Adaptive Flight Control for Aircraft Safety Enhancements
Nhan Nguyen, Irene Gregory, Suresh Joshi

Approximate Stability Margin Analysis of Hybrid Direct-Indirect Adaptive Control

Motivation
Despite 5 decades of research, adaptive control still cannot gain acceptance in safety-critical control systems. Challenges include:
- Complex nonlinear behaviors vs. well-understood linear systems
- Lyapunov theory cannot predict boundedness in presence of unmodeled dynamics
- Metrics for stability and performance not yet available
- No guidance on adaptive gain selection for trade-off between performance and robustness

Technical Approach
- Hybrid (composite) direct-indirect adaptive control provides a flexible framework
 - Indirect adaptation via recursive least-squares (RLS) parameter estimation
 - Direct adaptation with lower adaptive gain to improve robustness

Solution
Adaptive control laws for handling actuator failures:
- State tracking:
 - State feedback - low complexity, most assumptions
 - Signal boundedness and asymptotic tracking
- Output tracking:
 - Output feedback - highest complexity, fewest assumptions

Example Application – GTM (Joshi, Khong)
- One of two elevators locks in unknown position at t = 2 sec
- Square wave elevator command applied at t = 10 sec
- Remaining operational elevator seamlessly takes over for failed elevator

Current Work in Progress
- Use system identification techniques to build a pilot model that changes as system dynamics change
- Pilot in the loop with an adaptive controller while explicitly incorporating the pilot.
- For system stability and performance analysis, model the pilot as an adaptive controller

Conclusions
- Direct MRAC can compensate for unknown actuator failures:
 - Signal boundedness and asymptotic tracking
 - State or output tracking using state feedback has manageable level of complexity
- Analytical evaluation and performance of a closed-loop system with an adaptive controller while explicitly incorporating the pilot.

Implications
- Analytically evaluate stability and performance of a closed-loop system with an adaptive controller while explicitly incorporating the pilot.
- Provide a framework for analytical analysis of interaction of two adaptive elements in a closed-loop system with changing dynamics
- Identify and characterize interactions leading to potentially conflicting actions (e.g., flight and structural control systems or flight and propulsion control systems)
- Contribute to functional allocation between pilot and adaptive control schemes as well as pilot's situational awareness of system's capabilities

Direct Adaptive Control With Unknown Actuator Failures

Objective
New direct adaptive control methods are being developed for systems with unknown actuator failures:
- Theoretically guaranteed stability and tracking performance

Technical Challenges
- Mathematical modeling, formulation, and analytical framework development
- Accommodation of actuator failures, disturbances, model uncertainties, actuator saturation

Technical Approach
Direct model reference adaptive control (MRAC):
- Formulations with increasing complexity and decreasing assumptions
 - Actuator failures of unknown magnitude and time of occurrence
 - State tracking with state feedback
 - Output tracking with state feedback
 - Output tracking with output feedback

Actuator Failure Models
- Loss of effectiveness: \(\eta(t) \in [0.01, 0.1] \) for \(t = 10 \text{sec} \) pattern (which actuators have failed) are unknown

Solution
Adaptive control laws for handling actuator failures:
- State tracking:
 - State feedback - low complexity, most assumptions
 - Signal boundedness and asymptotic tracking
- Output tracking:
 - Output feedback - highest complexity, fewest assumptions

Conclusions
- Direct MRAC can compensate for unknown actuator failures:
 - Signal boundedness and asymptotic tracking
 - State or output tracking using state feedback has manageable level of complexity
- Continuing research:
 - Accommodation of multiple failures; disturbances; actuator saturation; unmodeled dynamics; damage; nonlinear systems, adaptive propulsion control; application to full GTM math model

Adaptive Control with Adaptive Pilot Element: Stability and Performance Implications

Motivation
Different adaptive control approaches on different platforms exhibited unpredicted interactions with pilot-in-the-loop (PIL) systems.
Adaptive controller will have full control authority.

Technical Approach (Trujillo, Morelli, Gregory)
Mathematically define the pilot as an adaptive controller.

For system stability and performance analysis, model the pilot as an adaptive controller; therefore, analyze a system consisting of two adaptive controllers of potentially different architectures. In addition, this analysis will provide:
- Design requirements on adaptive controller to compliment pilot's actions
- Predicted analytical bounds on pilot-in-the-loop task specific performance
- Framework for analyzing interaction between two adaptive elements will facilitate exploration of problematic adaptive controller/pilot model interactions to explore these problematic interactions in detail in simulation and/or flight test (akin to worst case uncertainty in linear robustness analysis guiding detailed Monte Carlo strategies).

Example Application – GTM (Joshi, Khong)
- One of two elevators locks in unknown position at \(t = 2 \text{ sec} \)
- Square wave elevator command applied at \(t = 10 \text{ sec} \)
- Remaining operational elevator seamlessly takes over for failed elevator

Conclusion
- Hybrid adaptive control can enhance adaptation by reducing both modeling and tracking errors at the same time
- Bounded linear stability analysis can provide practical conservative estimates of stability margin

Simulation
- Phase Margin
- Time-Delay Margin
- Metrics-Driven Adaptation

Adaptive Flight Control for Aircraft Safety Enhancements