Heavy Ion Microbeam- and Broadbeam-Induced Current Transients in SiGe HBTs

1. NASA Goddard Space Flight Center, Code 561, Greenbelt, MD 20771 USA
2. Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 USA
3. Naval Research Laboratory, Washington, DC 20375 USA
4. Sandia National Laboratories, Albuquerque, NM 87185-1083 USA
5. CEA, DAM, DIF, F-91297 Arpajon, France
6. School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
7. IBM SRDC, 2070 Rte 52 MS 32A, Hopewell Junction, NY 12533
8. CFD Research Corporation, Huntsville, AL 35805 USA
9. NASA Consultant, Brookneal, VA 24528 USA

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

www.nasa.gov

Acknowledgement

- NASA Electronic Parts and Packaging program
- NASA Radiation Hardened Electronics for Space Environments project
- DTRA Radiation Hardened Microelectronics program under IACRO #08-4343I to NASA
- AFOSR MURI program and AFOSR DURIP award
- SiGe teams at the Georgia Electronic Design Center and IBM
- Naval Research Laboratory
- CEA/DIF (Arpajon, France)

- Sandia National Laboratories (SNL)
- Department of Physics at the University of Jyväskylä, Finland (JYFL)
- Grand Accélérateur National d’Ions Lourds, France (GANIL)
Heavy ion transient overview

• IBM 5AM SiGe HBT is device-under-test
• High-speed measurement setup
• Low-impedance current transient measurements
 • SNL, JYFL, GANIL
• Microbeam to broadbeam position inference
• Improvement to state-of-the-art

Bias conditions of interest

All biases based on device isolation

3-D TCAD from DUT GDSII
IBM 5AM npn SiGe HBT

Bias conditions chosen to represent "circuit-like" experiments
Typical experimental setup

Different than broadbeam

36 MeV 16O dE/dx profile [SRIM-2008]

Sandia National Laboratories’ Microbeam Chamber

SNL Van de Graaff Microbeam

Transient Capture
Device under test and microbeam irradiation

Active junction area

Microbeam rastering concept

IBM 5AM npn SiGe HBT

Microbeam data allows position correlation

36 MeV 16O SNL microbeam: Case 1

Peak current magnitude

Active base-collector junction area

- $V_{\text{sub}} = -4$ V; all other terminals grounded
- Base terminal images base-collector junction
- Collector terminal images base-collector junction and subcollector

Imaging provides information about position and current
$V_C = +3 \text{ V (Case 2)}$

• Same result was observed in two-photon pulsed laser testing

$V_{\text{sub}} = -3 \text{ V (Case 3)}$

Difference in peak current results from non-zero V_{CB}
Heavy ion broadbeam transients

- Data collection at JYFL and GANIL
- 9.3 MeV/u cocktail including 20Ne, 40Ar, 82Kr, and 131Xe and 45.5 MeV/u 136Xe

No position correlation with broadbeam irradiation
JYFL vs. SNL: LET scaling

A 20Ne and 16O transients are similar – related by LET.
JYFL: LET extremes

20Ne LET
3.6 (MeV·cm²)/mg

131Xe LET
60 (MeV·cm²)/mg

9.3 MeV/u

Position correlation made possible with microbeam data
Maximum observed transients for each ion at each facility

JYFL vs. GANIL transients

Track structure

Recombination

Similar LET values produce different transient responses
Conclusions

- Microbeam (SNL) transients reveal position-dependent heavy ion response
 - Unique response for different device regions
 - Unique response for different bias schemes
 - Similarities to TPA pulsed-laser data

- Broadbeam transients (JYFL and GANIL) provide realistic heavy ion response
 - Feedback using microbeam data
 - Overcome issues of LET and ion range with microbeam
 - **Angled 40Ar data in full paper

- Data sets yield first-order results, suitable for TCAD calibration feedback