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ABSTRACT

This is the second of two papers examining Spitzer Infrared Spectrograph
(IRS) ohservations of the ultraluminous X-ray source (ULX) in Holmberg IT. Here
“we perform detailed photoionization modeling of the infrared iines. Our analysis
suggests that the luminosity and morphology of the [O IV] 25.89 ym emission line
is consistent with photoionization by the soft Xeray and far ultraviolet (FUV)
radiation from the accretion disk of the binary system and inconsistent with
narrow beaming. We show that the emission nebula is matter-bounded both in
the line of sight direction and to the east, and probably radiation-bounded to

4 would be needed to

the west. A bolometric luminosity in excess of 10 erg s
produce the measured [O IV] flux. We use modeling and previously published
studies to conclude that shocks likely contribute very little, if at all, to the high-
excitation line fluxes observed in the Holmberg II ULX. Additionally, we find
that the spectral type of the companion star has a surprisingly strong effect on
the predicted strength of the |O [V] emission. This finding could explain the
origin of {0 TV] in some starburst systems containing black hole binaries.

Subject headings: black hole physics — galaxies: individual (Holmberg II) —
infrared: ISM — X-rays: binaries



1. INTRODUCTION

Despite over two decades of research (Fabbiano 1989), little is known about the intrinsic
properties of ultraluminous X-ray sources (ULXs). They are characterized by extremely high
X-ray tuminosities, some reaching 10*! erg s, These luminosities cannot be easily explained
by normal stellar mass black hole systems, such as those found in our Galaxy. Beamed or
super-Eddington stellar-mass systems have been proposed as possible models.
Alternatively, ULXs can harbor intermediate-mass black holes (IMBHs). For a
complete discussion of various ULX mechanisms, see for example the review pa-
pers of Miller & Colbert (2004), Soria et al. (2005), and Roberts (2007). Some
ULX X-ray spectra show distinct features, which have been sometimes inter-
preted as evidence for the IMBH scenario (Miller et al. 2004). However, the
super-Eddington mechanism (maybe together with mild beaming) has gained
ground in more recent years, backed both by theoretical and observational evi-
dence (Freeland et al. 2006; Done & Kubota 2006; Kuncic et al. 2007; King 2008;
Soria & Kuncic 2008; Berghea et al. 2008).

While ULXs are easy to detect in the X-ravs they are often faint or undetected in other
energy bands. making them very difficult to characterize. The ionization nebulae surrounding
some ULXs have become critical for understanding the properties of the central source, such
as the intrinsic luminosity. For instance, Kaaret et al. (2004) (KWZ hereafter) used the
optical He IT recombination line (AM686) to characterize the intrinsic X-ray luminosities of
ULXs, as was previously done for a “normal” X-ray binary by Pakull & Angebault (1986).
Even [Ne V! A3426, a much higher excitation line has been recently detected in a ULX
{(Kaaret & Corbel 2009). However, we note that these and analogous studies are limited to
the optical regime.

The very luminous ULX in the dwarf galaxy Holmberg IT is one such object that has
been studied extensively in both the X-ray and optical bands (Zezas et al. 1999; Lehmann
et al. 2005; Goad et al. 2006; Abolmasov et al. 2007). Tt is located inside an ionized nebula
{the “Foot nebula”), and shows high excitation optical emission lines coincident with the
Xeray source (Pakull & Mirioni 2002; Abolmasov et al. 2007). The nebula appears to be
perturbed by a moderate velocity field of ~ 50 km s (Lehmann et al. 2005). The optical
counterpart of the ULX is a stellar-like bright source located in the “Heel” of the nebula,
having emission consistent with a B supergiant to a main-sequence O star {Kaaret et al.
2004). Morever, extended radio emission was detected, approximately coincident with the
ionized nebula {Miller et al. 20053). The high excitation recombination line He IT \686
suggests photoionization by the ULX (KWZ), and the radio emission is inconsistent with
emission from a SNR or an H 1T region.



In our first paper Berghea et al. (2009} (Paper 1 hereafter) we presented Spitzer Infraved
Spectrograph (IRS) observations of the Foot nebula in Holmberg 11, The low resolution
spectral maps presented in that paper suggest that the high-ionization [O IV] line emission
is coincident with the ULX position. Indeed we found the mid-IR line ratios for this object
to be very similar to those seen in standard AGN (Genzel et al. 1998; Sturm et al. 2002; Dale
et al. 2006). Our preliminary analysis suggested that [O IV], like the He 11 recombination
line, can be used to constrain the spectral energy distribution (SED) of the ULX in both
the UV and X-rays, thereby constraining the intrinsic X-ray luminosity. To this end, we
presented archival X-ray, ultraviolet (UV) and infrared (IR} data and constructed a detailed
SED of the ULX from which photoionization models can be used break the degeneracy in
Xeray models and extract a reliable bolometric luminosity for the source.

