Chapter 15

An Intelligent Archive Testbed Incorporating Data Mining

H. Ramapriyan®, D. Isaac®, W. Yang®, B. Bonnlander?, D. Danks®

*NASA Goddard Space Flight Center, Greenbelt, MD

"BPS Consulting, Inc., Bethesda, MD

°George Mason University, Fairfax, VA

Institute for Human and Machine Cognition, Pensacola, FL

°Carnegie Melon University, Pittsburgh, PA

! This work was performed by the first author as part of his official duties as an
employee of the U.S. government. It was supported by the NASA’s Science
Mission Directorate. The remaining authors were supported under Cooperative
Agreement NCC5-645 between NASA and George Mason University. The
opinions expressed are those of the authors and do not necessarily reflect the of-
ficial position of NASA.

15.1 Introduction

Many significant advances have occurred during the last two decades in
remote sensing instrumentation, computation, storage, and communication
technology. A series of Earth observing satellites have been launched by
U.S. and intemational agencies and have been operating and collecting
global data on a regular basis. These advances have created a data rich en-
vironment for scientific research and applications. NASA’s Earth Observ-
ing System (EOS) Data and Information System (EOSDIS) has been op-
erational since August 1994 with support for pre-EOS data. Currently,
EOSDIS supports all the EOS missions including Terra (1999), Aqua
(2002), ICESat (2002) and Aura (2004). EOSDIS has been effectively cap-
turing, processing and archiving several terabytes of standard data prod-
ucts each day. It has also been distributing these data products at a rate of
several terabytes per day to a diverse and globally distributed user com-
munity (Ramapriyan et al. 2009). There are other NASA-sponsored data
system activities including measurement-based systems such as the Ocean
Data Processing System and the Precipitation Processing system, and sev-
eral projects under the Research, Education and Applications Solutions
Network (REASoN), Making Earth Science Data Records for Use in Re-
search Environments (MEaSUREs), and the Advancing Collaborative
Connections for Earth-Sun System Science (ACCESS) programs. To-
gether, these activities provide a rich set of resources constituting a “value
chain” for users to obtain data at various levels ranging from raw radiances
to interdisciplinary model outputs. The result has been a significant leap in
our understanding of the Earth systems that all humans depend on for their
enjoyment, livelihood, and survival.

The trend in the community today is towards many distributed sets of
providers of data and services. Despite this, visions for the future include
users’ being able to locate, fuse and utilize data with location transparency
and high degree of interoperability, and being able to convert data to in-
formation and usable knowledge in an efficient, convenient manner, aided
significantly by automation (Ramapriyan et al. 2004; NASA 2005). We
can look upon the distributed provider environment with capabilities to
convert data to information and to knowledge as an Intelligent Archive in
the Context of a Knowledge Building system (IA-KBS). Some of the key
capabilities of an IA-KBS are: Virtual Product Generation, Significant
Event Detection, Automated Data Quality Assessment, Large-Scale Data
Mining, Dynamic Feedback Loop, and Data Discovery and Efficient Re-
questing (Ramapriyan et al. 2004).

Large-Scale Data Mining (LSDM) plays a very important role in IA-
KBS. Two important uses of LSDM are: retrospective studies covering
large temporal and geographic extent; and precursor detection, where indi-
cators of significant events are identified through analysis of historical
data. Note that, once good precursors have been identified via a scientific
LSDM process, computationally efficient filters on real-time data streams
can be constructed so that significant events can be detected in observa-
tional data in near real-time and users can be alerted.

Especially relevant to data mining in the above discussion, there have
been several research investigations in the area of Intelligent Data Under-
standing that were supported by NASA’s Intelligent Systems Project under
the Computing, Information and Communication Technology Program that
can contribute to the goals of an IA-KBS. However, these investigations
typically perform proofs of concept on a relatively small scale. Before
their contributions can be implemented on a large scale commensurate
with today’s Earth science data archives, it is necessary to test them in a
pseudo-operational environment. In this chapter, we describe the imple-
mentation of a testbed to accomplish this and discuss some of the observa-
tions and lessons learned from its implementation. This is a more detailed
discussion than the summary of the implementation and results presented
in Ramapriyan et al. 2005.

In Sect. 2, we present the basic concepts of an IA-KBS. In Sect. 3, we
discuss the goals of the testbed and describe the application scenario (pre-
diction of wild fire potential from historical and current remote sensing ob-
servations) being tested in the testbed. In Sect. 4, we provide a description
of the algorithm used and implementation details. In Sect. 5, we present
the results of implementation including derived fire prediction maps, proc-
essing speeds and feasibility of pseudo-operational implementation. In
Sect. 6, we document our conclusions and lessons learned.

15.2 Intelligent Archives

The concept of intelligent archives was spawned out of long experience
with Earth science data archives and recognition of the convergence of two
factors: the accumulation of enormous quantities of valuable scientific data
and the increasing practicality of applying machine leaming techniques to
large-scale data sets. The result was a growing belief that current data ar-
chives could and should evolve to better support the scientific process and
help unlock the untapped potential of both current data holdings and ongo-
ing observational data streams. We believe the time has come for intelli-

gent archives, which not only store and disseminate data, but also play an
active role in the knowledge building process.

Today’s data archives play a key role supporting the value chain that
turns data into information and knowledge. They provide common reposi-
tories for the collection and dissemination of information at all levels, from
raw observations to high-level analyses. And yet it is clear that they have
the potential to provide much more value in the overall value chain. For
example, archives are uniquely positioned to perform the following useful
functions:

e Mining archived data holdings to add metadata and thereby improve
data access and usability;

o Identifying quality issues as data are being stored, while there is still the
opportunity to recapture the affected observations;

e Detecting unusual patterns in data that may indicate an event of interest;
and

o Facilitating collaboration and exchange among distributed research

groups.

An assessment of the potential role and function of an intelligent archive
identified six key capabilities such a system should exhibit: virtual product
generation, significant event detection, automated data quality assessment,
large-scale data mining, dynamic feedback, and data discovery and effi-
cient requesting.

