions out of the locations that
form the conflict. Compute a set of unguarded
transitions TR (selecting the best set based on us-
er-specified ranking criteria) that resolve conflicts
associated with all inconsistent variables Vinconsis-

tent. TR and the HS history from dk can then be
used to generate a new candidate dpotential. Dpotential
can then be tested to see if it actually resolves the
conflict by tracking its behavior prediction. If it is
found consistent with the observations then it is
added to the candidate set (Dc = Dc U dnew) else it
is discarded.

2.6. Remove the inconsistent candidate from the can-
didate set (Dc = Dc – dk).

Figure 1: HyDE Reasoning Architecture

For more details about the HyDE reasoning algorithm

please refer to [Narasimhan and Brownston, 2007].

3.2 Bayesian networks for Candidate Generation in
HyDE

When we look at the steps of the HyDE reasoning algo-
rithm, step 2.3 assumes that we can make a binary decision
on which observations are inconsistent with predictions.
Based on this decision, new candidates may be added (and
the inconsistent one eliminated) using a conflict directed
search. This approach fails when inconsistencies cannot be
detected accurately. It also fails to make use of the magni-
tude/degree of the inconsistency which might be a useful
guide when searching for candidates. We propose a mod-
ified HyDE reasoning algorithm that uses the degree of in-
consistency (rather than expecting to make a binary decision
based on it) by constructing a BN and generating candidates
to be tested by computing the most probable hypothesis in
the BN.

The basic idea is to estimate a probabilistic measure of
the (in)consistency between model predictions and sensor
observations. Depending on the domain of the variable and
sensor noise properties this may be achieved by simply thre-
sholding or by other means like the probability distribution
function of a Gaussian distribution (which we will see in the
example later). In order to use this probabilistic measure
effectively, we use an automatically constructed BN in place
of the dependency model for candidate generation. The
structure of the BN is determined by the propagation and
integration model (Bullets 5 & 6 from the HyDE model de-
scription). The conditional probability distributions in the
BN are obtained from prior probabilities of unguarded tran-
sitions and the estimated probabilistic measured of
(in)consistency between predictions and observations.
 We modify HyDE reasoning algorithm in the following
ways. We add an initialization step (1a) that initializes the
BN for the initial candidate.

1a. Initialize the BNempty associated with nominal candi-
date with nodes for locations of components at start of
time step 0. If lji be the location of component ci in HS0-
then BNempty = ({xc1,xc2,…,xcm},{Pc1,Pc2,…,Pcm},{})
where Pci = { p(ci in lji) = 1.0, p(ci in ljk|k ≠ i) = 0.0}

Steps 2.3 through 2.6 are modified as follows:
2. Repeat at each time step ti for each candidate dk Є Dc

2.3. Compare sensor values for observed variables Vobs
with predicted values Vobs(HSti+) to assign proba-
bilities to each variable being consistent. For v Є
Vobs, p(v=CONSISTENT) = δ(vti ,vˆti) where δ is a
user-customizable comparison function (for ex-
ample thresholding). p(v=INCONSISTENT) = 1-
p(v=CONSISTENT).

2.4. Construct the BN for ti and for the transition from
time step ti-1 to ti and append it to BN for the can-
didate BNdk = BNdk U ({Xti},{Eti},{Pti}). This step
is discussed in more detail in the next section.
Truncate parts of the BN referring to time steps
prior to the horizon (time steps outside the history

window). BNdk = BNdk – ({XtH},{EtH},{PtH}) for
all tH < ti – thistory where thistory is a user specified
time history window.

2.5. Query BNdk for the Most Probable Explanation
(MPE) which provides the most likely assignment
of values for all variables in the BN. A subset of
these variables corresponds to transitions taken by
all components at all time steps in the time history
window. This subset will be used to generate a
new candidate dnew with hybrid state obtained
from dk. If dnew = dk then nothing needs to be
done. However if dnew ≠ dk then dnew is added to
the set of consistent candidate (Dc = Dc U dnew).

2.6. Check the probability of the dk in the BN and if it
falls below a certain threshold pcutoff then remove
dk from Dc (Dc = Dc – dk).

We describe the automatic construction of the BN models
(step 3.4) for a specific candidate dk at a specific time step tI
in section 4.