In this second paper we perform detailed photoionization modeling for the Holmberg 1T
ULX. We use the spectral energy distribution (SED) obtained in Paper 1 as the ionizing
source, and compare the predictions with the observed IR Spifzer spectrum. To better
constrain the physical properties, we investigate how the predictions change when we vary
the parameters: the accretion disk temperature, gas density, metallicity, and the stellar
companion. We try both the radiation and matter-bounded geometries to explain the high
and low-ionization IR lines. Finally, we explore shock models as a possible alternative to
ionization. In Sections 5 and 6 we discuss our results and we present our conclusion.

2. Summary of Observational Results

The study of ULXs is limited almost exclusively to the X-ray band, where they appear
very bright and uncontaminated. Studies of these objects at other wavelengths are difficult
because the emission is generally either undetected or contaminated by circum-stellar or
circum-nebular emission, making an estimate for the intrinsic bolometric luminosity very
difficult. Thig deficiency, especially in the UV, results in degeneracy in X-ray models of the
accretion process that cannot be broken. Our analyvsis of the X-ray emission from the ULX
in Holmberg Il is an example of such degeneracy. In Paper 1 three physically distinet models
were presented to fit the X-ray spectra for the Holmberg 11 ULX. The resultant parameters
from the fits are given in Table 1. Figures 1 - 3 show the spectra and the fitted components
for all three models. A brief summary of the three models is as follows:

1. Power-law Plus Multicolor Disk (PLMCD) Model: This is a two-component
model widely used to describe the emission from accreting black holes. As the name
suggests, the model consists of a multi-color disk component and a power-law compo-
nent for the hard tail. As discussed in Paper 1, when extrapolated to softer energies
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{the far UV) this model falls apart since the power law dominates in the UV, Indeed
the model is unrealistic since it is physically impossible to have the X-ray photons
Componized to lower energies. This model provides a good fit to the X-ray spectrum
and is used extensively in other X-ray studies. IHowever we emphasize that it
is not physically meaningful (Done & Kubota 2006). The PLMCD model is
shown here as a base from which modified, but more physically meaningful models are
derived.

2. The Modified PLMCD Model: The Modified PLMCD model is also a two-component
model, but one for which the far-UV extrapolation is from the disk component rather
than the power-law component. This vields a much more physically meaningful inter-
pretation for the emission.

3. Broken Power Law (BPL) Model: The spectra were also fit with a broken power-
law model, which is much mere flexible when extrapolated to the UV. Such a model
would be produced if jet emission dominated the full SED. We note that there is
currently no direct evidence for jets in ULXs. Tt is interesting however that
one of the few sources associated with radio emission, the famous ULX in
NGC 5408, was shown by Kaaret et al. (2003) to be well fitted by a broken
PL (see also Soria et al. 2006; Kaaret & Corbel 2009). For more details on
our motivation for these models we refer our reader to Paper 1.

As can be seen from Table 1, all three models provide reasonably good fits to the X-ray
data. This degeneracy can only be broken through comprehensive knowledge of the shape
of the UV continuum and detailed photoionization modeling of high-excitation lines. In the
former case, the three X-ray models can be extrapolated to the UV and then compared
with observational data. The best-fit extrapolated model to the UV spectrum provides
some indication of the appropriate physical accretion scenario for the ohservational data.
However, contamination to the UV emission by circum-stellar or circum-nebular continuum
precludes a pure fit. Thus, in addition to this photometric data, high-excitation spectral
lines, which require high-energy UV photons to ionize, can be used in combination with
photoionization modeling to check the robustness of the fit. In Paper 1 we also presented
multi-wavelength photometric data from archival Spitzer, XMM-Newton and GALEX ob-
servations of the Holmberg II ULX, and also Hubble Space Telescope and Very Large Array
photometric data from the literature. These data were used to construct a detailed spectral
energy distribution (SED) of the ULX (Fig. 4). All three X-ray models enumerated above are
shown in the plot as dotted, thick solid, and dashed black lines respectively. The thick solid
black line in Figure 4 represents the "base SED model” which is the input spectrum for the
prefiminary photoionization modeling explored below. Ag discussed in Paper 1 and shown



in Figure 4, the Modified PLMCD model is chosen as the X-ray model for the base model,

since it is the only extrapolated model that fits the optical and UV data well. Tables 1 and 2

provide the X-ray spectral fitting results and the IR Hne measurements from the first paper

that will be the basis of the modeling ir the current publication.

3. CLOUDY Modeling of the TR lines

To perform detailed photoionization modeling with CLOUDY!, a number of input pa-

rameters heed to be defined. Specifically, the geometry of the cloud needs to be described,
the density and metallicity of the gas needs to be specified, and an input SED needs to be
established. The following outlines the specific input parameters used for the preliminary
CLOUDY run. These parameters are later varied to check the final results.

1.