15.2.1 Virtual Product Generation

An archive does not need to produce and archive all of the derived data
products that will be requested of it in advance. In many cases, only a
small percentage of the products generated are actually requested. Virtual
product generation allows a user to treat a product as though it were being
retrieved from the archive when, in reality, the data inputs are automati-
cally retrieved, assembled, and processed into the desired form “on the
fly,” in response to the request (Clausen and Lynnes 2003). This adds la-
tency but can result in significant storage cost savings and eliminate the
need for reprocessing as algorithms are improved. An intelligent archive
minimizes latency by anticipating demand (e.g., based on predictive mod-
els of usage patterns and significant event detection), computing needed
products just in time with a relatively small percentage of the total data.
Another aspect of virtual product generation is the ability to assemble,
transparently, inputs to the production algorithm from a variety of sources
and locations. This requires a global registry, interface standards, and sup-

porting middleware (so that production algorithms receive the data in an
acceptable and consistent format).

Further, a virtual product generation capability should optimize the as-
signment of processing resources by minimizing the need for data commu-
nications, and considering current resource utilization and availability.
This means building and using a global predictive model of the intercon-
nected network of storage and processing resources, and keeping the
model current via frequent state updates (where “frequent” might mean on
the order of tens of seconds).

15.2.2 Significant Event Detection

With a constant stream of several terabytes of data per day entering an ar-
chive, it is likely that manual analyses will miss some significant events, or
at least miss them until the opportunity to perform focused collection of
additional information related to the event has passed.

Significant event detection helps identify phenomena of interest within
very large data sets and data streams. This in turn enables not only near-
real-time reporting of geophysical events in an ingest data stream, but also
content-based queries if the events are stored as metadata. The idea here is
to place matched filters or pattem recognition algorithms on an input data
stream (or streams) to automatically detect the occurrence of an event.
Some examples of significant events are hurricanes, wild fires, volcanic
eruptions, and failure of a sensor or some other part of the information
processing chain. The event detection, in turn, could trigger a variety of ac-
tions such as notification of subscribers, generation and distribution of as-
sociated products, retasking of sensor assets, reallocation of system re-
sources, and self-repair.

15.2.3 Automated Data Quality Assessment

As in the case of significant events, experience has shown that data quality
issues can lay undiscovered for long periods, hidden in the flood of data. In
addition to surfacing such issues in a timely manner, the potential exists to
circumvent a variety of complex data quality issues.

Automated data quality assessment maintains the algorithmic processing
pedigree of a data product, and ensures the scientific and algorithmic con-
sistency of the underlying modeling and processing assumptions (Isaac and
Lynnes 2003). An intelligent archive can take responsibility (to a greater
or lesser extent) for monitoring and perhaps correcting the quality of the
products it delivers to a requestor or a consuming process. This includes

both the algorithms and inputs used to generate the product (that is, a so-
phisticated kind of product provenance and configuration control) as well
as internal inspection of the products to ensure that they meet a variety of
user-specified characteristics (e.g., regarding cloud cover, dynamic range,
or sampling resolution). Other sources of error (e.g., bit errors, compres-
sion/decompression lossiness and mistakes in indexes or metadata) can
also be detected prior to delivery and, in some cases, corrected or amelio-
rated (e.g., through interpolation or other data modeling approaches).

15.2.4 Large Scale Data Mining

While data mining has already proven to have utility in Earth science data
analysis, an intelligent archive must perform data mining efficiently to en-
able the analysis of large data volumes. Here, the primary meaning of the
term is a process that finds higher-level emergent causal relationships at a
modeling level above the level at which the inputs exist. Typically, data
mining sits at the top of the value chain — taking information as input, and
producing knowledge. Two important examples of this type of analysis are
(1) retrospective studies covering large temporal and geographic extent,
and (2) precursor detection, where indicators of significant events are iden-
tified through analysis of historical data. Note that once good precursors
have been identified via this scientific data mining process, computation-
ally efficient filters on real-time data streams can be constructed. The out-
put of a successful data mining process is typically a model that can serve
as the basis for prediction, event detection, classification, quality assess-
ment, or other purposes. The knowledge derived from successful data min-
ing may also have other value or utility: pure science (discovering or con-
firming previously unverified correlations or relationships — e.g., in global
climatology); efficiency (discovering that only some inputs contribute sig-
nificantly to an output); and instrument or spacecraft health and safety (de-
tection or prediction of anomalies).

15.2.5 Dynamic Feed-back

The ability to stochastically optimize the allocation of the storage, net-
work, and computing resources of the archive using dynamic feed-back
loops supports the other archive functions by increasing throughput and
reducing user-experienced latency in product delivery (Morse et al. 2003).
An intelligent archive can be modeled (McConaughy and McDonald 2003)
as one component in a complete system that includes sensor tasking, sen-
sors and collection, ground station early level product generation, archiv-

ing and higher-level production, real-time or near real-time applications,
and user request satisfaction and associated production. There are two low-
latency feedback loops of interest. The first is for retasking of resources to
support time critical scenarios (e.g., fire detection). The second is for sys-
tem resource optimization to maximize throughput and minimize latency
of delivered user-requested products.

15.2.6 Data Discovery and Efficient Requesting

Some advanced capabilities of an intelligent archive, particularly virtual
product generation, have the potential to put heavy loads on cooperating
systems. For that reason, an intelligent archive should act as an intelligent
requestor of data, exploiting its knowledge of information interrelation-
ships and computing resources to minimize its load on cooperating sys-
tems. In addition, intelligent archives of the future should be able to detect
the presence of newly available data anywhere in the world (Isaac and
McConaughy 2004), determine the usefulness of the data, learn how to ac-
cess them and ultimately provide the data to users or applications in a us-
able form. This involves an ongoing search process that keeps constantly
and persistently aware of potential data sources and their changing status,
and capabilities to retrieve and reformat the data transparently to meet the
users’ data interface requirements or preferences. In this way, the intelli-
gent archive becomes an interface not only to its own holdings, but also to
the broad array data sources of interest across the accessible web. Together
or independently, these capabilities have the potential to significantly im-
prove support of the knowledge-building value chain.

15.3. Testbed and Scenario

The concept of an intelligent archive is intriguing. But it is even more in-
teresting if it is feasible to implement the concept using current computing
technology. A test using a realistic scenario on realistic data volumes sug-
gests that it is.

