Status on Iterative Transform Phase Retrieval applied to the GBT Data

Bruce Dean /551, David Aronstein /551, Scott Smith /551, Ron Shiri /551
Jan M. Hollis /606.0, Richard Lyon /606.3
Richard Prestage, Todd Hunter, Frank Ghigo, Bojan Nikolic

Image-Based Wavefront Sensing and Control of the NRAO Green Bank Radio Telescope

NASA PI: Dr. Bruce H. Dean /551
Email: bruce.dean@nasa.gov
Cols: Dr. Jan M. Hollis /606.0, Richard Lyon /606.3,
Ron Shiri /551, Scott Smith /551, David Aronstein /551
Collaborators: Dr. Richard Prestage / Assistant Director, National Radio Astronomy Observatory (NRAO) Green Bank Operations, Green Bank, WV, Todd Hunter, Frank Ghigo, NRAO Green Bank Operations, Green Bank, WV, Bojan Nikolic, Mullard Radio Astronomy Observatory, University of Cambridge, UK
Overview

Introduction
- Phase Retrieval / NASA Projects
- JWST TRL-6

GBT Data / Notes:
- Data Format and Sampling
- Ray Trace Model & Wavefront
- Symmetry of GBT Data
- Pupil and Fourier Model
- Pupil Amplitude

PR Simulations
- Wavefront derived from GBT Data symmetry
- Wavefront Sensing accuracy and Coherent / Incoherent Assumptions

GBT Results
Applications and Technology Development

- NASA Investments in Image-Based WFSC
 - Developments through JWST Pre Phase-A and Phase-B,
 - WFSC Demonstrated to TRL-6 using the Ball Aerospace TBT,
 - Have investigated a number of performance and implementation details, e.g., optimal diversity defocus, bandpass, phase wrapping, Branch Points,
 - Compact Supercomputing Architecture utilizing DSPs

<table>
<thead>
<tr>
<th>Date</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>Hubble Primary Mirror Aberration Determination</td>
</tr>
<tr>
<td>1994</td>
<td>Mars Observer Camera In-flight Diagnosis</td>
</tr>
<tr>
<td>1996</td>
<td>Cassini ISS Narrow Angle Camera Verification Testing</td>
</tr>
<tr>
<td>09/1998</td>
<td>NASA Developmental Comparative Active Telescope Testbed (DCATT)</td>
</tr>
<tr>
<td>01/1999</td>
<td>NASA Wavefront Control Testbed (WCT)</td>
</tr>
<tr>
<td>01/2000</td>
<td>NASA Wavefront Control Testbed 2 (WCT-2)</td>
</tr>
<tr>
<td>01/2002</td>
<td>NASA Wavefront Control Testbed 3 (WCT-3)</td>
</tr>
<tr>
<td>08/2000</td>
<td>IRAC Testing (Spitzer Space Telescope)</td>
</tr>
<tr>
<td>08/2001</td>
<td>Phase Retrieval Camera</td>
</tr>
<tr>
<td>04/2002</td>
<td>RIVMOS Testing</td>
</tr>
<tr>
<td>07/2002</td>
<td>NIRSpec Microshutter (MSA) Testbed</td>
</tr>
<tr>
<td>09/2002</td>
<td>HUBBLE Simulator Hardware (CASTLE)</td>
</tr>
<tr>
<td>04/2003</td>
<td>TPF’s High Contrast Imaging Testbed (HCIT)</td>
</tr>
<tr>
<td>04/2003</td>
<td>Mercury Laser Altimeter (MLA)</td>
</tr>
<tr>
<td>06/2003</td>
<td>NASA Fixed Lens WFS Testing</td>
</tr>
<tr>
<td>08/2003</td>
<td>JWST AMSD Mirror Testing with a Phase Retrieval Camera</td>
</tr>
<tr>
<td>07/2003</td>
<td>Ball Aerospace RA-6 (Boulder, CO)</td>
</tr>
<tr>
<td>10/2003</td>
<td>GSFC EUNIS Testing</td>
</tr>
<tr>
<td>07/2004</td>
<td>IRMOS Modeling</td>
</tr>
<tr>
<td>09/2004</td>
<td>Keck I (Kamuela, HI)</td>
</tr>
<tr>
<td>08/2004</td>
<td>HST Wide-Field Camera III</td>
</tr>
<tr>
<td>07/2005</td>
<td>Palomar 200” Telescope Adaptive Optics System (PALAO) Calibration</td>
</tr>
<tr>
<td>10/2005</td>
<td>JWST Testbed Telescope (TBT; Ball Aerospace, Boulder, CO)</td>
</tr>
</tbody>
</table>
James Webb Space Telescope (JWST)

- Successor to the Hubble Space Telescope
- Current Launch Date is 2013

- 18 Segment PM
- 6.5 meter aperture
- Orbit at L2
Testbed Telescope (TBT)
Flight traceable, 1/6 scale, 18 segment design

