
NASA Tech Briefs, September 2009 25

microwave power and, thus, in the
VCSEL wavelength. It is possible to
choose a set of design and operational
parameters (most importantly, the elec-
tronic part of the loop gain) such that
the OEO stabilizes itself in the sense
that an increase in circulating mi-
crowave power causes the VCSEL wave-
length to change in a direction that re-
sults in an increase in optical
absorption and thus a decrease in cir-
culating microwave power. Typically,
such an appropriate choice of opera-

tional parameters involves setting the
nominal VCSEL wavelength to a point
on the shorter-wavelength wing of an
absorption spectral line.
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Internal Water Vapor Photoacoustic Calibration
John H. Glenn Research Center, Cleveland, Ohio

Water vapor absorption is ubiqui-
tous in the infrared wavelength range
where photoacoustic trace gas detec-
tors operate. This technique allows for
discontinuous wavelength tuning by
temperature-jumping a laser diode
from one range to another within a
time span suitable for photoacoustic

calibration. The use of an internal cal-
ibration eliminates the need for exter-
nal calibrated reference gases. Com-
mercial applications include an
improvement of photoacoustic spec-
trometers in all fields of use.

This work was done by Jeffrey S. Pilgrim of
Vista Photonics, Inc. for Glenn Research Cen-

ter. Further information is contained in a
TSP (see page 1).
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Mid-Infrared Reflectance Imaging of Thermal-Barrier Coatings 
Apparatus successfully monitors extent of hidden subsurface delamination. 
John H. Glenn Research Center, Cleveland, Ohio

An apparatus for mid-infrared re-
flectance imaging has been developed
as means of inspecting for subsurface
damage in thermal-barrier coatings
(TBCs). The apparatus is designed,
more specifically, for imaging the pro-
gression of buried delamination cracks
in plasma-sprayed yttria- stabilized zir-
conia coatings on turbine-engine com-
ponents. Progression of TBC delamina-
tion occurs by the formation of buried
cracks that grow and then link together
to produce eventual TBC spallation.
The mid-infrared reflectance imaging
system described here makes it possible
to see delamination progression that 
is invisible to the unaided eye, and
therefore give sufficiently advanced
warning before  delamination progres-
sion adversely affects engine perform-
ance and safety.

The apparatus (see figure) includes a
commercial mid-infrared camera that
contains a liquid-nitrogen-cooled focal-
plane indium antimonide photodetector
array, and imaging is restricted by a nar-

row bandpass centered at wavelength of 4
µm. This narrow wavelength range cen-
tered at 4 µm was chosen because (1) it
enables avoidance of interfering absorp-
tions by atmospheric OH and CO2 at 3
and 4.25 µm, respectively; and (2) the
coating material exhibits maximum trans-
parency in this wavelength range.  Delam-
ination contrast is produced in the mid-
infrared reflectance images because the
introduction of cracks into the TBC cre-
ates an internal TBC/air-gap interface
with a high diffuse reflectivity of 0.81, re-
sulting in substantially higher reflectamce
of mid-infrared radiation in regions that
contain buried delamination cracks.  

The camera is positioned a short dis-
tance (≈12 cm) from the specimen.  The
mid-infrared illumination is generated
by a 50-watt silicon carbide source posi-
tioned to the side of the mid-infrared
camera, and the illumination is colli-
mated and reflected onto the specimen
by a 6.35-cm-diameter off-axis parabo-
loidal mirror. Because the collected im-
ages are of a steady-state reflected inten-

sity (in contrast to the transient thermal
response observed in infrared thermog-
raphy), collection times can be length-
ened to whatever extent needed to
achieve desired signal-to-noise ratios.

Each image is digitized, and the result-
ing data are processed in several steps to
obtain a true mid-infrared reflectance
image. The raw image includes thermal
radiation emitted by the specimen in ad-
dition to the desired reflected radiation.
The thermal-radiation contribution is
eliminated by subtracting the image ob-
tained with the illumination off from the
image obtained with the illumination
on. A flat-field correction is then made
to remove the effects of non-uniformi-
ties in the illumination level and pixel-
to-pixel variations in sensitivity. This cor-
rection is performed by normalizing to
an image of a standard object that has a
known reflectance at a wavelength of 4
µm. After correction, each pixel value is
proportional to the reflectance (at a
wavelength of 4-µm) at the correspon-
ding location on the specimen. 