Perhaps the most important capability identified for an intelligent ar-
chive is the ability to facilitate the transformation of data into knowledge
in a distributed environment using large-scale data mining. Data mining
algorithms are generally viewed as unsuited for large-scale use disciplines
like Earth science that involve very high data volumes. There have been
many research projects that have developed algorithms with promising re-
sults. But they have been tested on data subsets of only a few gigabytes,

while large-scale datasets tend to be multiple terabytes in size. To bridge
the gap between research and operations, we constructed a testbed to see
how a typical algorithm would perform on full-scale data sets.

The testbed provides the computational and data resources required for
implementing TA-KBS concepts on a scale that provides concrete evidence
about the associated benefits and risks prior to implementing these con-
cepts in operational systems. Such evidence is important both to the users
of information and to data managers. The testbed provides a capable and
flexible infrastructure for exploring a variety of data mining scenarios,
though the focus in this discussion is primarily on performance and utility
outcomes rather than system and software components or frameworks.

Using the six key capabilities identified above as a guide, several
NASA-funded research projects and their algorithms were surveyed and
assessed for their applicability to the testbed. Initially, a “reference archi-
tecture” for the IA-KBS was prepared (Morse and Yang 2004). In this ref-
erence architecture, key interfaces and dependencies were specified, over-
lapping or redundant functionality was eliminated, and sample use cases
and associated operations’ concepts were created and described. The refer-
ence architecture makes evident where a given research algorithm or capa-
bility might reside. The goal was to find research that shows both scientific
and operational relevance, and that is applicable to as large a subset of the
TA-KBS functional capability as possible. Other evaluation criteria that en-
tered into the selection process included implementation feasibility, source
data availability, and collaboration potential.

The problem selected for demonstration is fire prediction (Bonnlander
2005). Fire prediction is very relevant socially. Also, it is a challenging
problem, since there is a large component of stochastic uncertainty. Fuel
type and availability, moisture, sources of ignition, temperature and pre-
cipitation —over considerable lengths of time and seasonal conditions — in-
fluence the predicted fire potential. Analysis shows that the algorithm can
exercise most of the functional areas identified in the IA-KBS reference
architecture. Finally, the scientific goals of the research will benefit from
the testbed, since the testbed can process a large variety of geographic ar-
eas, fuel types, and seasonal conditions, and hence significantly extend the
scientific relevance of the algorithm into new and previously unexplored
aspects of the underlying phenomena.

15.3.1 Design Issues

The TA-KBS project had identified a number of technical issues associated
with implementation of the intelligent archive concepts, most notably scal-

ability issues (McConaughy and McDonald 2003; Isaac and McConaughy
2004). These issues needed to be addressed in a manner that was opera-
tionally relevant and yet could be implemented on a limited budget.

e Scalability and Parallelization. Two approaches to parallelization were
considered: coarse grained and fine grained. Coarse grained parallelism
was chosen because, although it requires partitioning the data and
generating multiple independent models, it is much easier to run
multiple instances of a data mining algorithm on each node than it is to
implement a truly distributed algorithm. In the fire prediction scenario,
it was convenient to partition data along fuel type (land-cover) and
month of the year.

e Source Data Restructuring. Most data mining algorithms require
observational data with one record per observation having all the
relevant independent variables, while remote sensing data are typically
stored as files with parameters covering contiguous areas in space and
time. The fire prediction algorithm was no exception to this. Although
an indexing scheme could be used to map from one representation to
another, the resulting physical data access would “bounce” around the
source data, resulting in poorer performance. Therefore, we chose to
physically re-order the data into the form and format expected by the
data mining algorithms.

e Representation of Time. It is obvious that, since prior precipitation has a
significant effect on fire potential, prediction of fires involves time
explicitly. However, there is no explicit mechanism in the algorithms
selected for the testbed for handling time. Instead, observations for the
same variable at different times are simply transposed into multiple
variables within a single record for input into the data mining algorithm.
This temporal “flattening” is straightforward unless the time series is
very long, in which case the dimensionality of the data space would
grow too large. For the fire prediction scenario, we kept the time series
short by reducing measurements into a few averages for the prior day,
week, month, etc.

15.3.2 Testbed Design

Prior work in the IA-KBS project identified general capability needs, chal-
lenges, and opportunities (Ramapriyan et al. 2004). The testbed design
provides an opportunity to explore these general concepts at a practical
level that would be relevant to an operational system. The testbed design is

discussed briefly below as three different views: a system network view, a
functional view, and a software component view.

System Network View

One of the most important aspects of the testbed is that it should demon-
strate intelligent archive concepts in an operationally-relevant environment
without interfering with the production operations of an actual operational
system. Features included to make the environment “operationally rele-
vant” include a high-performance node for the data mining and event de-
tection components, use of pre-production and production archive nodes
for source data, and high-speed networks for node connections. Fig. 15.1
shows a simplified view of the components from the system network’s
point of view. The peer archives shown here are two of several Distributed
Active Archive Centers (DAACs) that operationally archive and distribute
NASA'’s Earth science data. For the purposes of the testbed, data are ob-
tained from these DAACs and stored in a separate IA storage node.

Intelligent Archive Testbed

TA Compute TA Storage
Node Node
100 GFLOPS 50TB

i
1
1
|
1
1
1
1
1
1
1
S

Spatial Data Peer Archive Peer Archive
Global {(Goddard (EDCLP
Inventory DAAC) DAAC)

Fig. 15.1. Intelligent Archive Testbed System Components

Functional View

The testbed includes a subset of the functional components identified in
the TA-KBS reference architecture (Morse and Yang 2004), which were
derived directly from the envisioned IA capabilities. The primary focus of
the testbed is on the data mining and event detection components. These

two components work together: the data mining component examines his-
torical data to extract a statistical model of fire potential; the event detec-
tion component then uses this model to scan current data to assess current
fire potential.

/ Intelligent Archive \

! i i Event Data
back i Quality ‘: Detection | Mining

""" I T T T

‘High Performance Bus ‘

1 | A

\Virtual i lmport/ | |Data System
:F’roductsi Export Access | [Control

\

Fig. 15.2. Intelligent Archive Functional Components

The data mining algorithms process the prepared data and extract a sta-
tistical model of fire potential based on the available remote sensing pa-
rameters. The algorithm implemented is logistic regression, since it per-
forms well in terms of both accuracy and computational effort. The data
mining algorithms are implemented in MATLAB.