Gas Cloud Geometry: The input geometry must describe the shape and thickness
of the gas cloud. Shape includes, for example, a spherical, cylindrical, or plane-parallel
geometry. The clond thickness defines a radiation or matter bounded geometry. In
their photoionization modeling, KW7Z agssumed a spherical geometry based on resolved
optical lines, and assumed the nebula is radiation-bounded. However, they noted that
the lower-ionization line [O 1] is only detected west of the ULX, therehy suggesting a
matter-hounded nebula in other directions. Though we alse detected low-ionization
tines in the IR spectrum {Table 2 in this paper and Figs. 1 and 2 in Paper 1}, we
begin with the spherical, radiation-bounded geometry in an attempt to reproduce
the high-excitation [O IV} emission. We assume the inner radius of the cloud to be
0.1 pe, thus maximizing the jonizing flux. To constrain the size of the ionized nebula
for the radiation bounded geometry, CLOUDY was run down to a temperature of
4000 K. At this temperature, the cloud thickness is 140 pe, and the column density is
4.2 x10%! em ™%, more than ten times the X-ray estimated value.

. Density: Density can be specified as varying, uniform or chumpy. In the preliminary

CLOUDY model, we assume a constant gas density of 10 em™ and a filling
factor of 1 as per KWZ. This density (and filling factor} was estimated by KWZ
using the optical line surface brightness profiles predicted by CLOUDY.

. Metallicity: Metallicity is expressed in terms of solar metallicities. We chose an input

metallicity of 0.1 Z..,, close to that of KWZ and Pilyugin et al. (2004).

al.

Phototonization modeling was performed using version 07.02.01 of CLOUDY, described by Ferland et
1998,
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4. SED: The input SED must specify the companion star and the X-ray model used to
fit the UV to X-ray continuurm. The input SED used in our preliminary analysis is
described in Section 2 and results from the multi-wavelengih photometric and spec-
troscopic observations presented in Paper 1. This so called "base SED model” utilizes
the Modified PLMCD model, extrapolated to the UV. For the input SED we used a
B2Ih supergiant spectrum to represent the stellar companion. The B2lb supergiant
was chosen because it better fits our UV data than the O3V (both are limits to the
stellar spectral range suggested by KWZ}. The bolometric luminosity of this model is
1.34 <1049 erg 571,

3.1. Results from the Base Model

The results of the first CLOUDY run, with the base models as the lonizing source, are
given in Figure 5 (top-left panel), as the ratio of the predictions to the observed values. The
CLOUDY model predicted values for the mid-IR lines are close to the observed values for the
high ionization lines. A simple change to the base model such as a slightly younger companion
star would be enough to fit the [O IV! line observed, as the analysis below indicates. We
also show predictions for the He II flux measured by KWZ (2.7 x 10% erg s71).

The low ionization lines are the most discrepant. This disparity between the model and
the observations is likely caused by a matter-bounded geometry in at least some directions
of the nebula, as already suggested by KWZ. However, many of the model parameters arc
not well known and we explore how changes to these can effect the line-flux predictions in
the sections to follow.

We note that sensitivity and aperture effects could explain the discrepancy between the
low ionization line fluxes predicted by the radiation-bounded base SED model and the oh-
served values. Using the CLOUDY output we calculated surface hrightness profiles expected
for the mid-IR lines. CLOUDY predicts a spatial extent of 20 to 25 pe for the He I which
is consistent with the findings of KWZ (1526 pc). The [O IV} emission from the ULX
should he extended to a radius of about ~20 pe aceording to the simulation. However, due
to the poor resolution of our spectral maps (one LH pixel = 67.5 pe), it is unclear whether
the model acenrately predicts the spatial extent of the [O IV]. In addition, the CLOUDY
models suggest that while sensitivity may have some effect on the observed low-ionization
line Auxes, it is not solely responsibie for the high predicted-to-observed line ratios for the
radiation bounded base SEL model



3.2, Varying the X-ray Source Spectrum to the BPL and PLMCD models

We next tried changing the X-ray part of the source spectrum. We first replace the
Modified PLMCI model with the PEMCD model described in Section 2, leaving the other
CLOUDY parameters the same. The model is extrapolated to the edge of the [0 1V] lie
where we introduce a break, so that it does not dominate the optical flux from the B2 star.
Results from this CLOUDY simulation are shown in upper-right panel of Figure 5. The
alues predicted by this model are clearly not consistent with the measured values. This
model predicts a strong [Ne V] line, which is not detected in our Spitzer observations, and
a He Il luminosity 27 times larger than measured by KWZ. The [O IV] flux predicted from
this model is also an order of magnitude larger than the observed flux. We therefore rule
out this model as a good estimate for the X-ray source spectrum. We note that the PLMCD
model has been used by many researchers to estimate disk temperatures and even black hole
masses. Our findings imply that it s likely not an appropriate model for ULX high-energy
spectra.

We then tried replacing the Modified PLMCD model with the BPL model described in
Section 2. Here we found results similar to the PLMCD model, with [Ne V| predicted to be
detected. and all the observed lines well overpredicted. We therefore conclude that neither
the PLMCD model nor the BPL model with a radiation bounded geometry provide a good
fit to the observed IR spectra. This was expected because both these models predict a very
strong UV ionizing flux.

