The Formation and Stability of Carbonic Acid on Outer Solar System Bodies

Z. Peetersa,b, R. L. Hudsona,c, M. H. Moorea, Ariel Lewisc

aCode 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771
bDepartment of Chemistry, The Catholic University of America, Washington, DC 20064
cDepartment of Chemistry, Eckerd College, St. Petersburg, FL 33711

Manuscript pages: 40 (Text: 16 pages)
Figures: 9
Tables: 6
Abstract

The radiation chemistry, thermal stability, and vapor pressure of solid-phase carbonic acid (H₂CO₃) have been studied with mid-infrared spectroscopy. A new procedure for measuring this molecule's radiation stability has been used to obtain intrinsic IR band strengths and half-lives for radiolytic destruction. Results are compared to literature values. We report, for the first time, measurements of carbonic acid's vapor pressure and its heat of sublimation. We also report the first observation of a chemical reaction involving solid-phase carbonic acid. Possible applications of these findings are discussed, with an emphasis on the outer Solar System.

Key Words: Ices, IR Spectroscopy; Satellites, Surfaces; Cosmic Rays
the closest planet. In each case, carbonic acid may be formed, and for Callisto a tentative
detection of H$_2$CO$_3$ already has been made (Johnson et al., 2004).

To assess the formation and stability of carbonic acid in the Solar System, it is
important to investigate the molecule's physical and chemical properties, but little such
work has been published to date. Gerakines et al. (2000) compared the yields of H$_2$CO$_3$
made by exposing H$_2$O + CO$_2$ ice mixtures to ion irradiation (— 1 MeV H$^+$) and to UV
photons (~ 10 eV). The same researchers measured carbonic acid’s intrinsic IR band
strengths by the growth of products resulting from UV destruction of H$_2$CO$_3$. Earlier
work also showed qualitatively that carbonic acid's vapor pressure is lower than that of
H$_2$O, CO$_2$, and the observed reaction products, since H$_2$CO$_3$ is the last of these to sublime
under vacuum in the 200 – 250 K region (Moore and Khanna, 1991). A white color is
likely for H$_2$CO$_3$ made by acid-base chemistry (photographs in Loerting et al., 2000), and
the work by Winkel et al. (2007) showed that the x-ray powder pattern of frozen H$_2$CO$_3$
is featureless. To our knowledge, little else, if anything, is known of solid-phase carbonic
acid from experiments.

In this paper, we reinvestigate the intrinsic IR band strengths of H$_2$CO$_3$ and, for
the first time, measure this molecule's radiolytic destruction at several temperatures.
These new radiation experiments take into account amorphization of the sample.
Furthermore, the highest temperature at which destruction measurements are made has
been raised from ~10 K to 200 K. Temperature-dependent changes in the position and
width of the H$_2$CO$_3$ feature at 2618 cm$^{-1}$ (3.82 μm) have been recorded. The first
measurements of the vapor pressure and heat of vaporization of pure H$_2$CO$_3$ are given,
along with the first example of a low-temperature acid-base reaction of the molecule.
Changes in the IR spectra of irradiated ices were followed by Fourier-transform infrared (FTIR) spectroscopy using a Nicolet Nexus 760 instrument. In this setup, the incident IR beam passed through the sample, was reflected by the underlying aluminum mirror, and then passed through the ice a second time, and to the IR detector, for what are sometimes called transmission-reflection-transmission spectra. Measurements were made at 2-cm$^{-1}$ resolution from 5000 to 650 cm$^{-1}$, averaged over 150 scans.