Software Component View

The testbed includes a variety of software components that together pro-
vide the infrastructure needed to manipulate and mine large volumes of
data. These are grouped as shown in Fig. 15.3 into layers of services at dif-
fering levels of abstraction.

The Local Application Platform Layer provides Job Management and
Data Access services. Job Management includes the MATLAB Distributed
Computing Toolbox/Engine for dispatching different data pre-processing,
data mining, and event detection tasks to different IA Computational Node
processors. Data Access services include Hierarchical Data Format (HDF)
libraries for reading NASA remote sensing data files, and MATLAB I/O
for managing pre-processed data.

The Grid Services Layer provides a variety of services for locating and
accessing distributed computing and storage resources. The testbed uses

these services mainly to identify and obtain source data for use by the data
mining and event detection components in the Application Layer. The Col-
lective services employ the EOS Clearinghouse (ECHO) for identifying
specific files that contain the remote sensing parameters for the times and
locations of interest. The Resource services are used primarily to access
data from the grid using GridFTP. The Connectivity services include ser-
vices for authenticating the local server to the grid, plus low-level commu-
nication services.

Application Layer
Data Mining Eystem Control

Matlab/Octave Functions Admin
ustom scripts

Event Detection
Matlab/Octave Data Preprocessing
+ "Mined” Model [Custom Scripts

v

Local Application

. Grid Services

h

Platform Layer Layer| [Collective
(b Mgmt ECHO, SRB MCAT
MATLAB DCE :
Resource
Data Access v RO TR S
HDF-ECS, P
MATLAB IConnectivity

Digital certificates, TCP/IP

! !

Fabric Layer
Xserve RDS Archive| |Goddard| |EDC LP|
ICluster [Server DAAC DAAC

Physical Networks
Abilene, Public Internet

Fig. 15.3. Intelligent Archive Software Components

Data Preparation and Mining

As noted above, the data mining problem selected for demonstration of the
IA testbed is wildfire prediction. Fire potential is determined by a number
of parameters for which good remote sensing data exist, including tem-
perature, precipitation history, fuel type and availability, and fuel moisture.
Ignition events, including lightning and human activities, are the final fac-
tor in the occurrence of wildfires. However, these are excluded from the

predictive model because these are immediate causes of fires rather than
predictors of fire potential several days ahead of time.

(Intelligent Archive

Historical
Remote ,‘; Jata Fire
Sensing Data Mining Slotential
Historical —™ Model
Fire Data L 4
Event
P Detection Predicted
Remote > Y Py
Sensing

Potential
Data \\—/

Fig. 15.4. Research scenario

15.4. Testbed Implementation

15.4.1 The Testbed Algorithm Implementation

Algorithm: The algorithm follows a set of steps that reflect a fairly stan-
dard approach to statistical forecasting. This approach involves defining a
collection of independent variables (in this case, variables representing
climate and historical fire occurrence data) and a single dependent variable
(the occurrence of at least one fire within the next N days) in order to con-
struct a model that produces a probability of fire conditioned on the inde-
pendent variables. In abstract terms, the algorithm assumes that all avail-
able climate and fire occurrence data can be spatially and temporally co-
registered, so as to produce a temporal sequence of data grids for each data
source (one grid per day for each data source) over a specific date interval
covering several years. In these terms, the independent variables for the
statistical model correspond to the data values associated with a particular
grid cell location on a specific date, and the independent variable corre-
sponds to the presence or absence of fire within the next N days at that
same grid cell location (a binary value).

Important details of the algorithm include a description of the particular
variables chosen, the preprocessing steps used to standardize the data, and
the particular statistical modeling approach used. The choice of variables
was guided in part by a visual analysis of the fire occurrence data, which

showed that both land cover type (e.g., grasslands versus coniferous for-
ests) and time of year were important factors in determining fire fre-
quency. For this reason, the algorithm parameters were chosen to produce
a unique model for each combination of 17 different land cover types and
the 12 different months in the year. The main preprocessing steps involved
co-registering data values onto a 8km-resolution grid covering the coter-
minous United States, creating separate “training sets” for each statistical
model based on land cover type and month of the year, and rescaling val-
ues for the independent variables in each training set to have zero mean
and unit variance. More details regarding preprocessing are given in the
next section.

The choice of logistic regression as the statistical modeling approach
was based upon an extensive study comparing the out-of-sample forecast-
ing accuracy of models based on logistic regression, binary classification
trees, and Support Vector Machines (Bonnlander 2005). Results of the
comparative study indicate that logistic regression provides consistently
superior forecasting accuracy over the other two approaches, and it had the
extra benefit of being the fastest of the three approaches by several orders
of magnitude. The logistic regression implementation used here came from
the glmfit() function provided in the Matlab Statistical Toolbox, Release
13.

Two-phase implementation: The implementation of the wildfire pre-
diction algorithm in the testbed underwent two phases. The goal of the first
phase was to build the testbed’s hardware and system software environ-
ment and to replicate the algorithm originally implemented in the IHMC
and compare the algorithm performances in the IHMC machine and the
testbed machine. During the first phase, the source code, written in Matlab,
and the input data sets was rehosted to the testbed’s head node and its local
file system. The goal of the second phase was to investigate the perform-
ance and feasibility of the algorithm in an operationally-relevant environ-
ment with distributed parallel computing and EOS’ production data prod-
ucts. During the second phase, most of the data were obtained from RDS
through its subscription to operational NASA DAACs. The data were
stored in the Xsan administered RAID system in the testbed. The paralleli-
zation was achieved through the use of the Matlab Distributed Computing
Engine (MDCE). With MDCE, one could start a job manager to manage a
number of workers, which perform computation tasks. When multiple
workers were started and run at different computing nodes in a computing
cluster to collectively perform a subset of a larger computing task, it
achieved the goal of parallelizing the computing task. The fire prediction
algorithm involved training and building hundreds of models for different
land surface types and at different prediction time frames. The Matlab

code was written such that model building process could be performed for
multiple models or for any subset of models. The code also employed a
lock mechanism which would lock a task being processed so that an avail-
able computing process could skip a locked task and proceed to the next
task. These coding techniques made MDCE very suitable to achieve paral-
lelization. MDCE licenses were installed in four of the six dual-processor
computing nodes, which allowed a maximum of eight workers to be run at
the same time.

