MSFC PROPULSION SYSTEMS DEPARTMENT

Knowledge Management Project

NASA KM International Conference

17 - 19 July 2007

Collaborate... Communicate... Innovate... Motivate
Agenda

MSFC PROPULSION SYSTEMS DEPARTMENT
Knowledge Management Pilot Project

- PSD KM Project Overview / Approach / Purpose
- Strategic Planning of PSD KM Initiative
- Systems Requirements / Design Definition
- KM Technology Architecture Description
- PSD KM System UI / Custom Features
- Future Planning
- PSD KM Search Functionality Demo
Overview/Approach

• KM Needed to Support Knowledge Capture/Preservation and an Information Sharing Culture

 • "If MSFC is to remain world-class in rocket propulsion systems design and development, substantial improvement in access to current and historical design, development and operational information must be made." *

 • "NASA has not demonstrated the characteristics of a learning organization after investigators observed mistakes being repeated..." **

• MSFC PSD KM initiative approach

 • Develop a KM Pilot project, within the context of a 3-5 year KM strategy

 • Introduce and evaluate the use of KM within PSD
 • IT Infrastructure, Turbomachinery Community of Practice (CoP)
 • Extend KM system functionality using results-based methodology

*MSFC Knowledge Management Evaluation Proposal, BASIS for PSD KM Initiative Funding

**CAIB report
MSFC PSD KM Initiative

Project Purpose

• Develop a Knowledge Management Strategic Plan for MSFC PSD
• Define and Prioritize KM requirements, tailored to PSD’s goals and objectives
• Provide KM IT infrastructure, processes and tools to enable and promote a learning / sharing culture
• Assure enterprise alignment and extensibility of PSD KM solution
• Apply leading edge Knowledge Management technologies and organizational practices to institutionalize NASA’s experiences—promoting NASA engineer’s competencies and growth.
MSFC PSD KM Initiative

KM Project Key Priorities

- Improve Safety, Reliability and Quality
- Reduce risk and impact of knowledge attrition associated with an aging workforce.
- Enable Learning Sharing Culture
 - Communities of Practice, collaboration, knowledge sharing/capture
 - Training
- Provide Efficient, Effective Access To Propulsion Systems And Component Knowledge Data
 - Apply cutting edge technologies and innovation to PSD knowledge assets
 - Infuse experiential knowledge, lessons learned, best practices into decision process
 - Reduce Test/Fail/Fix cycle resulting from failures and anomalies
- Demonstrate KM utility and functionality
- Increase stakeholders' awareness of KM technical innovations and benefits
- Extend PSD KM system functionality
 - ARES propulsion systems and component designs
 - Engineering Directorate
 - MSFC...
Data Gathering

- Formed PSD KM Team
- Conducted Two Day Group Work-Session for PSD KM Strategy Formulation
 - Developed PSD KM Purpose, Objectives, Priorities
- Conducted Structured Interviews
 - Examined Engineering Process Workflows
 - Collaborative, Resource and Analytical Tool Interfaces
- Surveyed Personnel
- Performed Independent Research
PSD is perceived by survey respondents as being ready to accept cultural change.

Challenges identified:
KM Infrastructure/Tools,
Knowledge Sharing Motivation & Incentives,
Leadership Advocacy
MSFC PSD KM STRATEGIC PLANNING

Solutions Map

PSD KM Strategic Objectives

1. Access-Links to External Databases, and Repositories
2. Intelligent Search Capabilities
3. Enterprise System Architecture and Design
4. Access-Links to Internal Databases, and Repositories
5. Collaborative Engineering Community of Practice
6. Leverage Data-Server Ownerships
7. User-Derived Interface – Presentation Layer
8. PSD KM Process Definition