3.3 Example and Results
To illustrate the advantage of using the proposed approach,
we present a two tank example. The system consists of two
tanks with outlet pipes from both tanks and a connecting
pipe between the two tanks. A flow source feeds liquid into
the first tank. Each of the pipes and the source can be in
nominal mode (resistance is specified constant) or in hig-
hResistance mode (resistance is 5 times the specified con-
stant). The actual highResistance fault in the system is
usually not exactly 5 times but could vary between 4 and 6
times the resistance. The out flows from both outlet pipes
are the only observed variables. The sensors associated with
the out flows are assumed to have White Gaussian noise.
The HyDE model of this example is illustrated in Figure 2.
 In this example, due to feedback effects, all of the faults
will eventually impact both observed variables. However
the presence of integrating elements in the form of tank ca-

pacitances will introduce a time delay in the propagation of
fault effects. For example, if Pipe1 is in highResistance
mode then we should see an immediate influence in the ob-
served Pipe1 outflow while the influence on Pipe2 outflow
will take a few time steps to manifest. If we use a purely
consistency based diagnosis then we have to wait until both
observations have deviated (because no fault influences only
one observation) and even then all fault candidates are poss-
ible and they will be tested in the order of prior probabilities
(Pipe12, Pipe2, Pipe1, Source in that order for this exam-
ple). The presence of sensor noise and uncertainty about
actual magnitude makes it very difficult to absolutely de-

Figure 2: HyDE model of Two Tank Sys-

tem

termine if sensor observations deviate from model predic-
tions. If the sensor noise is high or if the actual fault magni-
tude is not close to 5, the chances of misclassification are
also quite high.

We ran 34 scenarios by varying the location (4 scenarios)
and magnitude of fault (15 scenarios) as well as the sensor
noise level (15 scenarios). If a sensor observation was not
found to be within 2 standard deviations of a Gaussian dis-
tribution (95% of the time values sampled will be within 2
standard deviations) with mean set to the model prediction
and standard deviation set based on level of sensor noise
then it was considered to be inconsistent. The results are
summarized in Figure 3 (Dark Rectangles on the left). We
can clearly see that there are a large number of missed
alarms and false alarms when using a purely consistency-
based approach.

For the second set of experiments we used the proposed
modification to HyDE using BN. The BN was automatically
generated from HyDE model (one example is illustrated in
Figure 4) and probabilities for observed variables were
computed using the probability distribution function for
Gaussian distribution given by:

Figure 3 (Light Rectangles on the right) shows the results of
integrating the BN in the consistency-based diagnosis
framework. There is a significant reduction in both missed
and false alarms since this approach does not commit to a
decision which may later turn out to be erroneous. However
we do pay the penalty of using more time and computational
resources for the BN computation.

4 Automatic Generation of Bayesian net-
works
We noted that in step 3.4 of the modified HyDE reasoning
algorithm presented in the previous section, the BN for each
candidate dk (BNdk) is augmented with the BN fragment at
the current time step tj (BNti) and BN fragment for the tran-
sition from previous time step ti-1 to current time step ti
(BNti-1→ti). BNdk = BNdk U BNti U BNti-1→ti.

We first describe the automatic generation of BNti from the
HyDE models and then describe the generation of BNti-1→ti.

4.1 Bayesian network within a time step
In order to generate the BN at a specific time step ti for can-
didate dk, we find the system location predicted by dk at the
beginning of ti. This can be obtained from the hybrid state
predicted by dk at the beginning of ti (HSti-). SLti = {l1ti,
l2ti,…,lnti} = SL(HSti-) where ljti corresponds to the location
of component cj. The next step is to construct the constraint
system model (Rti) at ti as predicted by dk. This should al-
ready have been constructed in step 3.2 and can be re-used
in the generation of BNti.

In the reminder of this section we will omit the subscript
ti for convenience. BN is computed as follows. The nodes
{X} in the BN consist of nodes corresponding to variables
in the model (Xv) and nodes corresponding to components
in the model (Xc): X = Xv U Xc

• Xv = {xv1, xv2,…,xvk} where xvi Є
{CONSISTENT,INCONSISTENT} corresponds to
variable vi in the constraint system model.

• Xc = {xc1,xc2,…,xcm} where xci Є Locations(li) cor-
responds to Component ci in the constraint system
model.