Source Data used in Phase I: Source data used in the algorithm in
ITHMC and during the first phase of the testbed included four types of in-
formation: weather parameters, vegetation condition parameters, national
fire occurrence database, and fuel code map.

a) Weather parameters: the weather parameters include four Global
Surface Summary of the Day (GSSD) variables from National
Climate Data Center (NCDC). They were daily minimum air
temperature (TMIM), maximum air temperature (TMAX),
precipitation (PRECIP), and vapor pressure deficit (VPD). There
were about 6000 observation points globally, among which about
1200 were in the continental U.S.

b) Vegetation condition parameters: the vegetation condition
parameters included leaf area index (LAI) and Fractional
Photosynthetically Active Radiation (FPAR) derived from MODIS
measurements. LAI and FPAR were two of the standard MODIS
land products. They were available at 1km spatial resolution.

¢) Fire occurrence information: fire occurrence data included the
location and size of fire for a specific day. These data were
obtained from the National Interagency Fire Management
Integrated Database (NIFMID) managed by USFS. The time
coverage of the data was from 1986 to 2004, among which 2004
data were 90% complete.

d) Fuel code map: the fuel code map included 24 fuel types among
which 20 were vegetation types (Burgan et al.,, 1998). The map
was developed primarily based on the 1-km land cover map
derived from AVHRR NDVI by Loveland et al. 1991.

All data were co-registered to gridded 8-km resolution matrices in Lam-
bert Azimuthal equal area projection with center latitude being 45.0 de-
grees and central meridian being -100.0 degrees. Each grid matrix has 361
rows and 573 columns, covering the entire conterminous U.S. Both
weather and vegetation condition parameters were preprocessed by the
Terrestrial Observation and Prediction System (TOPS) project at AMES
(http://www.ntsg.umt.edu/tops/webpages/right/flowchart/index.php).

MODIS data were aggregated from 1km to 8km while the weather data
were interpolated to 8km grid using techniques described in Jolly et al.
2005. These data covered time periods between March 5, 2000 and De-
cember 31, 2004. The National Interagency Fire Management Integrated
Database (NIFMID) provides records of fires occurring on USFS land that
required suppressive action for the years 1986-2003 (USDA 2003), includ-
ing fire location, ignition date and final fire size. The fuel code map, given
at 1-km resolution with the same map projection, was aggregated to 8-km
resolution using Matlab code. Preprocessing code was written to convert
the data into Matlab matrices containing standardized values for independ-
ent variables.

Source Data used in Phase II: During the second phase, data obtained
directly from the operational NASA DAACs were used to replace some of
the input data used in phase I. These included MODIS snow/ice,
FPAR/LAI, land cover, Thermal/fire, and TRMM 3-hr gridded precipita-
tion data. Among the above operationally available data, the MODIS
FPAR/LALI product was also used in the phase I implementation, but dur-
ing phase II the original preprocessed data were replaced by data directly
from the NASA DAAC. For the other data products, MODIS snow/ice was
used as a new prediction variable; MODIS land cover was used to replace
the fuel code; TRMM precipitation was used to replace the original pre-
cipitation data; and the MODIS thermal/fire was used to replace the de-
pendent fire occurrence variable. The minimum and maximum air tem-
perature and the vapor pressure deficit data used in phase I were still used
in Phase II model training and forecast. It was originally planned to also
replace these preprocessed data using NASA operational data such as
MODIS land surface temperature and atmospheric profile products. After
some initial implementation tests, it was determined that the resources re-
quired would exceed those available to the project.

Preprocessing of NASA operational data: The operational NASA data
were in different resolutions, both spatial and temporal, and in different
coordinate reference systems (CRS) as compared to the data sets used in
Phase 1. Preprocessing was needed to transform the operational data into a
form that could be input into the ITHMC algorithm. The preprocessing
functionalities included a) CRS transformation to convert MODIS sinusoi-
dal and TRMM geographic CRS to Lambert Azimuthal Equal Area projec-
tion; b) spatial resolution transformation to resample/interpolating 500-m
(for the snow/ice data) and 1-km MODIS data and the 0.25-degree TRMM
data into 8-km grid; c) temporal resolution transformation to convert
TRMM 3-hour measurements to daily values; d) mosaicking of multiple
MODIS tiles into one single coterminous US grid; and d) file reformatting
to convert MODIS HDF-EOS and TRMM native HDF formats to generic

binary format. Although it was possible to develop one single tool for all
the products because the many aspects of the preprocessing were the same
for different products, it was decided that one tool for each product was
appropriate because it was easier to configure them for individual prod-
ucts. These tools were placed in the training/prediction process flow so
that fire prediction models could be retrained when needed and be used to
make real-time or near real-time forecast when new data products become
available. Preprocessing of all the five operational products added less than
40 seconds overhead to the model forecast.

Construction of wild fire prediction models: After all input data were
preprocessed into a co-registered 8-km grid, they were separated into inde-
pendent and dependent variables. The independent variables for a given
day, T, and a given year, Y, were the following:

a) TMIN, TMAX, VPD, PRECIP, and SNOW on day T in year Y,

b) Averages of TMIN, TMAX, VPD, PRECIP, and SNOW over the
days [T-7,T-1] inyear Y,

¢) Averages of TMIN, TMAX, VPD, PRECIP, and SNOW over the
days [T-30,T-1] in year Y,

d) FPARonday T-1inyearY,

e¢) LAIonday T-1inyearY, and

f) Number of fires in the previous year (all of Y-1)

Where TMIN, TMAX, VPD, PRECIP, and SNOW are minimum tem-
perature, maximum temperature, vapor pressure deficit, precipitation, and
percent snow cover, respectively.

The corresponding dependent variables were the following:

a) Fire occurrences (zero or one) in the days [T,T+29] for 30-day
models

b) Fire occurrences (zero or one)in the days [T,T+6] for 7-day
models

¢) Fire occurrences (zero or one) in the day T for 1-day models

That is, for an N-day model, if no fire occurred in the days [T, T+N-1],
the dependent variable would have a value of zero, and a value of one oth-
erwise.