Top 10 Day-to-Day Needs

1. Access to All External Servers, Databases, and Repositories (SSME Tech, NEXPRISE, etc.)
2. Single Sign-On (SSO) for All Resources
3. Ability to Search Adobe, Image Files, Hardcopy Old Reports
4. Capture of Tacit Knowledge from All Personnel During All Project Lifecycles
5. A Collaborative Engineering Community of Practice Organized by Discipline
6. Intelligent Search and Index Tool (Multi-Tiered Search, Advanced/Boolean)
7. A Customizable User Interface Tool for Desktop for Each User
8. Utilization of the NASA Taxonomy to Structure Project Documentation
9. Access to All Internal Servers, Databases, and Repositories (Stennis RAMS, etc.)
10. Pedigree Assurance for All Project Documentation

KM Solution Aligns With Team Defined Objectives and Needs
System Requirements and Design Definition

Vendor Ranking

Functional Rating

<table>
<thead>
<tr>
<th>Vendor</th>
<th>AskME</th>
<th>Autonomy</th>
<th>EMC / Documentum</th>
<th>Entopia</th>
<th>Invention Machine (Goldfire Innovator)</th>
<th>Microsoft / Groove</th>
<th>Tacit</th>
<th>Tomoye</th>
<th>Vignette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Components</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Interface Knowledge Management (IPM)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Expert Location & Hosting (ELH)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>User Knowledge Capture (UKC)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Content Management (CM)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Social & Legal (SL)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Document Management (DM)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Project Management (PM)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Record Management (RM)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Work Zone Management (WZM)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Process Solutions (PS)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Value Management (VM)</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Programmatic Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Financial Strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Company Maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># Employees</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Maturity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace Experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA Architecture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Programmatic Rating

<table>
<thead>
<tr>
<th>Category</th>
<th>D&B Good</th>
<th>D&B Fair</th>
<th>D&B Limited</th>
<th>Financial Strength</th>
<th>Product Maturity</th>
<th>Aerospace Experience</th>
<th>Estimated Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>>4 Years</td>
<td>>250</td>
<td>>4 Years</td>
<td>>3 or more</td>
<td>None</td>
<td>None</td>
<td>>100,000</td>
</tr>
<tr>
<td>Yellow</td>
<td>2 to 4 Years</td>
<td>100 to 250</td>
<td>2 to 4 Years</td>
<td>1 or 2 Clients</td>
<td>Conforms but not used</td>
<td>Requires funding</td>
<td>Requires funding</td>
</tr>
<tr>
<td>Red</td>
<td><2 Years</td>
<td><100</td>
<td><2 Years</td>
<td>None</td>
<td>Alternatives/Proprietary</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
System Requirements and Design Summary

- Rigorous systems engineering approach employed at project outset; User defined, user centric, concept to solution
 - Formed initial MSFC team using Integrated Product Team constituency
 - Included Shuttle Project & Engineering, ER Component Design, ED Disciplines, S&MA participants
 - CIO, Enterprise Architect, CLV Projects, CLV KM, NASA Engineering Network (NEN) represented in requirements / design reviews

- PSD KM Project Milestones Achieved
 - Strategy developed, Strategic Plan delivered February 2006
 - System Requirements defined, System Requirements Specification delivered May 2006
 - Conceptual Design Review conducted June 2006
 - Critical Design Review conducted October 2006

- System designed to align with CLV, Constellation and Enterprise Architecture
- Compliant with NIST / FIPS standards, application security plan is approved
- Delta Design Review will address final system design implementation
 - Open Source Portal Platform

Solution traceable to user defined objectives, user needs and system requirements
Solution Mapping / Verification

Implementing over 250 KM System Requirements Has Led to Product Development Effort and Phased Deployment
What is PSD KM?

Engineering Communities (IPTs)

Engineering Data, Collaboration and Experiential Knowledge Available with a Point and Click

Web based User Interface

Broad Range of Data Resources/Types Across the Enterprise

Network Infrastructure

SOA Integrated Tool Suite

MSFC KM

Program Structured File System
Project Planning, Scheduling/EVM
Requirements management
Risk Management

Legacy Data
MSFC Repository
Shuttle/Apollo technical
LASSe/CASSI/RSIC...