The arcs {E} between nodes in X are computed based on
the currently valid relations R = Rg U RSL. We use the fol-
lowing algorithm for generating arcs in the BN:

1. Create two variable lists, KNOWN (Xvk) &
UNKNOWN (Xvu). Move all input and state va-
riables to Xvk and all other variables to Xvu.

2. Create a TOBEPROCESSED relations list (RT) and
move all relations in R to RT.

3. Repeat until RT ≠ {}
a. Find a relation r(XVka , XVua) = R Є RT

where XVka represents variables in r be-
longing to Xvk and XVua represents va-
riables in r belonging to Xvu, such that
size of XVu is minimum among all r Є R.
In other words find the relation with few-
est numbers of UNKNOWN variables.

b. Create a bi-partite graph with nodes from
XVka on one side and nodes from Xvua on
the other side and arcs from all nodes in
XVka to all nodes in XVua. Make all the
UNKNOWN variables in r depend on
KNOWN variables in r. This encodes our
intuition that the KNOWN variables in r
would be used to compute values for the
UNKNOWN variables in r.

c. If r is a local constraint (i.e., r Є RSL) be-
longing to location lm of component cm
then add an arc from the xcm to all x Є
XVua. This encodes the dependency that a
local relation will only be used when the
system is in that location.

d. Move all variables in XVua from Xvu to Xvk
i.e., For each xVui Є xVui, XVui = XVui – vui
& XVki = XVki U xVui. All UNKNOWN

Figure 3: Consistency vs. Consistency + BN

()
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

=
2

2

2

2
1)(σ

μ

πσ

x

exp

variables in r can now considered to be
KNOWN through computation.

e. Remove r from the TOBEPROCESSED
list. R = R - r.

The conditional probability tables {P} are computed as fol-
lows:

1. For all x Є Xv such that x corresponds to an input or
state variable set p(x=CONSISTENT) = 1.0,
p(x=INCONSISTENT) = 0.0. We will see in the
next section that if there are arcs to the state va-
riables from the BN fragment at previous time step
then the P for the state variables will be different.

2. For all other variables (non-input and non-state) x Є
Xv that have incoming arcs only from variables in
Xv P is set to

a. p(x=CONSISTENT|for all xv Є Xv, xv =
CONSISTENT) = 1.0

b. p(x=INCONSISTENT|for all xv Є Xv, xv =
CONSISTENT) = 0.0

c. p(x=CONSISTENT|there exists xv Є Xv,
xv = INCONSISTENT) = 0.0

d. p(x=INCONSISTENT| there exists xv Є
Xv, xv = INCONSISTENT) = 1.0

3. For variables x Є Xv with arcs from other variables
Xv as well as arcs from xc(For any variable x Є Xv
there can only be one variable xc Є Xc with an arc
to x) the P when xc=lcurrent where lcurrent is current
location of component c in SL is set 1 and 0 other
wise

a. p(x=CONSISTENT|xca≠la) = 0.0
b. p(x=INCONSISTENT|xca=la) = 1.0.

4. For all variables xc Є Xc, we set the probability of
the variable being in the location predicted by the

candidate to be 1 and probability of any other loca-
tion to be 0

a. p(xca = lcurrent) = 1.0
b. p(xca = lb for all lb ≠ lcurrent) = 0.0.

As we will see in the next section, if xc has an arc
from xc at the previous time step then the P is
computed differently.

4.2 Bayesian network across time steps
Once we have generated the BN fragment for candidate dk
at a specific time step ti (BNti) we have to connect it to BNdk
(associated with earlier time steps). Let BNti-1 = ({Xti-1},{Eti-

1},{Pti-1}) represent the part of BNdk corresponding to the
previous time step. We augment BNdk as follows:

• First we add a new set of variables XT =
{xT1,xT2,…,xTn} where xTi corresponds to an un-
guarded transition taken by component ci. Hence
there will be n such variables where n is the num-
ber of components. The domain for any one of
these variables xTa Є XT will be all the unguarded
transitions out of lcurrent where lcurrent is the current
location of component ca plus an additional transi-
tional called the self transition (Tself) which if tak-
en keeps the component in the same location.

• Next we add arcs ET that represents the conditional
dependence of the location of component at ti on
the transition the component takes between ti-1 and
ti. Each arc eT is of the form xT→xc[ti].