3.3. Varying Other Parameters

We investigate here in more detail how the strong radiation from the accretion disk
photoionizes the surrounding ISM and produces the observed lines. Starting again with the
base SED model in the radiation bounded geometry, we vary the input parameters to see
how they affect the emitted spectrum. We first examine the dependence of the simulated line
luminosities on the X-ray spectrum by changing the MCD disk temperature (kT;, ), then the
gas density, metallicity and the inner radius of the cloud. Finally, we explore how the SED
of the stellar companion affects the line luminosities. The models presented are based on the
multi-wavelength data of the Holmberg I1 ULX and the known properties of the surrounding
ISM, but this analysis can be applied to ULXs in general.

Varying the Disk Temperature: The disk temperature is first altered by shifting
the X-ray base SED model to lower photon energies, such that the disk laminosity remains
constant across the band. As can be seen from Figure 6a, when the disk component peaks



at lower energies, the mid-IR emission lines become stronger. For cooler disks (0.1 keV) the
[Ne V] line should be detected in our observations. In contrast, the lower ionization lines
are not dependent on the disk temperature over the range usually found in ULXs (0.1-0.5
keV). We conclude from this that varying the disk temperature will not vield better results.

Varying the Gas Density of the Cloud: The results obtained by varying the density
of the clond are plotted in Figure 6b. The line luminosities are not particularly sensitive to gas
density (see also KWZ}, though the [O IV! luminosity increases slightly as the gas approaches
the critical density,. KW7Z found that the He II line is clearly extended to 15—25 pe and
consistent with a density of ~10 cm™. We therefore conclude that varying the density of
the gas will not do much to improve the model.

Varying the Metallicity: The dependence of the line luminosities on metallicity is
shown in Figure 7a. The [O IV] and [Ne V] line dependence is linear. Interestingly, the base
model with a higher input metallicity reproduces the measured {O IV] luminosity very well.
In fact a metallicity of 0.19 Z,, (oxygen abundance of 9.3x 107" in absolute value) reproduces
the [O IV] to within the calibration error of the instrument, but without increasing the He 11,
which is already over-predicted in the current version of the model. We conclude from this
that the input metallicity may be lower than it should be (gee Pilyugin et al. 2004). However,
we also note that a higher metallicity will prediet higher fluxes for the low ionization lines,
resulting in an even greater discrepancy for these ines. We also explored the effects of
gas phase depletion on metallicity and found that depletion had very little effect
on either the metallicity or the resultant Iuminosity of the [O TV].

Varying the Inner Radius of the Tonizing Cloud: Figure 7b shows that the ionizing
power of the incident flux is diluted if the spherical cloud is too far away from the source.
If the inner radius is larger than about 1020 pe, the luminosities of the [O IV] and [Ne V|
lines drop dramatically. Interestingly, the He II line, though similar to [O IV] in ionization
potential, is nearly insensitive to the inner cloud radius. This is likely because the [O IV] and
Ne V] are in a higher stage of jonization than He IT and as a result are much more affected
by dilution of the ionizing photons (in other words a drop in the ionization parameter) from
increasing the inner radius. We conclude from this that increasing the inner radius will only
worsen our original results and will not affect the strength of the low ionization lines. Thus
we conclude that the inner radius is likely close to the source as our original input parameter
SUPPOsSEs.

Varying the Stellar Companion (the O5V star): To test the effect of the stellar
companion on the IR lines we ran the base model with an O35V star replacing the B2Ib
supergtant. The temperature and luminosity of the O5V star, 42000 K and 3.2x10% erg 57!,
were chosen to match the model used by KWZ. The results (the lower-right panel of Fig. 5)



show that the OBV star has a very strong impact on the high lonization lines. The luminosity
of the [ 1V} line increases by a factor of 3, and the [Ne V] line by factor of 2. If the companion
is in fact an O5V star, our measured Optical Monitor (OM) and GALEX fluxes from Paper 1
are under-luminous and are likely affected by reddening. Inclusion of an O3V star also has
a very different effect on the [O 1V] versus the He II line. Indeed, the He Il luminosity is
predicted to increase by only 11%. The strong impact of the O3V star can be explained if the
O star produces copious O fons (i.p. 35 V), which are in turn ionized further by the ULX.
The O star thus acts as a catalyst to the higher-energy photons from the ULX. A comparison
between the oxygen ions structure for these models is presented in Figure 8a. The number of
photons in the 24.6—54.4 eV interval is three times higher for the O3V star (7.27x10% 57!
compared to 2.42x 10" 571 than the B2Ib supergiant. Figure 8h shows that the local cloud
temperature for the O5V star is also about two times higher in the region where the O%F
ions are produced (at offsets of 10—20 pe). Indeed, the [O 11T} A5007 luminosity estimated
from CLOUDY increases by a factor of six when the QO5V star is used instead of the B2Ib
supergiant,

The companion star therefore has an indirect but strong impact on the 1O 1V} line
emission. A similar effect can be seen on a smaller scale for the {Ne V] line, which has an
even higher ionization potential (97 V). Thus, the |O IV] line does not act simply as a high
energy photon counter as is the case with the He II Hne, but can also provide information
about abundances of lower energy photons. This effect can be used fo explain the detection
of [O 1V} in star-forming regions. In this scenario, [0 IV] can be produced by relatively
faint sources of soft X-rays and UV photons hidden in the star forming region, including
such sources as ULXs, X-ray binaries, or SNR. This is a significant result, since the origin
of O IV] in star forming galaxies has been the subject of debate in the literature (Lutz et
al. 1998; Schaerer & Stasinska 1999).