IEC/DDMS
Product Data Structure
Configuration / Document Management
Hardware CAD Environment
Evaluation/approval workflow/routing
MSFC KM Key Functionality

Key KMS Features:

- Single sign-on access and advanced data search of unstructured & structured technical data archives (Super "Google")
 - Global Search Returns from all Knowledge Sources
- Human expertise locator (Ask The Expert?)
- IPT and/or discipline focused on-line “Community of Practice” Collaboration Environment
- Knowledge capture/retrieval of discussion board/e-mail threads via on-line “Community of Practice”
- Process capture/viewer with point and click navigation to each process step instructions and all relevant data
- 3D Graphics/CAD Viewer with point and click navigation to all relevant “piece-part” data

MSFC IEC / DDMS

- Integrated Design Environment
 - Product Data Management
 - Configuration & Data Management
 - Work flow routing for approval

ICE

- Structured Program/Project File Archive
- Project Planning, Scheduling/EVM
- Requirements management
- Risk Management

Legacy and New Technical Data

- Engineering File Shares
- MSFC Repository
- Shuttle/Apollo technical
- CASSI - Technical Journals
- LASSE, RSIC, others.....
PSD KM Data Architecture Solution

- PSD KM Aligns with key CLV, Constellation and Enterprise data architecture needs

 - **Data integration and user requirements definition**
 - Engineering Community (IPT) defined requirements
 - Engineering process models (value steams)
 - Enabling data architecture, tools, collaborative, training and knowledge resources identified, mapped, integrated

- **IT Solution User Interface Definition**
 - Develops / extends IT solution to establish a web based engineering community interface
 - Provides immediate access to mission enabling resources

- **Leverages pilot system infrastructure and SOA KM technology investment to offer critical data architecture solutions**
MSFC PSD KM DATA TYPES / RESOURCES

Hazards
Eng Rpts
ACTS
Historical
RSIC
RAMS
Shuttle on line
PWR EPDM
E8, MSFC
LLIS
NEN
MSFC External
TRACER
UCR, MR, IDCRR, PR
FMEA/CIL
Drawings/Metaphase
AIAA
ADM
ASME
Web PCASS
IEC
DDMS
ESMD ICE Collaboration Environment
CAD/FEA

MSFC Internal
LASSE
ER
JETSON
MAPTIS
CLV ISHM
Test Sched's
MSFC Repository
Vibration Acoustics
Dynamics DB
POWERBALANCE

Inside MSFC
Contract End Items
Tech Standards
VIPA
REIMR
PARSENC
SSME Technical
MSFC PSD KM PROJECT
Knowledge Capture

"Question?"
Employee Has a Problem and Turns to the KM System for Assistance ...

Experienced Practitioners

Employee Receives The Solution

Browse / Search / Discussion

Knowledgebase
Processes
Previous Solutions
Lessons Learned
Training

... and It Is Shared With Others Who Benefit

Global search of data resources

Document Management Systems
File shares
Other
MSFC PSD KM PROJECT
Expertise Locator/Profile Builder

NASA Competency Management System
Resume
Patents
Technical Papers
Projects, Products, Insight, Hands-On Experience
PSD KM Profile Creation / Maintenance Pages
User Interface
MSFC PSD KM PROJECT
User Interface Navigation Flow
Failure / Anomaly Analysis Process

Design Engineering Analysis Process
MSFC PSD KM PROJECT
User Interface Navigation Flow
Community of Practice Process Workflow Navigation

4.0

- Develop & Maintain Event Timelines
- Create Fault Tree Analysis / Failure Path Diagram
- Develop Fault Tree Matrix / Pro/Con Chart

Typical process decomposition

- Examine Existing Fault Trees & FMEA for Applicability
- Identify All Possible Causes & Contributions
- Tailor Existing or Create Failure Path Diagrams
- Tailor Existing or Construct the Fault Tree

This step examines existing hazards analysis fault logic diagrams to assess relevance to observed conditions.

The purpose of this step is to identify and list all possible failure/anomaly causes and contributing elements. Subsequent steps will rule potential causes in or out based upon analysis, modeling, testing and/or inspections. In some cases, causes may be classified as Unknown or Inconclusive.