• Then we add arcs Ec indicating the conditional de-
pendence of the location of a component at time
step ti on the location of the same component at
time step ti-1. Each arc ec is of the form xc[ti-

1]→xc[ti].

Figure 4: Bayesian network for Two Tank System

• Then we add arcs Ev to represent the conditional de-
pendence of state variables on derivative variables
as determined by the Integration model. For each
state variable xv, we determine the set of derivative
variable Xd that will be required to compute the
value of xv. We then draw arcs from each xd Є Xd
to xv.

• The P for xc[ti-1] is unchanged since it has no new
incoming arcs.

• The P for x Є XTi is set to the prior probabilities of
the corresponding unguarded transitions.

• The P for xc[ti] associated with component c is com-
puted as follows. Based on the location of c at ti-1
and the transition T taken by component between
ti-1 and ti, we can deduce the location of c at ti. The
probability for this location is set to 1 and the
probabilities for the rest of the locations are set to
0.

o p(xca[ti]=lb|xca[ti-1]=lc & xT=lc→lb) = 1.0
o p(xca[ti]=lb|xca[ti-1]=lc & xT=lc→ld, ld≠lb) =

0.0
• The P for xv[ti] for all state variables is updated by

setting it to be CONSISTENT when all derivative
variables that influence it from the previous time
step (Xd[ti-1]) and corresponding state variable
from previous time step (xv[ti-1]) are
CONSISTENT

o p(xv[ti]=CONSISTENT| Xd[ti-

1]=CONSISTENT & xv[ti-

1]=CONSISTENT) = 1.0
o p(xv[ti]=CONSISTENT| there exists xd Є

Xd such that xd[ti-1]=INCONSISTENT |
xv[ti-1]=INCONSISTENT) = 0.0

o p(xv[ti]=INCONSISTENT) = 1 -
p(xv[ti]=CONSISTENT)

6 Conclusion and Future Work
We presented a new approach for incorporating probabilistic
information in a consistency-based diagnosis framework.
This approach uses automatically constructed BN models
for candidate generation. The conditional probability distri-
butions in the BN are based on probabilistic measures of the
consistency between model predictions and observations.
BN inference can be used to identify the most likely hypo-
thesis which if different from the original candidate is used
to generate a new candidate.

The approach presented in this section differs from typi-
cal consistency-based approaches in that it is able to deal
with uncertainty when comparing observations and predic-
tions from the model. It differs from typical BN approaches
to diagnosis in that it uses BN inference only for the candi-
date generation rather than entire diagnosis process [Roy-
choudary et al., 2006].
 This new approach combining BN and consistency-based
is meant to be useful when a significant amount of uncer-
tainty exists in testing candidates for consistency. In such
situations the use of the proposed approach will result in
fewer false alarms and missed alarms. Additionally because

fewer candidates are likely to be tested, there is an im-
provement in time and memory performance as well. How-
ever in some cases there might be an increase in time and
memory performance because of the need to construct the
BN and perform inference on it. For the purposes of this
paper we used the SAMIAM tool from UCLA
(http://reasoning.cs.ucla.edu/samiam/) for Bayesian network
inference. In future work we would like to explore the use
of strategies to improve the performance of the BN infe-
rence including pre-generation and compilation approaches
suggested by Darwiche [Chavira and Darwiche, 2007].
 Once we have established the framework to integrate BN
inference for candidate generation in consistency-based di-
agnosis there is scope for incorporating several kinds of
uncertainty in the reasoning. For example, sensor noise can
be modeled directly by the conditional probability distribu-
tions for the BN variables corresponding to observable va-
riables. Similarly it is possible to incorporate uncertainty
about model parameters in the BN. In future work we would
like to explore the extension of BN to support other such
forms of uncertainty and see how that improves the sensitiv-
ity of the diagnosis algorithm.
 As we mentioned earlier this approach can be easily
adapted to work with other consistency-based techniques as
well. This can be achieved by providing an algorithm to
construct the BN from whatever modeling paradigm is be-
ing used. For example, the temporal causal graphs in the
TRANSCEND system [Mosterman and Biswas, 1999] al-
ready provide a structure that can be used to construct the
BN. Even more diagnostic power is possibly by changing
the BN variable states to (-, 0, +) as used in the
TRANSCEND reasoning algorithms. The signal to symbol
transformation algorithms have to be modified to output a
probabilistic measure of consistency (or a probability distri-
bution over -, 0, + if those states are used). Using this ap-
proach, TRANSCEND would not be forced to commit to a
set of candidates generated by the initial backtracking. Al-
ternately it might be possible to start the fault isolation rea-
soning earlier since it is not essential for 100% accuracy in
determining symbols.