The independent and dependent variables were used to train three model
types, each for 1-, 7-, and 30-day prediction. If required input data on and
before day D-1 are available, the models can predict fire potential respec-
tively, for day D, for a 7-day period staring from D (i.e., [D, D+6]), and for
a 30-day period staring from day D (i.e., [D, D+29]). The model building,
i.e., the generation of the logistic regression models, is done by calling re-

lated Matlab function glmfit(), which is provided in Matlab’s Statistics
Toolbox.

Because the behavior of fires is different at different times of a year and
over different land cover types, one single model is not likely to predict
fire at all times and locations. The models were separately built for differ-
ent land cover types and for each of the 12 months in a year. The MODIS
land cover product identifies 17 different land cover types, among which
14 occur in the 2001 data used in the tests reported here. Thus, a complete
model building process generates 504 models (i.e., 3 model types; 14 land
cover types; 12 months; 3 x 14 x 12 = 504).

15.4.2 The Testbed hardware and software configuration

The testbed was built using an Apple G5 Xserve cluster. The head node of
the cluster consisted of dual 2.0GHz G5 processors, 4GB of DDR SDRAM
and two 250GB hard disks. There were five cluster nodes, each having
dual 2.0 or 2.3 GHz GS processors with 2GB DDR SDSRAM and 8GB
hard disk. The combined peak performance of all 12 processors was 103
GFLOPS. The storage system consisted of five RAID arrays with total ca-
pacity of 22 Terabytes. The RAID arrays and cluster nodes were intercon-
nected via 2Gbps Fiber Channels. A gigabyte Abilene network connected
the testbed, Remote Data Storage (RDS) facility, the NASA DAACs, and
other resources. The RDS contained a transient data storage system of 47
TB, of which 2 TB were allocated to the testbed activities, and a persistent
data storage system of 185 TB. The subscription to NASA Data Pool for
data products needed by the wildfire prediction algorithm and a notifica-
tion mechanism to the testbed were set up in RDS. The automatic notifica-
tion processing and data pulling from RDS to the testbed were imple-
mented in the testbed machine. Several standard open interface protocols
and proprietary software were used for data transfer between the testbed
and RDS machines and NASA data pools, which included the Nirvana
Storage Resources Broker (SRB) software, GridFtp, and Open Geospatial
Consortium Web Coverage Service. The operating system of the testbed
was Tiger OSX version 10.4 and its RAID system was administrated using
the Xsan version 1.1. The software used to implement the wildfire predic-
tion algorithm was MDCE.

15.5 Results

15.5.1 Computation Speed

As mentioned before, prediction models were built for different land sur-
face types and different model types (i.c., time frames). The MODIS land
cover product identified fourteen different vegetative cover types. For each
prediction type, 168 models, each for a particular month and a particular
vegetative surface type, could be built. With three model types providing
1-day, 7-day, and 30-day predictions, a total of 504 were generated in the
testbed. Table 15.5-1 lists times used to generate the three model types,
each containing 168 individual models. In the table, the time for the 30-
day model included the time used in the variable preparation, which gener-
ated independent and dependent variable arrays from input grid data. The
time needed to complete this preparation was 7.1 hours using a single
worker node. If this time had been deducted, the training time for the sin-
gle worker 30-day model would have been 15.8 hours, which was equiva-
lent to the other two model types.

Table 15.5-1. Times used in generating the three types of prediction models (in
hours)

Single Worker Eight Workers

1-day model 16.5 1.6
7-day model 16.3 1.5
30-day model 22.9 2.8

(Note: The time in the 30-day model includes preprocessing time. See text)

It is to be noted that the times used in 8-worker distributed computing
were less than one eighth of the time used in the single-worker computing.
Two factors contribute to these results. The first is that the single worker
sessions were performed in the head node of the testbed, on which many
other processes from other projects were also running. The second is that
the three cluster nodes, on which six of the eight workers were running,
were 2.3GHz G5 dual-processor machines while the head node was a
2.0GHz G5 dual-processor machine.

Once a model was constructed, the time needed to generate forecast re-
sult for the entire conterminous U.S., at 8-km grid cell size, was about 12
seconds for one model prediction using the head node. This time included
reading the input variables from disk files and writing prediction result to
the output disk files. With less than 40 seconds of preprocessing from

NASA operational data included, obtaining the three predictions (i.e., 1-
day, 7-day, and 30-day) each day would take less than two minutes with a
single node.

The prediction computations scale linearly with the number of grid
cells. Thus, if prediction models are used at a 1-km resolution, the time
needed to generate the three predictions will be about two hours since the
number of grid cells increase by a factor of 64. This would still meet op-
erational daily forecast requirements. Of course, the time used to train and
build the forecast models would be much longer than those shown in Table
15.5-1.

15.5.2. Forecast results

The forecast results by the 1-day, 7-day, and 30-day models were prob-
abilities of fire occurrences in the next day, within the next 7 days, and
within the next 30 days, respectively. Although the probabilities, floating
point values ranging from 0.0 to 1.0, indicated the likelihood of fire occur-
rences, they could not be thresholded to definitive 1 or 0 values to predict
if there would or would not be wildfires. Therefore, it was not possible to
directly compare the forecast results to the known fires to determine the
accuracy of the forecasts. Hence, visual comparisons between forecast im-
ages and known fire images and the Receiving Operating Characteristic
Curve (ROC) analyses were used to assess the forecasts. A few examples
of predicted images and ROC curves are presented here to show the fore-
cast results. Figs. 15.5 and 15.6 are 30-day forecast results for the winter
and summer seasons and Fig. 15.7 is a 7-day forecast result for the spring
season, all in 2004. The known fire occurrences are plotted as black dots in
the figures. The color bar at the bottom of each figure shows the natural
log values of the forecast probabilities. These figures indicate that most
known fire occurrences, which were not used in model training, fall into
the high probability areas. The results demonstrate that the forecasts are
visually satisfactory.