For studying the vapor pressure of H$_2$CO$_3$, the compound first was made by an acid-base reaction between a 1 molar solution of HBr (Sigma-Aldrich) and a 0.1 molar solution of KHCO$_3$ (Sigma-Aldrich), similar to the technique of Hage et al. (1993). A few microliters of the KHCO$_3$ solution were injected through a septum, using a syringe, onto a KBr substrate at 10 K, attached to the tail section of a closed-cycle helium cryostat. Next, a few microliters of the HBr solution were injected the same way to form a layer atop the frozen KHCO$_3$ solution. This process was repeated about ten times to increase the ice's thickness. Subsequent warming of the sample to ~200 K removed the H$_2$O and initiated a reaction between HBr and KHCO$_3$ to form H$_2$CO$_3$, changes that were followed with IR spectroscopy. The sample then was heated to 240 - 255 K, and IR spectra recorded over time, with a focus on the 1300 and 1500 cm$^{-1}$ features of H$_2$CO$_3$. Band areas were measured and combined with intrinsic band strengths, so called A values, to determine the vapor pressures and enthalpy of sublimation (ΔH_{sub}) of H$_2$CO$_3$ (Khanna et al., 1990). These measurements were made with a Mattson Polaris spectrometer operating in a conventional transmission mode.
3.2. Radiolytic destruction

The destruction of crystalline H$_2$CO$_3$ by 0.8 MeV protons was followed by measuring the decrease in IR band areas after various doses. As an example, Figs. 3a and 3b compare spectra in the 2900 – 1500 cm$^{-1}$ (3.45 – 6.67 μm) region before and after irradiation to a dose of 2.0 eV molecule$^{-1}$. The H$_2$CO$_3$ bands are seen to decrease, indicating a loss of molecules, and at the same time H$_2$O and CO$_2$ are formed (H$_2$O is not shown). In addition, irradiation caused the H$_2$CO$_3$ bands to widen, indicating amorphization of the crystalline sample.

To accurately quantify carbonic acid’s radiolytic destruction it was necessary to distinguish between spectral changes caused by (a) loss of H$_2$CO$_3$ molecules and (b) amorphization. This was done by warming the sample to 200 K after each irradiation step to fully recrystallize the partially-amorphous ice and to sublime away the H$_2$O and CO$_2$ formed by radiolysis. The ice then was recooled to 14 K, as shown in Fig. 3c, for comparison to the original spectrum of the unirradiated ice, Fig. 3a. The spectra of Figs. 3a and 3c are similar, but the latter has slightly smaller H$_2$CO$_3$ bands, caused by the destruction of crystalline H$_2$CO$_3$.

The normalized band areas for H$_2$CO$_3$ have been plotted in Fig. 4 as a function of radiation dose. Table 2 lists all bands that were averaged for this graph along with their integration limits. Also in Fig. 4 are linear regression lines through the data points. The corresponding half-life doses for H$_2$CO$_3$ irradiated at 14, 100, and 200 K are then 11, 11, and 7 eV molec$^{-1}$, respectively.
temperature. After this annealing cycle, some CO₂ often remained trapped in the H₂CO₃ (Fig. 3c). In order to relate only the amount of CO₂ formed to the amount of H₂CO₃ destroyed, at each radiation step we subtracted the band area of any remaining CO₂ in the annealed ice from the area of the CO₂ band recorded after the next irradiation. Table 3 gives the results of these $A(H_2CO_3)$ measurements at 14 and 100 K, corrected for amorphization. Because most of the CO₂ product immediately sublimed away upon formation at 200 K, no band strengths were determined at that temperature. Note that the measurements in Table 3 are based on $A(CO_2) = 7.6 \times 10^{-17}$ cm molec⁻¹ (Gerakines et al., 1995), and that no decomposition of H₂CO₃ into CO appeared to occur. A few experiments with H₂¹³CO₃ were conducted to verify that all of the CO₂ formation observed in our work was due to the proton irradiation, and not from leaks in the vacuum system. No such contamination was detected in any experiment.