Because our CLOUDY modeling overpredicts most of the high ionization
line fluxes when an OV5 star is used, we conclude that an OV5 star is likely not
the companion star for the Holmberg II ULX. On the other hand, later-type
stars, such as an OS8 star (or later), might better predict the [O IV] flux in the
base model. In support of this, if the ULX is powered by a stellar-mass BH, the
companion required to reproduce the observed X-ray huninosities must be very
massive (Podsiadlowski et al. 2003). Thus a stellar mass black hole could explain
hoth the [O IV] luminosity and the very high X-ray luminosity. The fact that
the Holmberg II ULX resides just outside a UV-bright region of star formation
(see Paper 1), also suggests that the environment is well suited for formation
of such massive stars (see also NGC4559 X7 Soria 2007). However, without the
black hole mass constrained, an IMBH with a massive companion is still also a



plausible option.

3.4. Varying the Geometry

As mentioned at the beginning of this section, KWZ found evidence from low-ionization
optical lines that the ionized nebula is matter-bounded, at least in the east. This is also
suggested by the IR lne maps presented in Paper 1 and by the over-prediction of the low-
tonization lines by the radiation bounded base SED model above. Paper 1 also shows that
the low ionization line fluxes are likely contaminated by circum-stellar emission.
We also noticed that the absorption suggested by the X-ray spectrum is too low compared
to that implied by a radiation-bounded geometry. More precisely, for our base SED moedel,
the simulation requires a cohumn density of 4.2 x10% em™2, which is more than ten times
larger than the measured values from spectral fits (see also the beginning of this section).
This suggests that the nebula is also matter-hounded in the line-of-sight direction.

To simalate a matter-bounded geometry, we first ran the base SED model with the
geometry described by a spherical cloud of varying thickness, so that the total hydrogen
column ranges between 10%° and 10% cmn™2. These results are plotted in Figure 9a. The
column obtained from the X-ray fit is shown as a vertical line and labeled “Matter Bounded™.
For this value, the predicted Huxes for both [O IV} and He 11 lines are much lower than the
observed values, Therefore, this simple matter bounded geometry using the base SED model
is not sufficient to reproduce the observed Hnes. As Figure 9a shows, the minimum column
density required for the base model to predict the measured values for the high excitation
Hnes is ~5 x10%° or a cloud thickness of 16 pc (the dashed vertical line). This 16 pe is
within the 13-235 pe radii observed in the He IT emission line maps from KWZ. Therefore the
matter bounded case could work, if the observed X-ray column density were slightly higher

than the X-ray predicted value of 3.26 x10%" cm ™%,

We next replaced the Modified PLMCD model for the BPL model as the X-ray fit for the
SED. The broken power-law model is better suited than the Modified PEMCD model to test
the matter bounded geometry. By varving this absorption parameter in the model within
the errors allowed by the fit, we obtained a family of broken-power models, all consistent
with the X-ray data, but predicting very different slopes in the ionizing part of the SED
{the photon index varies between 1.3 and 2.2). A subset of the broken power-law models
are shown in Figure 4. We re-ran our CLOUDY simulation for these models with the
corresponding column densities from the X-ray fits. The results are plotted in Figure 9b.
The best fit broken power-law X-ray model {BPL) is shown as a vertical line in this figure.
The predicted line luminosities for this model are given in the lower-left panel of Figure 5.



As wag the case with the original, radiation bounded base SED model, the predictions
are very good for the high-ionizafion lines. The cloud radius is 17.7 pe, which is consistent
with the size of the nebula found by KWZ in the east and south. However, contrary to the
original radiation-bounded base model, the ULX makes no contribution to the low-ionization
Hnes. This is true even for the largest column density, 9.2x10%% em™? (a 29.7 pe cloud radius
for a gas density of 10 em ™). However, the spectral maps in Figure 3 of Paper 1 show that

the ULX is likely to contribute at least to [Ne ITf] and probably [Si 11]

i

Thus we conclude that the matter-bounded geometry alone does not fit all of the mid-IR
spectral observations well. In fact, these results suggest that the geometry is complicated,
being asymmetric and including both radiation and mafter bounded geometries. KWZ
found similar results. They find that to the south and east, He 11 and HJ emission suggests
a matter-bounded geometry: the low excitation lines are ahbsent here but detected in the
west at larger offisets. Owr CUBISM maps from Paper 1 suggest something similar, though
the spatial resolution here is limited compared with the HST observation. The fact that
the Iow-tonization line luminosities predicted by the matter-bounded models are much lower
than the ones predicted by the radiation-bounded geometry suggests that a combination of
the two geometries would vield predicted values that are very close to the observations.

