Overpressure predictions are time-based, lasting rocket-engine start transient, and rapid acceleration of exhaust gases during liftoff for a large variety of rocket vehicles. These environments include ignition overpressure, produced by the rapid acceleration of exhaust gases during rocket-engine start transient, and launch acoustics, produced by turbulence in the rocket plume. The ignition overpressure predictions are time-based, and the launch acoustic predictions are frequency-based. Additionally, the software can predict ignition overpressure mitigation, using water-spray injection into the rocket exhaust stream, for a limited number of configurations.

The framework developed for these predictions is extensive, though some options require additional relevant data and development time. Once these options are enabled, the already extensively capable code will be further enhanced.

The rockets, or launch vehicles, can either be elliptically or cylindrically shaped, and up to eight strap-on structures (boosters or tanks) are allowed. Up to four engines are allowed for the core launch vehicle, which can be of two different types. Also, two different sizes of strap-on structures can be used, and two different types of booster engines are allowed.

Both tabular and graphical presentations of the predicted environments at the selected locations can be reviewed