DEVELOP National Program
Spatial Analysis of Environmental Factors Related to Lyme Disease in Alabama by Means of NASA Earth Observation Systems

NASA Marshall Space Flight Center–University of Alabama at Birmingham (UAB)

Nathan Renneboog
Emily G. Capilouto
Stephen L. Firsing III, M.P.A., M.A.
Kyle Levy, M.S.
Marilyn McAllister, M.S.
Kathryn Roa, M.D.
Shveta Setia, B.D.S.
Lili Xie, M.D.
Donna Burnett, Ph.D. (UAB Research Advisor)
Jeffrey C. Luvall, Ph.D. (Science Advisor)
Lyme Disease

• Accounts for more than 95% of vector borne diseases in U.S.

• 27,444 cases reported to CDC in 2007

• Caused by tick bite, usually *Ixodes* species

• Causative agent – *Borrelia burgdorferi* residing in the gut of the tick
Lyme Disease: History

• 1975-clustering of children ill with possible juvenile rheumatoid arthritis seen in Lyme, Connecticut
 - History of tick bite seen
 - Antibiotics cured arthritis

• 1982-Willy Burgdorfer found spirochetes in midgut of ticks sent from Shelter Island, NY, a place with endemic Lyme disease (LD)
 - Erythema migrans produced in rabbits after bitten by ticks infected with spirochetes

• The etiologic agent was named *Borrelia burgdorferi*
Symptoms

• Erythema migrans, fever, fatigue and headache

• If left untreated, may result in long term effects: arthritis, neurocognitive difficulties or fatigue
Tick Life Cycle

Stages:
- Egg
- Larva
- Nymph
- Adult

(2 years)
Tick Hosts

• Small mammals
 - For larval and nymphal stages
 - Nymph stage more likely to cause LD due to small size

• White-tailed deer
 - For adult stage

• Over 30 types of wild animals and many species of birds may be hosts
It has been suggested that states with low incidence rates may have underreporting issues.
Lyme Disease in Alabama

Figure 1 - Number of LD cases in Alabama per year from 1986 to 2007 reported by CDC
Project Goals

1. Demonstrate the presence of the chain of infection of Lyme disease in Alabama
 - Identify areas with environmental factors that support tick population using NASA Earth Observation Systems data in selected areas of Alabama
 - Increase community awareness of Lyme disease and recommend primary and secondary prevention strategies
Goal 1 - Methods

Reviewed studies that proposed the presence of ticks and LD in Alabama in order to investigate the presence of the chain of infection of LD in Alabama.
Lyme Disease Vector

• First case of LD in Alabama was reported in 1986 by Dr. Mullen, Auburn University

• Studies conducted in 1988-89, 1989-90

• Ticks collected from 547 white-tailed deer during winter months

• *Ixodes scapularis* (black legged tick, \(n = 2,060 \)) was the most common tick, *Dermacentor albipictus* (\(n = 1,253 \)) > *Amblyomma americanum* (\(n = 315 \)) > *Amblyomma maculatum* (\(n = 5 \))

• *I. scapularis* – adults, infested 54% of deer and 57% of total ticks collected
Association between Tick, *B. burgdorferi* and Hosts

- Study conducted in East Central AL (8 sites in Lee County)
- A total of 859 ticks were recovered using the following three methods:
 - Small mammals and reptiles were trapped and tested
 - Hunter-harvested white-tailed deer and other large mammals
 - Dragging method
Association between Tick, \textit{B. burgdorferi} and Hosts

<table>
<thead>
<tr>
<th>Host</th>
<th>Percentage of Black Legged Tick</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Mammals</td>
<td>97.4% larval stage</td>
</tr>
<tr>
<td>White-tailed deer</td>
<td>81.8% adult stage</td>
</tr>
</tbody>
</table>

- \textit{A. americanum} (33.4\%) and \textit{I. scapularis} (20\%) accounted for 53.4\% of all ticks collected
- 49.1\% were examined for \textit{B. burgdorferi} using direct and indirect fluorescent antibody assays
- 4\% of \textit{A. americanum} tested were infected
- 3\% of \textit{I. scapularis} tested were infected
Amblyomma americanum - STARI

- Patients bitten by *A. americanum* ticks → characteristic red rash
- Causative agent of Lyme disease has not been cultured from skin biopsy specimens; diagnostic serum antibodies were usually not found
- DNA amplification techniques produced *B. lonestari* sequences both from the skin of the patient and *A. americanum* tick attached to it
- Southern Tick Associated Rash Illness (STARI)
Borrelia burgdorferi