4, Shock Models

The radiation-bounded/matter-hounded geotnetric scenario presented in Section 3 to
explain the mid-IR line Huxes in the Holmberg [T ULX presumes photoionization as the source
of the line emission. However, shocks could alse produce such lines. Indeed, a combination
of X-ray photoionization and shocks was recently proposed to explain the morphology of
optical Hnes observed in the vicinity of LMC X-1 (Cooke et al. 2007). In this case the shocks
are likely driven by a jet. Abolmasov et al. (2007} performed optical spectroscopy on eight
ULXs with nebular counterparts, including the Holmberg 11 ULX, and found evidence for
shocks in all cases based on the [S I} AA6T17,6731/Hev ratio. However, using high-excitation
lines such as He II and (O I, these authors also found that Holmberg IT ULX and three
other ULXs required photoionization to sufliciently explain the optical ratios,

Lehmann et al. {2005} found evidence of radial velocity variations of 4 50 km s™! from a
region similar of size to the He 111 nebula. It is therefore possible that part of the ionization
is caused by shocks. Lutz et al. (1998) suggested that velocity shocks of 100200 km s7! can
produce significant [O IV] emission. However, when we also take into account the optical
data, and in particular the detection of the He I recombination line, our data provide strong
evidence against shocks as the source of the [O IV} emission, This is primarily because the



He I is not easily produced by shocks. Instead, the simultaneous detection of these lines
argues for the presence of significant radiation over the He 11 edge (see also  Schaerer &
Stasiiska 1999), and therefore suggests photoionization as the most likely line production
mechanism.

Nevertheless, we checked to see if shock models could explain the mid-IR line luminosi-
ties and ratios ohserved in Holmberg II. We used Mappings 111 grids from Allen et al. (2008)
to construct diagnostic diagrams. The predicted [O IV} emission from shocks is shown in
Figure 10a. We show both pure shocks and shocks with jonized precursors at a gas density
of 1 em™, and metallicity 0.1 Z. For these models, the parameters varied are the shock
velocity and the “magnetic parameter” B/n'/?, where B is the magnetic field and n is the

gas density {Dopita & Sutherland 1996).

The CUBISM measured fluxes from the brightest and faintest pixels in the O IV} map
(vellow and blue pixels in Fig. 3 of Paper 1, respectively) are shown as horizontal lines in
Figure 10a. We note that the maximum intensity of the line is likely higher than these
levels. Indeed the [O IV] emission is not spatially resolved and the plotted levels are actually
averages over the size of the LH pixel (67.5 pe), rather than the maximum from each of the
averaged shits. In spite of this, the levels plotted in Figure 10a requires significant shock
velocities and such velocities (> 200 km s ) were not detected by Lehmann et al. (2005).

For optical lines we chose the He IT and the [O III} AA363,5007 lines, as per Evans
et al. {1999). The ratio {O HI} A4363 / [O III] A5007 is sensitive to the gas temperature.
Using the data from Lehmann et al. (2005) we calculated the ratio (JO III} A4959 + (O 11
AB007) / (O I} AM363 = 50, and estimate a temperature of 17800 K (Osterbrock & Ferland
2006). This is consistent with the temperature of the gas in the region of the cloud where
O*" ions are produced (see Fig. 8b). For the He II/HS3 ratio we chose an average (0.2)
between the measurements of KWZ, Palull & Mirioni (2002), and Lehmann et al. (2005).
The shock grids for the optical lines are plotted in Figure 10b. For comparison, we over
plotted the published data for two other ULXs with detected nebulae, Holmberg 1X ULX
and MF16 in NGC 6946 (Abolmasov et al. 2007). While the Holmberg IX ULX data is
consistent with shocks with modest velocities (< 100 km s™!), Holmberg II ULX and MF16
seem to require very high velocities. Even for the shock plus precursor models, velocities in
excess of 300 km s7F are required to reproduce the observed line ratios and Lehmann et al,
(2003) find velocities of only 50 km s~

In summary, some contribution from shocks to the high excitation lines detected from
Holmberg II ULX cannot be ruled out completely. However, if there is some contribution
from shocks to the high jonization emission line luminosities, it is likely very small, since
bothk He IT and [0 IV] lines require shocks with velocities in excess of 200 km 57!, and such
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velocities were not seen by Lehmann et al. (2005).