Fig. 15.5. 30-day forecast for 1/11/2004-2/9/2004

30-Dey Fire Forecast Map for 6232004

T T T T T T T T

Fig. 15.6. 30-day forecast for 6/30/2004-7/29/2004

7-Dray Fire Forecast Map for 23172004

Fig. 15.7. 7-day forecast for 4/1/2004-4/7/2004

More quantitative assessments of the forecasts can be performed by
ROC analyses. ROC indicates how the forecast probability separates posi-
tive (fire) samples from negative (no-fire) samples. The larger the area un-
der the ROC curve (AUC), the better the probability separates the samples.
The maximum AUC is 1.0, indicating perfect separation between positive
and negative samples. An AUC value of 0.5 is random prediction while
values smaller than 0.5 indicate worse than random prediction. The
smaller-than-0.5 case usually occurs when there are not enough samples
(Hopley and van Schalkwyk 2007). Figs. 15.8 and 15.9 are ROC graphs,
respectively, for the 30-day and 7-day model forecasts calculated from the
evergreen needle leaf forest land cover type. These graphs show that the
model forecast results are much better than random prediction in most
cases. The average AUC values over twelve months for these two graphs
are 0.72 and 0.74, respectively.

PiPredica Firg | Fira)

ROC Curves for Fusltype 1 (Climate and Bum History Inputs)

— 10 {AUC = 0.97177)
— 20 (ALIC = D82122)
— AT = 0E155)
— &30 ALIC = 0.6608)
e 5U30 (ALIC = 0.G305)
G20 (ALIC = 0.64644)
720 (ALC = 0.57477)
26 ALIC = 0.48400)
e a2y ALC = 0.61304)
e T (ALK = DEGAEd)
— 126 (AUC = 0.82624)
rtall SRR

1 1 1
0) i
PiPradict Fire | Mo Fira)

0.3

1
ar 0z 0g 1

Fig. 15.8. 30 day Model ROC Curves for the Evergreen needle Leaf Forest

FiFmedict Firs | Fire)

ROC Curves for Fuslype 1 {Climate and Bum Hestory Inputs)

— 11D {ALIC = L87843)
— 2 (AUC = Q.8635)
— 31 (ALIC = 0.72507)
— &30 {AUC = 0.G56E)
= 530{ALIC =0.52)
G20 {ALIC = 0.89359)
20 (ALIC = 0.74178)
BB (ALIC = 0.41028)
s Q2T (AT = 0.67266)
e DY (ALIE = D.7041)
— 125 (AL = D.70303)
— 1A SAUIC = 0 96012))

1 1 1
04 (] (i}
FiPredct Fire | Mo Fire)

03

I
ar

Fig. 15.9. 7-day Model ROC Curves for the Evergreen needle Leaf Forest

15.6. Observations and Conclusions

We have discussed the implementation of a testbed for an intelligent ar-
chive to demonstrate the feasibility of using data mining algorithms on a
large scale with remotely sensed data in an operationally relevant envi-
ronment. The testbed used for this work consisted of hardware and soft-
ware in a distributed environment that was distinct from, but interfacing
with, NASA’s operational Distributed Active Archive Centers, so that
there would be no interference with the operational systems. Several of the
previously identified key functions of an Intelligent Archive were exer-
cised through this testbed. A data mining algorithm employing logistic re-
gression was used to develop a fire prediction model from time series of a
variety of remotely sensed data and derived products. The results from the
testbed were encouraging from several points of view. Some of the lessons
leamed and observations are given below from the points of view of: Sci-
ence/Algorithm and Execution Efficiency

15.6.1 Science/Algorithm

Algorithm and parameter selection is science-driven. This implies that
substantial, on-going, active guidance by science subject matter experts is
essential. Automation can greatly reduce the workload of the trained inves-
tigator, but cannot replace the investigator’s expertise.

Interpretation of data mining results requires domain expertise. The de-
velopment and validation team must include members with a broad range
of technical and scientific skills appropriate to the problem. A selected mix
of algorithm experts, domain scientists, and statisticians need to be in-
volved, perhaps on an ad hoc basis in the development and validation
phase.

Logistic Regression makes interpretation of results relatively easy. A sig-
nificant consideration in the selection of logistic regression (given that
predictive performance was not sacrificed) was the heuristic significance
of the model produced by this algorithm. The parameters produced by the
Logistic Regression model have a natural meaning which can be read, in-
terpreted, and understood by a knowledgeable person without the need for
significant additional transformation.

Correlated variables complicate interpretation of results. The logistic re-
gression model takes a weighted sum of its input values to produce an out-
put value, using weights derived from regression over a sample. If the

sample has a pair of highly correlated variables, the resulting model will
contain a pair of weights whose sum is well determined, but whose indi-
vidual values are not. Therefore, analysis of the influences of individual
variables is limited to those that are uncorrelated, and the remaining vari-
ables should be analyzed in groups.

15.6.2 Execution Efficiency

Data mining is feasible on large data volumes. The conceptual architecture
for the TA-KBS envisions an ongoing algorithm development and valida-
tion process; and the testbed results confirm that this process is computa-
tionally manageable. Given scientific collaboration indicated above, the
experience from the testbed suggests that the data mining development,
validation, and extension of such algorithms is well within the state of the
art and the computational resources of commercial off-the-shelf systems.

Mined models can be computationally efficient. Near real-time event de-
tection (or prediction) is well within the current, modest computer system
capabilities, based on the timings indicated in Sect. 15.5.1. This also sug-
gests that content-based retrieval is very feasible.

Performance & flexibility of pre-processing is important. A flexible and
powerful development environment is important because the preprocessing
code can be much larger than the actual data mining code. Efficiency of
the preprocessing code is important because this code must run not only in
the model training phase (which can be performed against a sample and
without significant time constraints), but also in the model execution phase
(in near real-time).

ACKNOWLEDGMENT

The authors would like to thank the following individuals for their assis-
tance and contributions of ideas to this work: G. McConaughy and C.
Lynnes (NASA Goddard Space Flight Center-GSFC) — IA-KBS concepts,
S. Morse (SOSACorp) — Intelligent Data Understanding (IDU) research
assessment and testbed conceptual design, L. Di (GMU) — JA-KBS con-
cepts, X. Li (GMU) — modeling and forecasting software execution on the
testbed, T. Chu (IHMC) — assessment of software porting to testbed, and P.
Smith (MacDonald, Dettwiler & Associates, Ltd.), B. Koenig (Electronic
Data Systems Corporation - EDS) and C. Yee (Raytheon) — support for
RDS/testbed interfaces. They would also like to thank C. Bock, D. Lowe

and M. Esfandiari (Earth Science Data and Information System ESDIS
Project, NASA GSFC) for their encouragement and support.