The purpose of this step is to create Failure Path Diagrams to support the Fault Tree Diagram. Tailoring existing component fault trees (EHAZARDS).

This step compiles failure scenarios and fault path diagrams into a specific failure logic model.
Process Description

This step compiles failure scenarios and fault path diagrams into a specific failure logic model.

Procedure(s)

NPR 8621.1A_Fault Trees

Affected Disciplines

Design Engineering, S&MA and support contractors

General Notes

Data Resources

EHAZARD, FMEA, DOCUMENTUM, Design Drawings, dedicated data server/computer

Input Artifacts

EHAZARD, FMEA, Design Drawings, observed HW conditions

Output Artifacts

Event FT Graphic, FAZAER ADS, FAZAER S&DMS, FaZAARADS, CAFETI modeling tool

Examine Existing Fault Trees & FMEA for Applicability

This step examines existing hazards analysis fault logic diagrams to assess relevance to observed conditions.

Identify All Possible Causes & Contributions

The purpose of this step is to identify and list all possible failure causes and contributing elements, rule out any anomaly causes, and contributing elements. It also lists causes unknown.

Tailor Existing or Create Failure Path Diagrams

The purpose of this step is to extend Fault Path Diagrams to support the Fault Tree Diagram. The existing component fault logic tree is used.

Tailor Existing or Construct the Fault Tree

This step compiles failure scenarios and fault path diagrams into a specific failure logic model.

Typical Instant Access

Hyperlinked data in blue italics

Training

- MSFC PSD KM PROJECT
- User Interface Navigation Flow

Worksheet

- **Process Description**
- **Procedure(s)**
- **Affected Disciplines**
- **General Notes**
- **Data Resources**
- **Input Artifacts**
- **Output Artifacts**
- **Examine Existing Fault Trees & FMEA for Applicability**
- **Identify All Possible Causes & Contributions**
- **Tailor Existing or Create Failure Path Diagrams**
- **Tailor Existing or Construct the Fault Tree**

Example Cases

SSME 0523 902-772 Failure Invest. (entire report) pg16 Event FT Graphic (specific element)
MSFC PSD KM PROJECT

User Interface Navigation Flow

Process Worksheet

<table>
<thead>
<tr>
<th>Process Description</th>
<th>This step compiles failure scenarios and fault path diagrams into a specific failure logic model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure(s)</td>
<td>NPR 8621.1A Fault Trees</td>
</tr>
<tr>
<td>Affected Disciplines</td>
<td>Design Engineering, S&MA and support contractors</td>
</tr>
<tr>
<td>General Notes</td>
<td></td>
</tr>
<tr>
<td>Data Resources</td>
<td>EHAZARD, FMEA, DOCUMENTUM, Design Drawings, dedicated data server/computer</td>
</tr>
<tr>
<td>Input Artifacts</td>
<td>EHAZARD, FMEA, Design Drawings, observed HW conditions</td>
</tr>
<tr>
<td>Output Artifacts</td>
<td>Event Fault Tree Graphic, Hernandez engineering, CAFTA modeling tool</td>
</tr>
<tr>
<td>Templates</td>
<td>Fault Tree Template</td>
</tr>
<tr>
<td>Checklists</td>
<td>Example Cases</td>
</tr>
<tr>
<td></td>
<td>SSME 0523 902-772 Failure Invest. Report (entire report)</td>
</tr>
<tr>
<td></td>
<td>pg16 Event FT Graphic (specific ex.)</td>
</tr>
</tbody>
</table>

Data Resources

- EHAZARD
- FMEA
- DOCUMENTUM
- Design Drawings, dedicated data server/computer

Input Artifacts

- EHAZARD
- FMEA
- Design Drawings
- observed HW conditions

Output Artifacts

- Event Fault Tree Graphic
- Hernandez engineering, CAFTA modeling tool

Templates

- Fault Tree Template

Example Cases

- SSME 0523 902-772 Failure Invest. Report (entire report)
- _pg16 Event FT Graphic (specific ex.)_

Figure 7.6-1 Test 902-772 Fault Tree Analysis (Page 1 of 4)
MSFC PSD KM PROJECT
User Interface Navigation Flow
MSFC PSD KM PROJECT
User Interface Navigation Flow

