Life Support Systems
Microbial Challenges

August 24, 2009

Monsi C. Roman
NASA/ Marshall Space Flight Center
ECLSS Chief Microbiologist
(256)544-4071
Agenda

- Environmental Control and Life Support Systems (ECLSS) What is it?
- A Look Inside the International Space Station (ISS)
- The Complexity of a Water Recycling System
- ISS Microbiology Acceptability Limits
- Overview of Current Microbial Challenges
- In a Perfect World What we Would Like to Have
- The Future
Environmental Control and Life Support Systems (ECLSS)

- Control Atmosphere Pressure
- Condition Atmosphere
- Respond to Emergency Conditions
- Control Internal CO2 & Contaminants
- Provide Water
Note: These values are based on an average metabolic rate of 136.7 W/person (11,200 BTU/person/day) and a respiration quotient of 0.87. The values will be higher when activity levels are greater and for larger than average people. The respiration quotient is the molar ratio of CO\textsubscript{2} generated to O\textsubscript{2} consumed.

Human Needs and Effluents Mass Balance (per person per day)

<table>
<thead>
<tr>
<th>Needs</th>
<th>Effluents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>0.84 kg (1.84 lb)</td>
<td>1.00 kg (2.20 lb)</td>
</tr>
<tr>
<td>Food Solids</td>
<td>Respiration & Perspiration Water</td>
</tr>
<tr>
<td>0.62 kg (1.36 lb)</td>
<td>2.28 kg (5.02 lb)</td>
</tr>
<tr>
<td>Water in Food</td>
<td>Food Preparation, Latent Water</td>
</tr>
<tr>
<td>1.15 kg (2.54 lb)</td>
<td>0.036 kg (0.08 lb)</td>
</tr>
<tr>
<td>Food Prep Water</td>
<td>Urine</td>
</tr>
<tr>
<td>0.76 kg (1.67 lb)</td>
<td>1.50 kg (3.31 lb)</td>
</tr>
<tr>
<td>Drink</td>
<td>Urine Flush Water</td>
</tr>
<tr>
<td>1.62 kg (3.56 lb)</td>
<td>0.50 kg (1.09 lb)</td>
</tr>
<tr>
<td>Metabolized Water</td>
<td>Feces Water</td>
</tr>
<tr>
<td>0.35 kg (0.76 lb)</td>
<td>0.091 kg (0.20 lb)</td>
</tr>
<tr>
<td>Hand/Face Wash Water</td>
<td>Sweat Solids</td>
</tr>
<tr>
<td>4.09 kg (9.00 lb)</td>
<td>0.018 kg (0.04 lb)</td>
</tr>
<tr>
<td>Shower Water</td>
<td>Urine Solids</td>
</tr>
<tr>
<td>2.73 kg (6.00 lb)</td>
<td>0.059 kg (0.13 lb)</td>
</tr>
<tr>
<td>Urinal Flush</td>
<td>Feces Solids</td>
</tr>
<tr>
<td>0.49 kg (1.09 lb)</td>
<td>0.032 kg (0.07 lb)</td>
</tr>
<tr>
<td>Clothes Wash Water</td>
<td>Hygiene Water</td>
</tr>
<tr>
<td>12.50 kg (27.50 lb)</td>
<td>Liquid</td>
</tr>
<tr>
<td>Dish Wash Water</td>
<td>11.90 kg (26.17 lb)</td>
</tr>
<tr>
<td>5.45 kg (12.00 lb)</td>
<td>Latent</td>
</tr>
<tr>
<td>Total</td>
<td>0.60 kg (1.33 lb)</td>
</tr>
<tr>
<td>30.60 kg (67.32 lb)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>30.60 kg (67.32 lb)</td>
</tr>
</tbody>
</table>
Space Station Regenerative ECLSS Flow Diagram (Current Baseline)
International Space Station ECLSS
A Look Inside ISS

Node 1

Lab

FGB

SM
Filling up a bag of water in the Zvezda, SM
ECLSS Microbial Challenges

- Wetted Materials in space life support systems include:
 - Titanium
 - 316L Stainless Steel
 - Teflon
 - Viton O-rings
 - Nickel-Brazed Stainless Steel
ECLSS Microbial Challenges

ISS Microbial Acceptability Limits (U.S.)

