High Energy Astrophysics with the Fermi Large Area Telescope

Elizabeth Hays
(NASA/GSFC)
On behalf of the Fermi LAT Collaboration

The Fermi Observatory

Large Area Telescope (LAT)
- Large Field of View (>2.4 sr)
- Views entire sky every 3 hrs (every 2 orbits)
- Broad Energy Range (20 MeV - >300 GeV)

Gamma-ray Burst Monitor (GBM)
- Views entire unocculted sky
- NaI: 8 keV - 1 MeV
- BGO: 150 keV - 30 MeV

LAT Performance from Ground Simulations

The LAT is a GeV, wide-field instrument

Candidate Gamma-ray Events - Flight Data

Green crosses = detected gamma-ray events
Blue lines = reconstructed track trajectories
Yellow line = reconstructed direction of candidate gamma-ray
Red crosses = reconstructed energy deposition in the calorimeter

March 23, 2009

E. Hays
The 9 Month Skymap

From simulations: 5n integral flux assuming a power law with index -2.0.

Orbit poles are exposed every other orbit

Long term scale asymmetry due to SAA passages

March 23, 2009

The Sun and the Moon

Detection of the quiet Sun in gamma rays:
 Fluxes consistent with model expectations. Moon flux agrees with EGRET.

RHESSI observes to -20 MeV

PSF at 1 GeV

March 23, 2009

LAT Sensitivity with Time

- From simulations: 5n integral flux assuming a power law with index -2.0.

Orbit poles are exposed every other orbit

Long term scale asymmetry due to SAA passages

March 23, 2009

Fermi LAT Collaboration

- France
 - IN2P3, CEA/Saclay
- Italy
 - INFN, ASI, INAF
- Japan
 - Hiroshima University
 - ISAS/JAXA
 - RIKEN
 - Tokyo Institute of Technology
- Sweden
 - Royal Institute of Technology (KTH)
- Stockholm University
- United States
 - Stanford University (SLAC and HEPL/Physics)
 - University of California at Santa Cruz - Santa Cruz Institute for Particle Physics
 - Goddard Space Flight Center
 - Naval Research Laboratory
 - Sonoma State University
 - Ohio State University
 - University of Washington

Principal Investigator:
Peter Michelson (Stanford University)

construction managed by
Stanford Linear Accelerator Center (SLAC), Stanford University

March 23, 2009
EGRET Legacy: GeV Excess

- Extra gammas at ~1 GeV disagree with models based on local cosmic rays
- Spatial variation in cosmic ray spectra?
- Unresolved sources?
- Dark matter?
- Instrument calibration issue?

March 23, 2009

Diffuse Emission from the Galaxy

- EGRET GeV excess not confirmed by LAT for this part of the sky
- Conventional model (local CR) in good agreement
- All-sky measurements ongoing - stay tuned!

March 23, 2009

The Pulsing Sky

Pulsar Detections

Fermi Pulsar Detections

Pulses shown at 1/10th true rate

March 23, 2009

Rotation Powered Pulsars

- Electrons (positrons) accelerated to relativistic speeds, emit synchrotron radiation
- Radio emission along magnetic axis
- >1500 radio pulsars catalogued
- Rotational periods from msec to secs, increasing over time

Neutron star ~1.4 x Mass Sun

March 23, 2009
New Gamma-ray Pulsar in CTA 1

Science Express October 16
Abdo et al., 2008, Science

1420 Hz radio map

P = 315 ms
Pdot = 3.9 x 10^{-13}
Characteristic age = 10 kyr
Flux (100 MeV) = 3.6 x 2 x 10^{-7}
ph cm^{-2} s^{-1}
Pulse undetected in radio/X-ray

LAT 95% error radius = 0.038 deg

March 31, 2006
K. Hays

Vela Pulsar Lightcurve

100 MeV -> 10 GeV
Timesteps accurate to 300 ns
Phase analysis accurate to ~1 us
Abdo et al. 2009

Vela Pulsar Energy Dependence

Peak 1 (P1) stronger at low energy.
Peak 2 (P2) stronger at higher energy.
(Confirms EGRET)
NEW: Peak 3 evolves with energy

Rotational Phase

March 23, 1994
K. Hays

Vela Pulsar Spectrum

Consistent with simple exponential cutoff
Super-exponential rejected at 16.5 sr
Excludes emission near neutron star surface

March 23, 1994
K. Hays
47 Tucanae (4.5 kpc) contains at least 23 ms pulsars.

New class of gamma-ray emitter! Combined emission from ms pulsars in the cluster? Consistent with average efficiency, $E_{\text{Flux}}_{\gamma\text{ray}}/E_{\text{dot}}_{\gamma\text{ray}} \approx 10\%$

Active Galactic Nucleus

3C 273 X-ray image

Relativistic Jet
Clouds of gas
Supermassive Black Hole
Accretion Disk
Dusty Torus

Fermi Gamma-Ray Bursts

3 Month Daily Movie

+ GBM
 + >115 bursts
 + 20 are short GRBs
 + 5 GBM bursts detected by LAT

+ LAT
 + GRB 080825C - the first one
 + >10 events above 100 MeV
 + GRB 080916C - the long, bright ('') one
 + GRB 081024E - the short one
 + detected >1 GeV photons
 + GRB 081215A - <6 deg. from on-axis - rate only, not imaged
 + GRB0909217 - another delayed LAT burst
How Relativistic is the Jet?

- High redshift and high fluence implies strongly collimated jet
- No spectral cut off (z=4.35)

- Constrains minimum Lorentz factor of material in particle jet

GRB 080916C - the long bright one

+ 2nd GRB detected by LAT
+ 1st since EGRET with imaged photons and E > 1 GeV!
+ Brightest burst with a measured redshift
+ GROND measurement of redshift, z = 4.3
+ Prompt emission
 + >3000 LAT events in first 100 seconds
 + >140 LAT events for spectral analysis (>100 MeV)
 + Time-resolved spectroscopy over 6 decades in energy (10 keV to 10 GeV)
 + High-energy emission peaks at later times
 + LAT photons up to 23 min after the trigger time
+ Abdo et al. 2009, Science, 323, 1688
Test of Quantum Gravity

+ Test for energy dispersion of photons (higher energy arrive later)
+ \(\Delta T \approx \Delta E/M_{QG} \)
+ Strong limit on Lorentz invariance violation
 + Highest \(E \) photon 13.2 GeV \((1+z) = 70.6 \text{ GeV} \)
 + Arrived 16.5 sec after TO
 + \(\Rightarrow M_{QG} > 1.30 \times 10^{18} \text{ GeV}/c^2 \)
 + \(-0.1 \text{ M}_{\text{Planck}}\)

LAT Transients in the Galactic Plane

+ 2-day flares detected in the plane without obvious blazar counterpart
 + ATel #1771
 + Spatially coincident with 3EG J0003-3531
 + Variable EGRET source appearing in several viewing periods
 + 68% error radius 0.11 deg
 + No firm identification
 + ATel #1788
 + New GeV source, Fermi J0010-5041
 + 68% error radius 0.07 deg

Summary

+ The LAT is a powerful pulsar detector
 + Already influencing pulsar emission models
 + And a great flare monitor
 + Ideal for multiwavelength campaigns (always on!)
 + Excellent performance for GRBs bright above 100 MeV
 + The Bright Source List is similar in size to entire EGRET catalog (at only 3 months)
 + The Gamma-Ray sky is dynamic
 + Lots more Fermi science to come!

www.fermi.gsfc.nasa.gov