Graphic "Drill - Down" Capability
Component Details View
MSFC PSD KM PROJECT
User Interface Navigation Flow

Atlantis STS-106
Space Shuttle Program
SSME Flight Readiness Review

August 29, 2000

Find Number: 0123456789 Material Properties
Quantity (per build): 123456 Readiness Review
Drawing Number: 7890-1234 902-772 Incident
Material: Super Alloy Hydrogen Flow

Graphic “Drill - Down” Capability
Component Details View (Links)
PSD KM PROJECT FUTURE PLANNING

PSD KM Initiative

Time

SHUTTLE

ARES I

ARES V

LSAM

ED

PSD

Design Engineering Analysis
Failure Anomaly Resolution
2D/3D Graphics Drilldown
Pilot Phase
Define/Design/Deploy PSD KM Pilot
Stand up Turbomachinery CoP

Phase I Maintenance/Enhancement
Legacy Data access supporting ARES design
Turbomachinery CoP growth - J-2X
Stand up Valves Actuators CoP
Stand up RCS / SRM CoP

SSME
Turbomachinery
J-2X
US MPS / RCS / TVC
Combustion Devices
J-2X MPS
SRM
ARES Propulsion

Ascent
Decent
Engine

Detailed Turbomachinery Design
Development Process
3D Graphics Supporting CoPs
Phase II
Phase III & Beyond
MSFC PSD KM PROJECT
Communications & Roll-Out

- PSD KM System Briefings:
 - JSC Knowledge Management Conference 02 March 06
 - ER Dept. Managers Brief 06 April 06
 - MSFC Technology Council 11 April 06
 - ED Management Brief 02 May 06
 - SSME Project Management Brief 09 May 06
 - SRS Review (Stakeholders) 31 May 06
 - Conceptual Design Review (Stakeholders) 29 June 06
 - PWR Meetings, Canoga Park 11 July 06
 - HQ Meetings, CIO, InsideNASA/NEN/ESMD 13 July 06
 - NACB-ISCB Brief 23 August 06
 - Preliminary Design / UI Review (Stakeholders) 29 August 06
 - Critical Design Review (Stakeholders) 03 October 06
 - WEB PCASS 07 February 07
 - Enterprise Architecture Advisory Committee 17 February 07
 - Engineering Management Council 20 February 07
 - RSIC 23 February 07
 - IEC/DDMS 27 February 07
 - Exploration Launch Office Brief 05 March 07
 - IHS/NASA Tech Standards 22 March 07
 - CIO/ED/CLV Data Architecture 26 March 07
 - Cx Data Architecture Working Group 23 April 07
 - CLV Chief Engineers Brief 20 April 2007
 - NASA HQ IDM Workshop 24 – 26 April 2007
 - CLV Element Managers 08 May 2007
 - Directives Access CIO 17 May 2007
 - Cx ARC Architecture Team 22 May 2007
 - PWR KM Program Manager Review 24 May 2007
 - Engineering Directorate Review 13 June 2007
 - Propulsion Department Review 14 June 2007
 - NASA KM International Conference 17 – 19 July 2007
MSFC PSD KM Information -

Paul Caraccioli
Combustion Devices Design & Development Branch
Propulsion Systems Department
NASA / MSFC / ER32
Paul.A.Caraccioli@nasa.gov
256.544.0064

Dr. Randy K. Smith
Department of Computer Science
University of Alabama
RSmith@cs.ua.edu
205.348.6363

Bill Mommsen
Intergraph Corporation
Security, Government & Infrastructure (SGI) Division
Bill.Mommsen@intergraph.com
256.730.8179
DATA Resource Connection