<table>
<thead>
<tr>
<th></th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfaces</td>
<td>10,000 CFU/100 cm²</td>
<td>100 CFU/100 cm²</td>
</tr>
<tr>
<td>Water</td>
<td>100 CFU/100 ml (no detectable coliforms)</td>
<td>N/A</td>
</tr>
<tr>
<td>Air</td>
<td>≤ 1,000 CFU/m³</td>
<td>100 CFU/m³</td>
</tr>
</tbody>
</table>

CFU/cm² = colony forming units per square centimeter; CFU/m³ = colony forming units per cubic meter; CFU/ml = colony forming units per milliliter
ADVERSE EFFECTS OF MICROBIAL CONTAMINATION

Short-term Effects (days to weeks)

Air/Surfaces:
- Release of volatiles (e.g., odors)
- Allergies (e.g., skin, respiratory)
- Infectious diseases (e.g., Legionnaire's)

Water:
- Objectionable taste/odor
- Gastrointestinal distress

From Victoria Castro, ICES 2006, JSC

Long-term Effects (weeks to years)

Air/Surfaces (same as short-term plus):
- Release of toxins (e.g., mycotoxins)
- Sick building syndrome
- Environmental contamination
- Biodegradation of materials
- Systems performance

Water (same as short-term plus):
- System failure
- Clogging, corrosion, pitting, antimicrobial resistance/regrowth potential (biofilm)
ECLS Microbial Challenges

- **Urine/Pretreated Urine**
 - Hardware Performance Issues
 - Control of biofilm on wetted surfaces
 - Control of fungal growth in pretreated urine

- **Water (potable/wastewater)**
 - Health and Hardware Performance/Life Issues
 - Control of biofilm on wetted surfaces
 - Conditions of flight equipment unknown
 - Control of microorganisms in potable water
 - Re-growth potential/resistance to antimicrobials/MIC
 - Control microorganisms in humidity condensate
ECLS Microbial Challenges

- **Coolant**
 - Health and Hardware Performance/Life Issues
 - Control of microorganisms in the fluid
 - Control of biofilm on wetted surfaces
 - Microbiologically Influenced Corrosion (MIC)

- **Surfaces**
 - Health and Hardware Performance/Life Issues
 - Fungi, bacteria

- **Air**
 - Health and Hardware Performance/Life Issues
 - Fungi, bacteria
ECLSS Microbial Challenges (Design and Test)

- Flow rates: low, intermittent or no flow
- Dead-legs
- Potential long term storage of water in Teflon bags
- Limitations with the use of antimicrobials
- Gravity/microgravity effects
- Wastewater in narrow tubes
ECLSS Microbial Challenges (Design and Test)

- Holding time (between sample and analysis)
- Limited monitoring technology available
- Data interpretation
- Acceptable levels of microorganisms/biofilm
- Need for long term ground testing
- Replicate applicable flight conditions to ground tests
<table>
<thead>
<tr>
<th>Bacteria Type</th>
<th>Fleet Leader (Ground Test)</th>
<th>ISS LTL (Flight Sample)</th>
<th>ISS MTL (Flight Sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidovorax avenae</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidovorax delafieldii</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Acidovorax facilis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidovorax konjaci</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidovorax temperans</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter lwofii/genospecies 9</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Brevibacterium casei</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Brevundimonas vesicularis</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Burkholderia glumae</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Comamonas acidovorans</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Flavobacterium resinovorum</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Janthinobacterium lividum</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oligella species</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ralstonia eutropha (very similar genetically to R. paucula)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ralstonia paucula</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ralstonia pickettii</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sphingobacterium spiritovorum</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sphingomonas paucimobilis</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Unidentified non-fermenting Gram Negative Rod (GNR)</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Variovorax paradoxus</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Challenges with monitoring ECLS systems in-flight include:

- Microbial count (quantification)
 - Viable vs non-viable
 - How will it compare with culture methods?
- Real-time identification
 - Bacteria, Fungi, Viruses
- Flexible
 - Integrated to systems (in-line)
 - Hand-held (for clinical applications)
- Robustness
 - Will the hardware survive qual/acceptance testing?
If gene-base technology will be used what challenges, like damage to genetic material due to radiation, will need to be addressed?

- Expendables (how much waste will be generated)
- Consumables (reusable is preferred)
- Low power consumption
- Equipment size
- Non-hazardous reagents
- Non-generation of hazardous waste
ECLSS Microbial Challenges

- Calibration (positive/negative controls?)
- Cleaning/disinfection of the sample collection areas
 - How to avoid cross contamination?
- What chemicals/conditions (temp, humidity, etc) could cause a problem (void the reaction)?
- Maintenance/repair (ORU’s?)
- Construction materials
 - Are the materials acceptable in a close environment?
ECLSS Microbial Challenges

- Sample size
- Detection limit (currently <300 CFU/100 mL)
- Microgravity sensitivity
- Sensitivity to particles/precipitates in the fluid
- A system that can be upgraded as needed is preferable (as “target” organisms are identified)
- Will the crew be able to “read” the results on-orbit; can the results be sent to the ground?
- Sample archival for later analyses