Acknowledgments
We would like to thank the HyDE team members Lee
Brownston and David Hall for providing useful feedback on
the approach discussed in this paper. We would also like to
thank Adnan Darwiche’s group at UCLA for use of the
SAMIAM tool.

References
[Hamscher, et al., 1992] Walter Hamscher, Luca Console,

and Johan De Kleer. Readings in Model-based Diagno-
sis. San Mateo, CA: Morgan Kaufmann, 1992.

[De Kleer and Williams, 1987] Johan De Kleer and Brian C.
Williams. Diagnosing multiple faults, Artificial Intelli-
gence, 32(1):97–130, 1987.

[Sampath, et al., 1996] Sampath, M.; Sengupta, R.; Lafor-
tune, S.; Sinnamohideen, K.; Teneketzis, D.C. Failure
Diagnosis using Discrete-Event Models. IEEE Transac-
tions on Control Systems Technology, 1996. 4: pp. 105-
124.

 [Williams and Nayak, 1996] Brian Williams and Pandu
Nayak. A model-based approach to reactive self-
configuring systems, in AAAI, pp. 971–978, (1996).

[Kurien and Nayak, 2000] James Kurien and Pandu Nayak.
Back to the Future with Consistency-based Trajectory
Tracking, AAA/IAAI 2000, pp370-377.

[Gertler, 1988] Janos Gertler. Fault Detection and Diagno-
sis in Engineering Systems. New York: Marcel Dekker,
1988.

[Mosterman and Biswas, 1999] Pieter J. Mosterman and
Gautam Biswas. Diagnosis of continuous valued systems
in transient operating regions. IEEE Transactions on
Systems, Man, and Cybernetics, 1(6):554–565, 1999.

[Dearden and Clancy, 2002] Richard Dearden and Dan
Clancy. Particle Filters for Real-time Fault Detection in
Planetary Rovers, in Proc. 13th International Workshop
on Principles of Diagnosis (DX ’02), Semmering, Aus-
tria, pp. 1-6, 2002.

[Hofbaur and Williams, 2004] Michael Hofbaur and Brian
C. Williams. Hybrid Estimation of Complex Systems,
IEEE Transactions on Systems, Man, and Cybernetics -
Part B: Cybernetics, 2004, Special Issue on Diagnosis in
Complex Systems: Bridging the methodologies of the
FDI and DX Communities, 2004, pp. 2178-2191.

[Narasimhan, et al., 2004] Sriram Narasimhan, Richard
Dearden, and Emmanuel Benazera. Combining Particle
Filters and Consistency-based Approaches for Monitor-
ing and Diagnosis of Stochastic Hybrid Systems, 15th In-
ternational Workshop on Principles of Diagnosis
(DX04), Carcassonne, France, June 2004.

[Narasimhan and Brownston, 2007] Sriram Narasimhan and
Lee Brownston. HyDE – A General Framework for Sto-
chastic and Hybrid Model-based Diagnosis, in Proc. 18th
International Workshop on Principles of Diagnosis (DX
’07), Nashville, USA, pp. 162-169, 2007.

[Pearl, 1985] Judea Pearl (1985). Bayesian networks: A
Model of Self-Activated Memory for Evidential Reason-
ing, In Proceedings of the 7th Conference of the Cogni-
tive Science Society, University of California, Irvine,
CA, pp. 329-334, August 15-17.

[Roychoudary et al., 2006] I. Roychoudhury, G. Biswas,
and X. Koutsoukos, A Bayesian approach to efficient di-
agnosis of incipient faults, in Proc. 17th Int.Workshop
Principles of Diagnosis, Jun. 2006, pp. 243–250.

[Chavira and Darwiche, 2007] M. Chavira and A. Darwiche.
Compiling Bayesian Networks Using Variable Elimina-
tion, In Proc. of the 20th International Joint Conference
on Artificial Intelligence (IJCAI-07), January 2007, pp.
2443 – 2449.

