Academic Airframe Icing Perspective

Mike Bragg - Illinois
Alric Rothmayer – Iowa State
David Thompson – Mississippi State

Airframe Icing Workshop
NASA Glenn
June 9, 2009
Introduction

• What research do we need?
  – 3-D Ice accretion and aerodynamics
  – Systems-based multidisciplinary research

• But first:
  – Some philosophy on university research
  – Some icing research history and lessons learned

• Then to 3-D and multidisciplinary research
Why University Research?

The best university researcher strives to have Impact in many dimensions:
- New discoveries
- Graduate education
- Contribution to society
- Economic development

University researchers think of research in MS and Ph.D "units"

University research can be both applied and fundamental
Basic versus Applied Research

Academic Airframe Icing Perspective

• Traditional Research Continuum

Basic Research    Applied Research    Development    Production and Operation

• Quadrant Model of Research

Consideration of use?

<table>
<thead>
<tr>
<th>Quest for Fundamental Understanding?</th>
<th>Pure basic research (Bohr)</th>
<th>Use-inspired research (Pasteur)</th>
<th>Pure applied research (Edison)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

From “Pasteur’s Quadrant” by Donald E. Stokes
NASA/university 2-D iced-airfoil aerodynamics

• Evolving goals as we learned more and motivation changed (1980 – 2008)
  – Understanding of ice accretion effect on lift and drag
  – Support for CFD development and validation
  – Understand iced-airfoil physics
  – Roselawn accident focused us on “use”
  – Aircraft control and more 3-D
  – Effect of airfoil and ice-shape geometry
  – Understanding Re and M effects
  – Ice accretion aero classification and simulation
Aerodynamic Techniques

Academic Airframe Icing Perspective

Initial techniques
- Relatively simple steady RANS
- Simple small-scale experiments with large horn ice at low Re

Current techniques
- 3-D unsteady RANS/LES methods
- Pressure tunnels at near-flight Re and M, multiple ice shapes, advance measurement techniques including PIV
What did we learn from 2-D aerodynamics?

Academic Airframe Icing Perspective

Process
- Re and M important to understand but low-Re data are valuable and provide a cost-effective research method for many cases
- Flowfield understanding critical in reducing “matrix” and understanding simulation
- Flow separation is key and is always unsteady and 3-D
- Roselawn and considering “use” or application led to more focused and productive research programs

Physics
- An understanding of the basic relationships between airfoil geometry, ice-accretion geometry, and iced-airfoil aerodynamics and aerodynamic performance including control was accomplished with some fundamental understanding of the flow

![Diagram of flowfield](Gurbacki22)
2-D Icing

**Academic Airframe Icing Perspective**

- **Ice Accretion Physics**
  - Droplet trajectory calculations well understood
  - Basic surface water transport and bulk ice growth is understood
  - LEWICE does a good job within its 2-D validation data set

- **Iced-Airfoil Aerodynamics**
  - Understand basic flowfield and gross aerodynamics for the four identified ice shape categories
  - Simulation ice shape methods identified and validated
  - RANS does a reasonable job with gross aerodynamics
The 3-D Icing Problem

**Academic Airframe Icing Perspective**

- **Ice accretion**
  - 3-D ice accretion have been observed and documented
  - Scallops have been studied, resulting in a foundation of experimental understanding
  - Fundamental processes in 3-D are not understood well enough for reliable models

- **Aerodynamics**
  - Flow separation including shear layer development is the fundamental flow feature and it is 3-D and unsteady
  - RANS insufficient but full 3-D and unsteady cost/resource prohibitive
  - No 3-D experimental data at near-flight Re and M
3-D Ice Accretion

Goals
- Understand basic physical processes underlying aircraft icing.
- Create simplified engineering tools.
- Understand the accuracy of the engineering tools.

What is needed?
- Growth mechanisms for complex 3-D accretions (scallops, etc.)
- Simulation methods for complex 3-D accretions
- Nonlinear coupled interactions (droplets splashing, surface water transport, impact freezing, etc.)
3-D Ice Accretion (cont.)