Algorithm Performance requirements dictated by NASA’s TRL-6
- Testbed provides functionally accurate simulation platform for developing deliverable WFSC algorithms and software,
- Used to perform TRL-6 end to end testing,
- a solution is a fine-phasing algorithm that incorporates feedback,
- an adaptive diversity function, eliminates Branch Points, and Wrapping
TRL-6 Comparison with Interferometer

Phase Retrieval: Interferometer:

![Image of Phase Retrieval and Interferometer comparison](image_url)
Phase Retrieval Approaches

- Two main approaches commonly used:
 - Iterative Transform (ITA)
 - Gerchberg-Saxton
 - Misell-Gerchberg-Saxton
 - HDA (extends dynamic range)
 - Parametric (non-linear least squares model fitting)
 - Solve for aberration coefficients
 - Solve for point-point phase in the pupil

\[
\min [\text{Objective Function}]: \\
\sum_{\forall \text{m}, \text{n}} \left\| \text{PSF}_{\text{data}, \text{m}, \text{n}} - \text{PSF}_{\text{model}, \text{m}, \text{n}} \right\|^2 = 0
\]

For JWST - adopted a hybrid approach that incorporates features of both types of algorithms.

Concept:

- phase from intensity data? \(z = x + iy = re^{i\theta} \)
- complex numbers:
 \[|z|^2 = r^2e^{i\theta}e^{-i\theta} = r^2 \neq r^2(\theta) \]
- phase part is decoupled from intensity
- phase-recovery fact - optical aperture scatters phase information into the intensity data
- star image – normally like an airy disk for a circular aperture:

- intensity is now a function of the phase:
 \[r^2 = r^2(\theta) \]
- algorithm: indirectly recover phase from intensity.
Earlier Work using ITA with Radio Antennas

Notes / Understanding of GBT Data

- Consists of two feeds (pixels), two polarizations,
- Separated by 58 arc-seconds,
- Output of receivers is differenced to minimize the effect of sky-brightness variations.
- Effective response of the telescope is modeled as the real beam convolved by two delta functions separated by 58” in the azimuth direction
 - aberrations due to both of the feeds being off (and on opposite sides of) the optical axis are negligible?
 - if this is not negligible, then a “single beam convolved by two delta functions” assumption may not be valid.
Raw Data Contributed by the NRAO

- Data Filename: s114-l-db.fits, April 2005
- Read: dx, dy, fnu, ufnu, ttime ([5806×1 double])

Scan Pattern: (plot dx, dy):

Signal vs time (plot fnu, ttime):
NRAO Data: Non-uniform data samples are interpolated:

- Data values: dx (azm), dy (elv) are used to form a rectangular coordinate array.

Two Options:

- **down-sample in x:**

- **up-sample in y:**

- First interpolated to a uniform rectangular grid (azm-elev),

- A rectangular coordinate grid of 17 by 68 is formed and then the 5806 fnu data values are interpolated to this grid using cubic interpolation.
NRAO Data & Sampling

Azimuth direction (x), approximately 350 samples/per scan line.
Sampling in Azimuth = 3600*(180/pi)*(dx(251)-dx(250)) = 2.42 Arcsec / pixel = px = 1.1732e-05 radians
Qx = λ/(D*px) = 6.96e-3 / (100*1.1732e-05) = 5.9325

Elevation direction (y), 17 scan lines
Sampling in Elevation = 3600*(180/pi)*(dy(5600)-dy(250))/17 = 7.5 Arcsec / pixel = py = 3.6361e-05 radians
Qy = λ/(D*px) = 6.96e-3 / (100*3.6361e-05) = 1.9141

Nyquist sampling is 7.2 arcsec / sample, Q = 2; Under-sampled by 0.96 in Elevation; over-sampled by 2.97 in Azimuth

v = 43.1 GHz; λ = 6.96 mm
NRAO GBT Aperture

- Panels are arranged in such a way that rings are concentric with a parent parabola.
- Zemax design: GBT is setup as a single off-axis section of the parent parabola.
Note that Translation Shift of Fourier Transform produces a phase factor:

\[\Im[g(x - x_0)] = G(\omega)e^{-i2\pi\omega x_0} \]
Pupil Illumination - I

\[A(r) = 1, \quad (\text{uniform}) \]
\[= \exp[-\alpha(r/r_0)^2], \quad (\text{tapered Gaussian}) \]
\[\alpha = (T_e/20)\ln 10, \quad (\text{edge taper factor}) \]

Using the formula for edge taper in dB:

\[\Delta A_{dB} = 10\log[(A_1/A_2)^2] = 20\log(1/0.18) \approx 15 \, \text{dB} \]
Pupil Illumination - II

\[A(r) = 1, \quad \text{(uniform)} \]
\[= \exp[-\frac{r^2}{2\sigma^2}], \quad \text{(tapered Gaussian)} \]
with \(\sigma = 0.3 \),

from PTCSPN47.pdf

... the aperture plane amplitude distribution, that is, the illumination of the primary surface. This was approximated as a well-centered and circular Gaussian with a width (in radius-normalized units) defined by \(\sigma = 0.3 \), which corresponds to 14.5 dB of illumination taper at the edge of the dish ...