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSME Technical</td>
<td>CM Documents, Nonconformance data, Engine Reviews, HRR, CE Telecons, COR, DCR, Program reviews, Major Incident reports, FA's, FMEA, Orientation Training, PWR Drawings, Specifications, Photos, Flight Ops handbook...</td>
</tr>
<tr>
<td>MSFC Repository</td>
<td>Adv Lunar systems, Mars exploration, NGLT, IPD, Nuclear Propulsion, Shuttle Projects</td>
</tr>
<tr>
<td>LASS</td>
<td>Apollo, Saturn, ALS, Aerodynamics, Propulsion, Cryogenics, Centar, X-vehicle</td>
</tr>
<tr>
<td>MSFC Multi-Program/Proj Docs</td>
<td>MSFC Specifications, Standards, Requirements, Handbooks, Plans, Processes</td>
</tr>
<tr>
<td>PRACA (MSFC)</td>
<td>All Shuttle Problem Reports and Corrective Action</td>
</tr>
<tr>
<td>Shuttle Online</td>
<td>Flight Readiness Reviews, FSE&I, CERB, PRE docs, Intg Weekly Reports, Shuttle Contingency plan, Shuttle CM Plan</td>
</tr>
<tr>
<td>Jetson</td>
<td>SSME Data Review Packages (Test & Flight)</td>
</tr>
<tr>
<td>STI Database (Scientific & Technical Information)</td>
<td>Aeronautics/Astronautics, Chemistry, Physics, Mathematics, Computer Science, Engineering, Space Science, Geo Science</td>
</tr>
<tr>
<td>WebPCASS</td>
<td>All PRACAs (KSC PRs, PR, DRs, GFE, MSFC UCRs, FA's) Shuttle OL / HA, OM/RSO, LCC, Waivers</td>
</tr>
<tr>
<td>SSPWEB</td>
<td>NSTS 7700 volumes</td>
</tr>
<tr>
<td>Shuttle Portal</td>
<td>Shuttle Project collaboration, Project data</td>
</tr>
<tr>
<td>NEN</td>
<td>Inside NASA, LLIS, Online directives, NASA Image exchange, Electronic parts and Packaging</td>
</tr>
<tr>
<td>RISC</td>
<td>Technical and Scientific reference books, manuals, Journals.</td>
</tr>
<tr>
<td>ICE Windchill</td>
<td>Structured Data Management system, All ESMD program data, Schedules, EVM, Risk Management</td>
</tr>
<tr>
<td>IEC/ DDMS</td>
<td>Integrated design environment, Configuration Management system.</td>
</tr>
<tr>
<td>Maptis</td>
<td>Materials specifications and properties testing</td>
</tr>
<tr>
<td>CASI</td>
<td>Technical, Scientific reports, Journals, Articles, Papers</td>
</tr>
<tr>
<td>Contractor Data systems</td>
<td>Metaphase, Nexprize, ACTs, ADM, Prams, Ramps,</td>
</tr>
</tbody>
</table>

Pilot Indexed | **Phase II** |
MOU Negotiation Underway | **Long range** |
MSFC PSD KM PROJECT

Unique Functionality

- **Community of Practice** – Provides a forum for individuals with shared interest or expertise to exchange ideas and experiential knowledge
 - Collaboration / Sharing, Knowledge Capture, Expertise Locator, Training
- **Single Sign On** – MSFC domain log in provides authenticated user access to PSD KM and all authorized accounts
- **Automatic Profiling** – Monitors user data interaction preferences and automatically forms profiles of their interest and expertise
- **Categorization** – Automatically categorizes data without the need for manual intervention
- **Disparate Repository / Unstructured Data Interface** – Access data where it resides within or outside of product structure / data management system environment
- **Conceptual Retrieval** – Extracts meaning from key words and complex terminology embedded in query information; Returns search results based on concept matching
MSFC PSD KM PROJECT
Unique Functionality (Cont’d)

• **Hardware Graphics Viewer** — Point and click access from graphic image to broad range of related design information, subject matter expertise, lessons learned and training

• **Process Workflow Viewer** — Enables the user to locate relevant information within the context of a process step
 - Search and retrieval functionality from Failure/Anomaly and Design Engineering Analysis workflow navigation, "process-based" data associations

• **Expertise Locator** — Automatically identifies individuals with expertise in organizations and identifies subject matter knowledge in any required field

