Efficient Multiplexer FPGA Block Structures Based on G4FETs
Fewer G4FETs than conventional transistors would be needed to implement multiplexers.

NASA's Jet Propulsion Laboratory, Pasadena, California

Generic structures have been conceived for multiplexer blocks to be implemented in field-programmable gate arrays (FPGAs) based on four-gate field-effect transistors (G4FETs). This concept is a contribution to the continuing development of digital logic circuits based on G4FETs and serves as a further demonstration that logic circuits based on G4FETs could be more efficient (in the sense that they could contain fewer transistors), relative to functionally equivalent logic circuits based on conventional transistors.

Results in this line of development at earlier stages were summarized in two previous NASA Tech Briefs articles: “G4FETs as Universal and Programmable Logic Gates” (NPO-41698), Vol. 31, No. 7 (July 2007), page 44, and “Efficient G4FET-Based Logic Circuits” (NPO-44407), Vol. 32, No. 1 (January 2008), page 38. As described in the first-mentioned previous article, a G4FET can be made to function as a three-input NOT-majority gate, which has been shown to be a universal and programmable logic gate. The universality and programmability could be exploited to design logic circuits containing fewer components than are required for conventional transistor-based circuits performing the same logic functions. The second-mentioned previous article reported results of a comparative study of NOT-majority-gate

A Four-to-One Multiplexer is a special case of a 2n-to-1 multiplexer, which can perform a variety of logic functions on 2n binary data inputs (x\textsubscript{0},...,x\textsubscript{2^n–1}), and n control (selection) inputs (c\textsubscript{0},...,c\textsubscript{n}). In this case, n = 2. The combination of the control inputs can be interpreted as a binary integer, c, in the range of 0 to 2n – 1.
A system comprising very-large-scale integrated (VLSI) circuits is being developed as a means of bioinformatics-oriented analysis and recognition of patterns of fluorescence generated in a microarray in an advanced, highly miniaturized, portable genetic-expression-assay instrument. Such an instrument implements an on-chip combination of polymerase chain reactions and electrochemical transduction for amplification and detection of deoxyribonucleic acid (DNA).

Commonly, the design of such an instrument provides for a sample and a reference channel, so that it can be used to perform a dual-label assay for identifying differentially expressed genes. A dual-label assay also reduces spurious variability attributable to aspects of spots in the microarray that affect both the sample and the reference specimen similarly. The logarithm of the relative intensities of the two fluorescent-dye-labeled specimens at each spot is calculated and used in analyzing the fluorescence image of the assay. Consequently, analysis of the fluorescence image has typically involved sequential, pixel-by-pixel processing in a digital computer. Such processing does not enable real-time recognition of genetic patterns of interest — a significant drawback where, for example, it may be desirable or necessary to recognize dangerous microbes in the field. In contrast, a system like the one now being developed enables robust, real-time recognition.

The system (see figure) includes a chip, denoted a biochip, that contains VLSI circuitry for collecting the fluorescence inputs and generates analog signals proportional to the logarithms of the fluorescence-intensity ratios for the spots in the microarray. The outputs of the biochip are fed as inputs to another chip that contains a VLSI artificial neural network (ANN), which performs the processing for recognition of bioinformatic patterns of interest. The ANN design pro-