3.4. Radiation yield of H₂CO₃

The radiation-chemical yield, denoted G, of a substance is the number of molecules produced by absorption of 100 eV. Previously-reported values for $G(H_2CO_3)$ from H₂O + CO₂ (1:1) ices at 14 K were 0.028, 0.030, and 0.02 for MeV protons and UV photons (Gerakines et al., 2000), and for 10 keV electrons (Hand et al., 2007), respectively. These values were based on the growth of H₂CO₃ IR bands as a function of radiation dose, and represent the formation of H₂CO₃ within an amorphous ice mixture dominated by H₂O and CO₂. We repeated this type of experiment by irradiating H₂O + CO₂ (1:1) at 14 K and 50 K in small steps, the 1500 cm⁻¹ band's area being measured after each irradiation. The column density of H₂CO₃ was calculated from equation (1)
and this may account for the 8 – 18 cm⁻¹ shift of some bands with respect to their positions in the radiation-formed H₂CO₃.

Figure 6 shows the decrease in the normalized average areas for the 1300 and 1500 cm⁻¹ bands of H₂CO₃ as a function of time at five different temperatures. Each decrease is related to a change in column density, the number of molecules per cm² leaving the ice surface as a function of time. To determine column densities we used A values measured at 100 K. The slopes of similar non-normalized plots gave the sublimation fluxes (molec m⁻² sec⁻¹) at each temperature. Equation (4) then was used to calculate the vapor pressure, p.

\[
\text{Sublimation Flux} = \frac{p}{(2\pi mkT)^{1/2}}
\]

In (4), m is the mass of an H₂CO₃ molecule, k is the Boltzmann constant, and T is the absolute temperature, giving a vapor pressure in Newtons m⁻², which was converted to units of bar. A plot of the calculated vapor pressure from 238 to 256 K is shown in Fig. 7a. Figure 7b shows the same data graphed as \(\ln(p) \) versus 1/T, from which the slope gives the heat of sublimation as \(\Delta H_{\text{sub}} = 65.2 \text{ kJ mol}^{-1} \).

3.6. Chemical destruction

In addition to measurements of both the sublimation and the radiolytic destruction of solid H₂CO₃, we also have observed H₂CO₃ loss by chemical reaction. Previously, we found that ammonia (NH₃) blocks H₂CO₃ formation in irradiated solid-phase H₂O + CO₂ + NH₃ mixtures (Gerakines et al., 2000). In separate experiments, we have irradiated layered samples consisting of a mixture of solid H₂O + CO₂ over a layer of NH₃, both ices being formed at ~ 10 K. Subsequent irradiation produced H₂CO₃ in the upper layer,
5 shows the results of such a calculation, giving a half-life for carbonic acid at 100 K on both Europa and Callisto.

The spectra we have recorded, such as in Fig. 1, illustrate the differences between carbonic acid in an amorphous matrix and pure crystalline H\textsubscript{2}CO\textsubscript{3}. On warming from 14 to 240 K (Figs. 1b and 1c), some peaks shift, some bands narrow, and some splittings are observed. As an example, the broad, weak band near 2555 cm-1 (3.914 µm) sharpens considerably and moves to 2612 cm-1 (3.828 µm) on warming to 240 K. Figure 2 shows that this same feature then displays small, reversible shifts in position as the temperature of the carbonic acid is changed. The importance of documenting such spectral variations is demonstrated by Fig. 9, which overlays this same OH stretching feature of carbonic acid on reflectance spectra of Callisto and Europa. The spectrum of pure crystalline H\textsubscript{2}CO\textsubscript{3} is shown as is one in which carbonic acid is trapped in an amorphous ice mixture. It is seen that the band shape and position for the amorphous ice provides the better fit. Any similar feature on Europa is within the noise of the data as demonstrated in Fig. 9. See Johnson et al. (2004) for a suggestion of H\textsubscript{2}CO\textsubscript{3} as a possible candidate for Callisto.

Additional details on the shifts and intensity changes of H\textsubscript{2}CO\textsubscript{3} features can be found in Winkel et al. (2007).