Approach

• Understand the basic physical processes underlying aircraft icing:
  – Develop a foundation of understanding based on experiments.
  – Develop detailed physical models which explain the experiments.

• Use icing physics knowledge to help create simplified ice accretion engineering tools.

• Understand the processes which limit the accuracy of the engineering tools.
Example – Surface Physics

Academic Airframe Icing Perspective

- Basic water transport can be handled using simple models.

- Ice surface roughness can be explained by heat transfer driven instability of the ice surface.

- There is a need to better understand more complex 3-D nonlinear interactions:
  - Growth of complex ice shapes. Nonlinear coupling of droplet impacts, unsteady aerodynamics past complex 3-D ice/water shapes, water transport, and complex ice growth. Coupling to rapid phase transitions when crossing from rime to glaze icing, etc.

- NASA VIST facility and icing physics experiments are important steps to resolve these issues.
3-D Icing Aerodynamics

• Goals
  – Basic understanding of 3-D iced wing flowfield
  – Simulation methods and a small-scale, low-Re capability
  – Computational methods that accurately predict Clmax and control deflection effects

• What is needed?
  – Iced-wing data at high Reynolds number and flight M
  – Data for code development and validation
  – Unsteady, RANS/LES method development
  – Key features: unsteady separated flow, shear-layer development, transition
3-D Icing Aerodynamics

Academic Airframe Icing Perspective

• **Approach**
  – Fundamental studies to aid understanding of key flow phenomena
  – Development of advanced CFD methods
  – High-Re data on representative geometries
  – Validation of CFD methods
  – Experimental and computational tools for practical problems
Example – Hybrid RANS/LES

**Academic Airframe Icing Perspective**

- **Observations**
  - RANS, while highly efficient, requires a high degree of phenomenological modeling, which limits its applicability.
  - LES, which models fewer of the turbulent scales, is prohibitively expensive in aero boundary layers.

- **Current general consensus**
  - Valid for massively separated flows.
  - Problematic for aerodynamically-relevant flows.

**Basic idea**

- Use RANS in regions of attached flow.
  - Consistent with modeling the Reynolds stress.
- Use LES in regions of separated flow.
  - Consistent with modeling the subgrid stress.
- Implicit zonal boundary.
  - Achieved through a dynamically-varying eddy viscosity.

**DES for extruded GLC305/944 ice shape**

- Selected time steps show development of characteristic “loop” vortices.

\[ t = t_1 \quad t = t_2 \quad t = t_3 \quad t = t_4 \]
Example – Hybrid RANS/LES

• DES for extruded GLC305/944 ice shape
  – Detached Eddy Simulation (DES) (specific form of hybrid RANS/LES)

Three-dimensional unsteady flow in separated region

RMS of streamwise velocity fluctuations

Source: Mogili, Thompson (MSU), Choo, and Addy (NASA GRC)
**Systems-based Multidisciplinary Research**

*Academic Airframe Icing Perspective*

- **Example – Smart Icing Systems**
  - Combined human factors, controls, flight mechanics, and aerodynamics to address icing flight safety system
  - Systems to sense effect of ice accretion on aircraft and operate IPS, provide envelope protection, inform/advise pilot, etc
  - Systems, multidisciplinary approach provides integrated solutions and where needed helps guide new research
Systems-Based Multidisciplinary Research (cont.)

- **Needed Multidisciplinary Research**
  - Couple ice accretion and ice protection modeling with aerodynamics and control
  - Couple flight mechanics, aerodynamics, sensing and flight mechanics and control
  - Bring atmospheric science and route planning into the problem of SLD protection
  - Include Human Factors and training into the research with flight simulation, ice accretion, and flight dynamics
  - Etc.
• 2-D ice accretion and aerodynamics reasonably well understood for engineering applications

• To significantly improve our current capabilities we need to understand 3-D
  – Important ice accretion physics and modeling not well understood in 3-D
  – Aerodynamics unsteady and 3-D especially near stall

• Larger systems issues important and require multi-disciplinary team approach