5. Discussion of the Modeling Results

We find that the Spitzer observations of the Holmberg II ULX and especially the detec-
tion of the {O IV] line is consistent with photoionization by radiation fronr the ULX. Of all
the lines examined, only the [O IV] was shown in Paper 1 to be correlated with
the ULX. However, we also found in Paper 1 that some contribution by the ULX
to the [Si I1], [S I11], and [Ne III] emission line flux is also likely. The modeling
results presented here are based on the observations presented in Paper 1 and
are summarized as follows.

1. The Base Model (Modified PLMCD): The CLOUDY simulations show that the
Spitzer spectrum is consistent with photoionization by the aceretion powered emission
from the ULX. We find that limited sensitivity might explain the relatively low fluxes
observed for some low-ionization lines. The base SED model predicts a slightly lower
[O IV] luminosity than the measured values for the radiation bounded case (Fig. 5),
and even lower for the matter-bounded case (Figure 9a). Previous X-ray results have
shown that the aceretion disk temperature is likely lower than in our base model (KWZ
obtained ~0.2 keV). Such a disk temperature will increase the predicted line luminosity
to match our measurements (Fig. 6a). A slightly higher metallicity (0.2 Z,) can yield
hetter fits to both the 'O IV] and He II data for this base model. This is because
the He II line is already over-predicted and raising the metallicity will not increase
this discrepancy {Fig, 7a). In support of this, a metallicity of (.17 was measured by
Pilyugin et al. {2004). We note that while this model reproduces the spectra very well,
it requires absorbing columms in the X-rays that are inconsistent with the observations.

2. The PLMCD Model: We find that the widely used PLMCD model, when extrap-
olated to the UV, is not consistent with the observations. The high excitation hnes
predicted using this model are at least ten times larger than observed. In this case
lowering the metallicity to mateh the [O IV] will not work, because He IT will still be
much over-predicted. This model has been used extensively to fit the X-ray data from
ULXs {e.g. “cool disks” Miller et al. 2004). However, the X-ray community has
more recently begun to fit these spectra with more physically motivated
models Freeland et al. (2006); Done & Kubota (2006); Kuncic et al. (2007);
Soria (2007); Soria & Kuncic (2008, e.g.), which appear to be consistent
with high quality ULX X-ray data (Berghea et al. 2008). That the PLMCD
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model is inconsistent with the Spitzer observations of the Holmberg 11 ULX
supports these previous X-ray studies.

Matter vs. Radiation Bounded Geometry: The intensity and morphology of
the IR lines provides spatial information about the emission line nebula around the
Holmberg 11 ULX. The geometry consistent with our infrared data {and previously
published optical data) is approximately spherical but not symmetrical. The CUBISM
maps show that to the east and south the nebula shows only high excitation lines
that are likely matter-bounded, while in the west, the detection of lower excitation
lines might suggest a radiation-bounded cloud. However, observational effects, such as
aperture and sensitivity eflects, preclude any definitive conclusion on this model. The
discrepancies found in Section 3.1 between the CLOUDY model and the measured
values for the low-excitation lines suggest that the matter-bounded geometry is at
play at least in part (probably to east and south as found from the spectral maps).
Moreover, the absorption measurements from the X-ray data reguire the cloud to be
at least matter-bounded towazrd our line of sight. Therefore, we find that both matter
bounded and radiation bounded geometries are likely at work to describe the observed
spectra in both the Mid-IR and X-rays.

. Shock Models: The shocks models for both IR and optical emission lines show that

shocks with velocity 200 km s~ are required to generate both the He II and [O IV]
lines observed in Holmberg . The detected radial velocity variations around the ULX
are of the order of £50 km s~ {Lehmann et al. 2005). Contribution from shocks to
these Hnes is therefore likely to be small.

. True X-ray Luminosity: The ULX luminosity estimated using photoionization mod-

eling is independent of the estimate based on the X-ray flux, which can be affected
by both absorption and beaming {King et al. 2001}, The nebular emission line lu-
minosities, on the other hand, are time-averaged true luminosities and can provide
information about the geometry of emission and the surrounding ISM.

It is now widely accepted that ULXs are variable on timescales from days to years.
These timescales are much shorter than the lonization equilibrium timescales in the
nebula. Chiang & Rappaport (1996) investigated time-dependent photoionization of H
and He for supersoft X-rav sources. The He IT ionization equilibrium at the 90% level is
reached in ~0.7 7 after source turn-on, where 75 = 3000 yr is the recombination time
for He™ from KWZ. For periodic sources, it was found that the He II line luminosity
decreases significantly with increasing source period. For example, for a period of
10 7 and a duty cycle of 10%, the estimated luminosity is 4.7% of that expected from
a steady source with the same peak luminosity. That is a 53% deviation from a linear



scaling law {10% of the steady state). This implies that if the Helmberg I ULX is
variable, the estimates of KWZ based on the He IT line are actually lower limits of the
time-averaged fuminosity.

For O*?, the recombination time is shorter, 7 & 100 vr {Osterbrock & Ferland
2006), for the same ionization conditions: electron density 10 cm™ and temperature
20000 K. We expect therefore that the [O IV] line reaches equilibrium in a shorter
time (< 100 yr), but still long enough to provide a time-averaged estimate of the true
luminesity of the ULX over ~10 — 100 yr. We note that light travel time {53 yr for a
O nebula of 16 pe), is an important factor in this case, because it is comparable to
the recombination time.