Our analysis of data from irradiated H\textsubscript{2}CO\textsubscript{3} considers both radiation-induced chemistry and radiation-induced amorphization. Separating these effects is important because measurements of both H\textsubscript{2}CO\textsubscript{3} loss and CO\textsubscript{2} growth are needed for an accurate determination of intrinsic IR band strengths of carbonic acid. Along these lines, the band strengths we report in Table 3 are significantly different (> 50%) from some of the older, uncorrected values.
(25.2 kJ mol\(^{-1}\)), which will assist \(\text{H}_2\text{CO}_3\) in remaining on planetary surfaces after the sublimation of the other two molecules. For comparison to other carboxylic acids, \(\Delta H_{\text{sub}}\) is 62.5 kJ mol\(^{-1}\) for formic acid (HCOOH) and 67.9 kJ mol\(^{-1}\) for acetic acid (CH\(_3\)COOH). See Calis-Van Ginkel et al. (1978).

Having discussed our results, it is appropriate to point out some limitations and possible future work. Two sources of error in Table 1 are the unknown density and radiation stopping power of a 1:1 \(\text{H}_2\text{O} + \text{CO}_2\) ice. Our approach was simply to assume these quantities to be an average of the values of the individual components. A direct measurement, particularly of the density, is desirable.

The \(\text{H}_2\text{CO}_3\) formation we report is for this molecule generated in an amorphous mixture of \(\text{H}_2\text{O} + \text{CO}_2\) (1:1). However, to quantify carbonic acid production we were forced to use our \(A\) values for crystalline \(\text{H}_2\text{CO}_3\). The reason for this is that neither of the synthetic techniques we used to prepare \(\text{H}_2\text{CO}_3\) resulted in the pure amorphous material. To our knowledge, pure amorphous \(\text{H}_2\text{CO}_3\) has not yet been made and so no spectra or band strengths are available. A related difficulty concerned the purity of the carbonic acid in our vapor pressure measurements. The acid-base reaction used to make \(\text{H}_2\text{CO}_3\) gave KBr as a by-product. This is not expected to alter the vapor pressures of Fig. 7, but a check is desirable, such as with \(\text{H}_2\text{CO}_3\) made by a different method.

We also note that our vapor-pressure work was done with an IR spectrometer operating in a conventional transmission mode, while measurements of radiolytic destruction utilized reflection spectroscopy. The spectra in the two cases were essentially identical, as seen in Fig. 5.
References

Figure 5. A comparison of the IR spectra of H$_2$CO$_3$ formed by the irradiation of an H$_2$O + CO$_2$ (1:1) ice and the acid-base reaction of warmed HBr + KHCO$_3$. The upper spectrum was taken with the reflection method described in the text, while the lower spectrum was recorded in a conventional transmission mode.

Figure 6. Normalized areas (averaged) of the 1300 and 1500 cm$^{-1}$ bands of H$_2$CO$_3$ plotted as a function of time for five different temperatures. Each point is from the average area of the IR bands at 1300 and 1500 cm$^{-1}$.

Figure 7. The vapor pressures of H$_2$CO$_3$ at five temperatures are shown. The slope of the regression line in the lower graph gives the heat of sublimation, $\Delta H_{\text{sub}} = 65.2$ kJ mol$^{-1}$.

Figure 8. The IR spectrum of the H$_2$CO$_3$ + NH$_3$ solid-phase reaction product compared to room-temperature ammonium carbonate, (NH$_4$)$_2$CO$_3$.

Figure 9: The IR reflection spectra of Europa and Callisto compared to spectra of crystalline H$_2$CO$_3$ at 140 K and H$_2$CO$_3$ mixed with H$_2$O and CO$_2$ at 150 K. The H$_2$CO$_3$ absorbance spectra were inverted and arbitrarily scaled for this comparison. Callisto’s observed 3.880 µm (2577 cm$^{-1}$) feature is more similar to that of H$_2$CO$_3$ held in the amorphous ice.
Figure 2
Figure 4

\[H_2CO_3 \xrightarrow{p^+} \text{dissociation} \]

Normalized Band Area

Dose (eV molecule\(^{-1}\))

- □ 14 K
- ● 100 K
- ▲ 200 K
Figure 6

Normalized Band Area vs. Time (min)

H$_2$CO$_3$

240 K

245 K

248 K

250 K

255 K
Figure 8

![Graph showing wavelength and absorbance.