• **KM awareness, cultural change/motivational training** - Integral to CoP roll out
PSD KM / PDMS Design Characteristics

<table>
<thead>
<tr>
<th>Focus Area</th>
<th>PSD Knowledge Management</th>
<th>Product Data Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individual & Collective Knowledge</td>
<td>Managing Product/Project Data</td>
</tr>
<tr>
<td>Information Management</td>
<td>Unstructured information</td>
<td>Structured Information</td>
</tr>
<tr>
<td></td>
<td>Contextual search outside of PDMS</td>
<td>Search limited to PDMS data structure</td>
</tr>
<tr>
<td>Timeframe</td>
<td>Ongoing. Doesn't stop as long as the body of knowledge is relevant.</td>
<td>Project Life cycle. Has a finite start and end date.</td>
</tr>
<tr>
<td>Scope</td>
<td>Any repository or information source that contains useful knowledge</td>
<td>Only information contained in its internal repository.</td>
</tr>
</tbody>
</table>
MSFC PSD KM PILOT PROJECT
Design / Architecture (Pilot)

Componentized Resources System View

PSD KM Vignette Application Portal
- Lessons Learned/Best Practice
- Personalized PSD KM Pages
- E-Mail Integration
- Tacit Knowledge Capture
- Collaboration Service Link
- Group Calendar
- Expert Location & Profiling
- Publishing/Authoring (Future)
- Computer Based Training
- CoP Content Management
- Report + Metrics Generation
- JSR-168 Portlets

PSD KM Vignette Collaboration Server (VCS)

Contractor & External Access
- E-Mail to CoP or Single Sign-On via NISE

CAD Viewer
- Component Level View & Associated Data View

Workflow Process
- Process Decomposition Process Artifacts

Invention Machine
- Goldfire Innovator Patent Search Fault Tree Gen (Future)

Advanced Search Autonomy
- IDOL 7 Search & Index Engine

Video/Audio (Future)

Enterprise Search Engine Indexes
- InsideNASA
- NEN
- Other Agency Repositories

NISE

NASA Taxonomy

NIST/FIPS Security Compliance

NASA / PSD Taxonomy Linkage

508 Compliance

Componentized Resources System View

Integrated Information Sharing Technology
- Technical

JETSON
- MSFC Repository
- MSFC PRACA
- ICE

LAESSE

Integrated Information Sharing Technology
- Technical
CoP Process Creation / Maintenance

CoP User Inputs
Process / Change
- Use CoP Input Template and MS Office Suite to Propose Process Workflows
- Submit Using CoP Suggestion Box
- Post to Community Forum

CoP Moderator
Leads Review
- Recommended as Best Practice
- Review w/ Initiator
- Collaborate w/ SMEs
- Approve / Reject

Enter & Validate Process / Data
- Load Process Model / Data
- Validate in Process Viewer
- Publish in Community Knowledge Storehouse

Data Manager
- Data Manager to Allow Simple Maintenance of Process Data & Links

Community Can Create New, Change Existing and Maintain Processes
MSFC PSD KM System

Pilot Portal Schematic, Documentum Query/Fetch

PSD KM Client

Search

View

MSFC Private Network

Search

View

NDC Public Network

Search

Vignette Portal and Collaboration Server

Autonomy IDOL Server

NDMSVIDL01
xxx.xxx.xxx.xxx
Action Port: 9000
Index Port: 9001

Autonomy Documentum Fetch

MSFC Repository (Documentum)
xxx.xxx.xxx.xxx
TCP and UDP Port 1489
https://repository.msfc.nasa.gov/dam

Agency Public Network
MSFC PSD KM PROJECT

KM Pilot System Data Security

Security Policy

- Designed for Compliance with Enterprise Architecture
- Enforcement of internal authentication models for repositories, proprietary applications, and software.
- Portal LDAP ensures automatic verification against user, group and role level entitlement
 - Will align with the NDC active directory, migrating to NISE
- KM Program will comply with NPR 2810.1, NIST 800-53
 - Moderate security classification based on FIPS 199, NIST 800-60
- Application Security Plan is in Work