Ixodes scapularis

Nymphs and larvae prefer cotton mice - more active during late spring and summer

Adults prefer white-tailed deer - more active during winter
Project Goals

1. Demonstrate the presence of the chain of infection in Alabama

 • Identify areas with environmental factors that support tick population using NASA Earth Observation Systems data in selected areas of Alabama

 • Increase community awareness of Lyme disease and recommend primary and secondary prevention strategies
Remote Sensing Methods

• Conducted literature review to identify environmental factors

• Analyzed Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and DigitalGlobe Quickbird satellite imagery from summer months

• Performed image analyses in ER Mapper 7.1
Environmental Factors for Tick Populations

- Temperature: -10 to 35°C
- Relative humidity: no lower than 80%
- Vegetation: forest cover and decaying vegetation help maintain relative humidity
- Soil characteristic: moist soil
Classifications

- Iterative Self-Organizing Data (ISODATA) Analysis Technique

- Analyzes all image pixels and groups them in similar categories

- Supervised classification can be used in tandem with ground truthing to get a more detailed analysis of land cover
ASTER and Quickbird Land Cover Classifications

ASTER LULC classification

LULC classification of Birmingham, AL
Quickbird image from March 2005

Legend
- water
- dense vegetation
- vegetation
- grass/soil
- highway/urban
- urban
- clouds

Digital Globe Quickbird image courtesy of Alabama View
NDVI

- Normalized Difference Vegetation Index (NDVI) algorithm was applied to all ASTER and Quickbird imagery.

- Formula applies a ratio of the Near-Infrared and visible red bands to each pixel.

- \[\text{NDVI} = \frac{\text{NIR} - \text{RED}}{\text{NIR} + \text{RED}} \]
Soil Moisture

- Measured as a ratio of the mid- and thermal infrared bands
- Soil moisture = band 14 / band 10
- Image is classified to represent the different levels of soil moisture
ASTER Results

ASTER NDVI classification

ASTER soil moisture classification

ASTER LULC classification

Legend
- urban
- water
- swamp
- low vegetation
- vegetation
- heavy vegetation
- grass
- agricultural land

Legend
- clouds
- urban
- low soil moisture
- medium soil moisture
- high soil moisture
- very high soil moisture

Legend
- water
- dense vegetation
- grass/soil
- highway/urban
- urban
- clouds
ASTER Vegetation and Soil Moisture Maps

ASTER NDVI classification

ASTER soil moisture classification

Legend
- urban, water, swamp
- water/urban
- urban
- low vegetation
- vegetation
- heavy vegetation
- grass
- agricultural land

Legend
- clouds
- urban
- low soil moisture
- medium soil moisture
- high soil moisture
- very high soil moisture
Quickbird Vegetation and Land Cover Maps

NDVI classification of Birmingham, AL
Quickbird image from March 2005

LULC classification of Birmingham, AL
Quickbird image from March 2005

Legend
- Shade heavy vegetation
- Moderately dense vegetation
- Low vegetation
- Grass
- Graveyard
- Asphalt
- Road urban
- Urban
- Clay gravel
- Pavement
- Roof

Legend
- Heavy vegetation/shade/water
- Low vegetation
- Grass
- Road/urban
- Rooftop/concrete

Digital Globe Quickbird Image courtesy of Alabama View
Summary

• High levels of soil moisture and dense vegetation are environmental factors that support large tick populations

• NASA Earth Observation Systems data analyses effectively identified potential tick habitats in Central AL based on environmental factors
Project Goals

1. Demonstrate the presence of the chain of infection in Alabama

2. Identify areas with environmental factors that support tick population using NASA Earth Observation Systems data in selected areas of Alabama

• Increase community awareness of Lyme disease and recommend primary and secondary prevention strategies
Primary Prevention

• Reducing exposure to ticks is evidenced to be the best defense against LD

• Primary personal protection methods:
 – Avoid or reduce time spent in high risk areas
 – Wear protective clothing
 – Apply tick repellants
 – Perform tick checks
Tick Removal

• Use tweezers to extract the tick from skin

• DO NOT use petroleum jelly, a hot match, nail polish, or other products
Secondary Prevention

• First sign of infection is typically a circular, “bull’s-eye” rash

• Early stages of infection can be treated with prescription antibiotics

• Untreated cases may develop chronic symptoms

• Lyme disease is serious but can be treated
Limitations

• Available tick data only represents the presence of ticks
• CDC case data does not indicate time of year or location of contraction
• STARI is often misdiagnosed as Lyme disease
Future Research

• Analyze ASTER imagery to identify likely tick habitats statewide
• Use Quickbird imagery to produce a more detailed vegetation representation
• Investigate LD preventive behaviors to better frame intervention campaigns
• Identify other significant factors for tick populations