The data used in this study were obtained from several sources as indi-
cated in Sect. 15.4.1. The sources include NOAA’s National Climate Data
Center, U.S. Forest Service, NASA’s Ames Research Center, and three of
NASA’s EOSDIS Data Centers — Land Processes DAAC, National Snow
and Ice Data Center and the Goddard Earth Science Data and Information
Services Center.

REFERENCES

Bonnlander BV (2005) "Statistical Forecasts of Wildfire: A Baseline Approach”;
(2005) CMU Laboratory for Symbolic Computation Technical Report #172

Burgan R, Klaver R, Klaver J (1998) Fuel models and fire potential from satellite
and surface observation. International Journal of Wildland Fire 8:159-170

Clausen M, Lynnes C (July 2003) Virtual Data Products in an Intelligent Archive,
White Paper prepared for the Intelligent Data Understanding program,
http://daac.gsfc.nasa.gov/intelligent_archive/presentations.shtml

Hopley L, Van Schalkwyk J (March 3, 2007) “The magnificent ROC (Receiver
Operating Characteristic curve)”,
http://anaesthetist.com/mnm/stats/roc/Findex.htm

Isaac D, Lynnes C (January 2003) Automated Data Quality Assessment in the In-
telligent Archive, White Paper prepared for the Intelligent Data Understand-
ing program, http://disc.gsfc.nasa.gov/IDA/

Isaac, D, McConaughy, G (September 2004) “Intelligent Archives in the Context
of Knowledge Building Systems: Data Volume Considerations”, White Paper
prepared for the Intelligent Data Understanding program,
http://disc.gsfc.nasa.gov/IDA/

Jolly W, Graham J, Michaelis A, Nemani R, Running S (2005) A flexible, inte-
grated system for generating meteorological surfaces derived from point
sources across multiple geographic scales, Environmental Modeling & Soft-
ware, 20:873-882

Loveland T, Merchant J, Ohlen D, Brown J (1991) Development of a land-cover
characteristics database for the conterminous U.S. Photogrammetric Engineer-
ing and Remote Sensing, 57:1453-1463

McConaughy G, McDonald K (September 2003) “Moving from Data and Infor-
mation Systems to Knowledge Building Systems: Issues of Scale and Other
Research Challenges,” White Paper prepared for the Intelligent Data Under-
standing program, http://disc.gsfc.nasa.gov/IDA/

Morse S, Isaac D, Lynnes C (January 2003) “Optimizing Performance in Intelli-
gent Archives,” White Paper prepared for the Intelligent Data Understanding
program, http://disc.gsfc.nasa.gov/IDA/

Morse S, Yang W, (October 2004) A Conceptual Specimen Architecture for an In-
telligent Archive in a Knowledge Building System, White Paper prepared for
the Intelligent Data Understanding program, http://disc.gsfc.nasa.gov/IDA/

NASA (February 3, 2005) “Evolution of EOSDIS Elements”, Study Team Brief-
ing to NASA, http://eosdis-evolution.gsfc.nasa.gov/

Ramapriyan H, McConaughy G, Morse S, Isaac D (August 2004) “Intelligent Sys-
tems Technologies to Assist in Utilization of Earth Observation Data,” pre-
sented at Earth Observing Systems IX, SPIE Meeting,
http://disc.gsfc.nasa.gov/IDA/

Ramapriyan H, Isaac D, Yang W, Morse S, (2005) “Large Scale Data Mining to
Improve Usability of Data — an Intelligent Archive Testbed”, IGARSS, Seoul,
Korea

Ramapriyan H, Behnke J, Sofinowski E, Lowe D, Esfandiari M (2009) “Evolution
of the Earth Observing System (EOS) Data and Information System
(EOSDIS)”, Chapter 7, Standards Based Data and Information Systems for
Earth Observations, (Eds) Di L, Ramapriyan H, and Bai Y, Springer-Verlag,.

USDA Forest Service (1993) National Interagency Fire Management Integrated
Database (NIFMID) reference manual; U.S. Department of Agriculture, For-
est Service, Fire and Aviation Management. Washington, D.C., USA., p 43

Acronyms

ACCESS Advancing Collaborative Connections for Earth System Science
AUC Area under the ROC curve

AVHRR Advanced Very High-Resolution Radiometer

CRS Coordinate Rederence Systems

DAAC Distributed Active Archive Center

DCE Distributed Communication Environment

DDR Double Data Rate

ECHO EOS ClearingHOuse

EDC EROS Data Center

EDS Electronic Data Systems

EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System
FPAR Fractional Photosynthetically Active Radiation

FTP File Transfer Protocol

GFLOPS Giga (10**9) Floating Point Operations Per Second
GMU George Mason University

GSFC Goddard Space Flight Center

GSSD Global Surface Summary of the Day

HDF Hierarchical Data Format

IA Intelligent Archive

TIA-KBS Intelligent Archive in the Context of a Knowledge Building Sys-

tem

IDU

IHMC

LAI

LP DAAC
LSDM
MCAT
MDCE
MEaSUREs

MODIS
NASA
NCDC
NDVI
NOAA
PRECIP

REASoN
RDS
ROC
SDRAM
SRB

B
TCP/TP
T™IM
TMAX
TOPS
U.S.
USFS

Intelligent Data Understanding

Institute for Human and Machine Cognition

Leaf Area Index

Land Processes DAAC

Large-Scale Data Mining

Metadata Catalog

MatLab Distributed Computing Engine

Making Earth Science Data Records for Use in Research Envi-
ronments

Moderate-Resolution Imaging Spectroradiometer
National Aeronautics and Space Administration
National Climate Data Center

Normalized Difference Vegetation Index

National Oceanic and Atmospheric Administration
precipitation

Redundant Array of Independent Disk

Research, Education and Applications Solutions Network
Remote Data Storage

Receiving Operating Characteristic Curve
Synchronous Dynamic Random Access Memory
Storage Resources Broker

Terabyte

Transmission Control Protocol/Internet Protocol
Temperature, Minimum

Temperature, Maximum

Terrestrial Observation and Prediction System
United States

United States Forest Service

Vapor Pressure Deficit