Finally, the morphology of the emission lines, from both the previously published
optical data and our IR data suggest emission that is nearly isotropic, being inconsistent
with narrow beaming. Moreover, photoionization modeling with our base model is
consistent with the detected high ionization lines, the true bolometric luminosity of
this model is >10% erg s7'. This is well above the Eddington luminosity for a stellar-
mass BH. In addition, some observational results indicate that the BH in Holmberg 1T
is likely much larger than a stellar mass black hole {(see the conclusion below).

6. Impact on IR Studies of Starbursts: We find that the predicted [O IV line
luminosity is significantly affected by the type of the companion star. Faint [O V|
_has been detected in many starbursts and star-forming regions, but ifs origin is still
under debate. Our analysis provides a new mechanism for this emission, suggesting
that the [O IV] line could be produced by relatively faint X-ray sources including X-ray
binaries, SNR or ULXs in starburst galaxies.

6. Conclusion

M erg 571, For accretion within
the Eddington limit, the mass of the central BH is at least 85 M. The estimate based on
the inner disk teraperature {0.38 keV) in the MCD model gives a much larger mass, 994 M
Finally, scaling from AGN estimates, the [O IV] emission predicts a mass as large as 107 M.
All of the estimates presented here presume the black hole is accreting wathm
the Eddington limit. However, while our analysis excludes strong beaming in
Holmberg IT ULX, a sub-Eddington IMBH or a super-Eddington stellar-mass BH
are both plausible ionization mechanisms that stem from our analysis. Indeed
we show in Section 3.3 that a massive companion (e.g. B2Ib star) and a stellar
mass black hole can reproduce the [OIV] luminosities see in the Spitzer spectra,

The bolometric luminosity of the base model is 1.33 »x I(
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as can an IMBH and a similar companion. The CLOUDY meodeling results alone
cannot discriminate between these two sources or the two black hole estimates, since we have
no way of constraining the accretion rafe.
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Fig. 4.— The input SED (Base model) constructed in Paper 1 and used as ionizing source
in CLOUDY. The radio data is from Miller et al. (2003), the V-band magnitude for the
optical counterpart of the ULX is quoted from KWZ. Our measured fluxes in Paper 1 using
IRAC, MIPS, OM and GALEX are upper hounds, and therefore our model is below these
data points. The two stellar spectra correspond to the spectral tvpes range consistent with
the colors and magnitudes in KWZ. The three models fit to the X-ray data are shown.
extrapolated to the (O 1V] edge at 54.93 eV (shown as a vertical line). The BPL model
was used to obtain a family of broken power-law models, all compatible with the X-ray data
within the errors. We show the lower and upper limits of this family as the lower and upper

The middie dashed line represents the best it BPL model shown in Table 1. The SED is
constructed using the prefered X-ray model, Modified PLMCD.
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Ratios Predictions / Observations for Various Input SEDs
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Fig. 5.— We show predictions for the IR lines from the CLOUDY modeling for various
ionizing SEDs. We also included the He [T A4686 line measured by KWZ (2.7 x 105 erg s} ).
They are presented as model-to-data Hux ratios. For non-detected lines, the plotted values
are lower limits and are marked with an arrow pointed upward. The predictions for the
Ne HI] and [Si 11} lines are < 0.01 in the BPL model {lower-left) and are not shown. The
perfect mateh line (ratio = 1} is shown on all plots. The errors are small, similar in size
to the data points, therefore are not shown, The measured line fluxes are presented in the
“Table 2.
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Fig. 10~ Mappings 11l shocks and ionization models. The shock grids are plotted for
magnetic parameters: 0.5, 1, 2, 3.23, 5 and 10 pG em®? and for shock velocities 125, 250,
300, 400, 500, 700 and 1000 km s~ a) [O IV] line intensity shocks predictions. The
shocks plus precursor models vary little with the magnetic parameter, and we only show the
model with a nominal equipartition value (3.23 uG em®?, the dashed line). The horizontal
lines correspond to the brightest (continuous) and respectively faintest (dotted) pixels in
the [O IV] line map in Figure 3 of Paper 1. b) Optical lines diagnostic with shocks and
photoionization models. The pure shock models are in red, shocks plus precursor in blue
and the photoionization grid in black. For the photoionization grid we varied the density
(1. 10 and 100 em™), and the inner disk temperature (0.1, 0.2, 0.4, 0.8 and 1.0 keV), and
assuned a metallicity of 0.1 Z,. For Holmberg IX ULX and MF16 we show with arrows
the approximate locations for Selar metallicity. While Holmberg IX ULX is consistent with
shocks with modest velocities (< 100 km s™1), Holmberg [T ULX and MF16 seem to require
very high velocities. They are however consistent with photoionization.