Wavelength (μm)

Relative Absorbance

4000 3500 3000 2500 2000 1500 1000

Wavenumber (cm⁻¹)

Reference: (NH₄)₂CO₃

Reaction Product

0.0 0.5 1.0 1.5 2.0 2.5

Reference: (NH₄)₂CO₃

Reaction Product

0.0 0.5 1.0 1.5 2.0 2.5
Table 1

Physical properties of ices

<table>
<thead>
<tr>
<th>Ice</th>
<th>Molecular Mass (g mol(^{-1}))</th>
<th>Density (g cm(^{-3}))</th>
<th>Proton Stopping Power (MeV cm(^2) g(^{-1}))(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(_2)O</td>
<td>18</td>
<td>1</td>
<td>273</td>
</tr>
<tr>
<td>CO(_2)</td>
<td>44</td>
<td>1.7</td>
<td>240</td>
</tr>
<tr>
<td>H(_2)O + CO(_2) (1:1)</td>
<td>31</td>
<td>1.35(^a)</td>
<td>256.5(^a)</td>
</tr>
<tr>
<td>H(_2)CO(_3)</td>
<td>62</td>
<td>1(^b)</td>
<td>254</td>
</tr>
</tbody>
</table>

\(^a\)Average value for a H\(_2\)O + CO\(_2\) (1:1) mixture.

\(^b\)Assumed value.

\(^c\)Calculated for 0.8 MeV protons, according to method of Zeigler et al. (1985).
Table 3

IR band positions and strengths (A) for H$_2$CO$_3$ at 14 and 100 K

<table>
<thead>
<tr>
<th>Band Position</th>
<th>Wavenumber (cm$^{-1}$)</th>
<th>Wavelength (µm)</th>
<th>A (10$^{-17}$ cm molec$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>14 K</td>
<td>100 K</td>
</tr>
<tr>
<td>2749 + 2833</td>
<td>3.634 + 3.530</td>
<td>5.3</td>
<td>3.3</td>
</tr>
<tr>
<td>2618</td>
<td>3.820</td>
<td>7.5</td>
<td>7.2</td>
</tr>
<tr>
<td>1695</td>
<td>5.900</td>
<td>10.8</td>
<td>14.8</td>
</tr>
<tr>
<td>1503</td>
<td>6.653</td>
<td>5.2</td>
<td>9.1</td>
</tr>
<tr>
<td>1303</td>
<td>7.675</td>
<td>8.5</td>
<td>12.3</td>
</tr>
<tr>
<td>1038</td>
<td>9.634</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>875</td>
<td>11.43</td>
<td>4.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

aFrom 18 K photodissociation of H$_2$CO$_3$ (Gerakines et al., 2000).

bFrom 185 K implantation of H$^+$ into CO$_2$ ice to form H$_2$CO$_3$ (Garozzo et al., 2008).
Table 5

Half-lives for crystalline H$_2$CO$_3$, based on the 100 K destruction rate in the laboratory, corrected for amorphization

<table>
<thead>
<tr>
<th>Environment</th>
<th>Depth (µm)</th>
<th>Volume Dose Rate (eV molec$^{-1}$ s$^{-1}$)</th>
<th>Half-Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>1.0</td>
<td>1.3×10^{-3}</td>
<td>2.4 h</td>
</tr>
<tr>
<td>Europaa</td>
<td>100</td>
<td>1.0×10^{-8}</td>
<td>35 y</td>
</tr>
<tr>
<td>Callistoa</td>
<td>100</td>
<td>2.5×10^{-11}</td>
<td>1.4×10^4 y</td>
</tr>
</tbody>
</table>

aVolume dose rates for Europa and Callisto from Cooper et al. (2001).