\[\sigma \approx 0.55 \]

amplitude variation:

\[\Delta A_{db} = 10 \log[(A_1 / A_2)^2] = 20 \log(1 / 0.18) \approx 15 \text{ dB} \]
Challenge for ITA Phase Retrieval

- Two incoherently subtracted irradiance values appear in the GBT data.
- Data collection process, $I = I_1 - I_2$
- For the ITA approach to work, these irradiance values should be the result of one FFT.
- So make the approximation that:

Coherent Approximation for Incoherent Data:

\[|\Imag{A_L(-\theta_t) + A_R(+\theta_t)}|^2 \approx |\Imag{A_L(-\theta_t)}|^2 + |\Imag{A_R(+\theta_t)}|^2 \]

or simply \[I \approx I_L + L_R \]
Coherent Approximation for Incoherent Data

\[|\mathcal{I}\{A_L(-\theta_t) + A_R(+\theta_t)\}|^2 \approx |\mathcal{I}\{A_L(-\theta_t)\}|^2 + |\mathcal{I}\{A_R(+\theta_t)\}|^2 \]

beam tilt:
Validity of Approximation?

- Good approximation for large tilt (i.e., there is little interference)
- Plot of squared error as a function of tilt:

\[
error^2 = \sum_k \sum_j |I_{\text{coherent}}(j,k) - I_{\text{incoherent}}(j,k)|^2
\]

How does error propagate to Phase Retrieval?
Proof of Concept: PR Simulation

Input Wavefront:

RMS = 557 μ; λ/13; PV = 0.4561 λ

Malacara Basis Set:

<table>
<thead>
<tr>
<th>#</th>
<th>radial</th>
<th>azimuth</th>
<th>term</th>
<th>aberration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>piston</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>$r \sin \alpha$</td>
<td>y-tilt</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>$r \cos \alpha$</td>
<td>x-tilt</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>$r^2 \sin 2\alpha$</td>
<td>45° astig (1st order)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>$2r^2 - 1$</td>
<td>defocus</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>$r^2 \sin 2\alpha$</td>
<td>0° astig (1st order)</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>0</td>
<td>$r^3 \sin 3\alpha$</td>
<td>30° trefoil</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>$r(3r^2 - 2) \sin \alpha$</td>
<td>y-coma</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td>$r(3r^2 - 2) \cos \alpha$</td>
<td>x-coma</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>3</td>
<td>$r^3 \cos 3\alpha$</td>
<td>0° trefoil</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
<td>$r^4 \sin 4\alpha$</td>
<td>22.5° tetrafoil</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>3</td>
<td>$(4r^4 - 3r^2) \sin 2\alpha$</td>
<td>45° astig (2nd order)</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>3</td>
<td>$6r^4 - 2r^2 - 1$</td>
<td>spherical</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>3</td>
<td>$(4r^4 - 3r^2) \cos 2\alpha$</td>
<td>0° astig (2nd order)</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>3</td>
<td>$r^4 \cos 4\alpha$</td>
<td>0° tetrafoil</td>
</tr>
</tbody>
</table>
Check: Coherent PR Simulation

Image on 1-side of focus: Dual aperture model: Pupil Amplitude:

Results:

Decomposition

<table>
<thead>
<tr>
<th>Term</th>
<th>Input</th>
<th>Left Beam</th>
<th>Right Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovered:
Comment on GBT Beam Symmetry

Model Data Incoherent Model

Let PR solve for the wavefront that is consistent with the data:
Incoherent PR Results (simulation)

Incoherent Data:

abs()

dual wavefront:

Results:

Pupil Amplitude:

Recovered:
Incoherent PR Results - worst case
-- Simulation: 2 waves beam tilt

Incoherent Data: Model: dual wavefront:

Results:

Pupil Amplitude: Recovered:
Estimate Initial Sampling Parameters from focused GBT Data

- $Q \approx 4.5$
- Beam tilt $\approx 1.5 \lambda$

Can also tune parameters by matching the FFT of the data
Wavefront Sensing Results applied to GBT Data - 3

GBT Data:

![GBT Data Image]

Model:

![Model Image]

wavefront:

![Wavefront Image]

Results:

![Results Image]

Pupil Amplitude:

![Pupil Amplitude Image]

Recovered:

![Recovered Image]
Wavefront Sensing Results applied to GBT Data - 2

GBT Data: Model: wavefront:

Results:

Pupil Amplitude: Recovered:
Summary

- In principle, coherent ITA PR may work on incoherent GBT data,
- Errors increases as beam tilt decreases