Life Support Systems
Microbial Challenges

August 24, 2009
Agenda

• Environmental Control and Life Support Systems (ECLSS) What is it?

• A Look Inside the International Space Station (ISS)

• The Complexity of a Water Recycling System

• ISS Microbiology Acceptability Limits

• Overview of Current Microbial Challenges

• In a Perfect World What we Would Like to Have

• The Future
Environmental Control and Life Support Systems (ECLSS)

- Control Atmosphere Pressure
- Condition Atmosphere
- Respond to Emergency Conditions
- Control Internal CO2 & Contaminants
- Provide Water
Note: These values are based on an average metabolic rate of 136.7 W/person (11,200 BTU/person/day) and a respiration quotient of 0.87. The values will be higher when activity levels are greater and for larger than average people. The respiration quotient is the molar ratio of CO$_2$ generated to O$_2$ consumed.

Human Needs and Effluents Mass Balance (per person per day)

- **Oxygen** = 0.84 kg (1.84 lb)
- **Food Solids** = 0.62 kg (1.36 lb)
- **Water in Food** = 1.15 kg (2.54 lb)
- **Food Prep Water** = 0.76 kg (1.67 lb)
- **Drink** = 1.62 kg (3.56 lb)
- **Metabolized Water** = 0.35 kg (0.76 lb)
- **Hand/Face Wash Water** = 4.09 kg (9.00 lb)
- **Shower Water** = 2.73 kg (6.00 lb)
- **Urinal Flush** = 0.49 kg (1.09 lb)
- **Clothes Wash Water** = 12.50 kg (27.50 lb)
- **Dish Wash Water** = 5.45 kg (12.00 lb)

Total = 30.60 kg (67.32 lb)

- **Carbon Dioxide** = 1.00 kg (2.20 lb)
- **Respiration & Perspiration Water** = 2.28 kg (5.02 lb)
- **Food Preparation, Latent Water** = 0.036 kg (0.08 lb)
- **Urine** = 1.50 kg (3.31 lb)
- **Urine Flush Water** = 0.50 kg (1.09 lb)
- **Feces Water** = 0.091 kg (0.20 lb)
- **Sweat Solids** = 0.018 kg (0.04 lb)
- **Urine Solids** = 0.059 kg (0.13 lb)
- **Feces Solids** = 0.032 kg (0.07 lb)

Hygiene Water = 12.58 kg (27.68 lb)

Liquid = 11.90 kg (26.17 lb)

Latent = 0.60 kg (1.33 lb)

Total = 30.60 kg (67.32 lb)
Space Station Regenerative ECLSS Flow Diagram (Current Baseline)
A Look Inside ISS

Node 1

Lab

FGB

SM
Filling up a bag of water in the Zvezda, SM

NASA/ M. Roman
ISS Water Processor Diagram

- Wastewater Tank
- Particulate Filter (removes particulates)
- Multifiltration Beds (removes dissolved contaminants)
- Ion Exchange Bed (removes reactor by-products)
- Preheater (heats water to 275F)
- Regen. HX (recovers heat)
- Gas/Liquid Separator (removes oxygen)
- Multi-filtration Beds (remove dissolved contaminants)
- Mostly Liquid Separator (removes air)
- Filter (removes particulates)
- Reactor (oxidizes organics)
- Delivery Pump
- Accumulator
- Product Water Tank
- Microbial Check Valve (provides isolation)
- Heat Exchanger (to/from Node 3 MTL)
- Reactor Health Sensor (verifies reactor is operating w/n limits)
- O2 from Node 3
- To Node 3 cabin
- From Node 3 wastewater bus
- From Node 3 potable water bus
- O2 to Node 3 cabin
Water Processor Assembly

- Ion Exchange Bed (removes reactor by-products)
- Reactor (oxidizes organics)
- Preheater (heats water to 275°F)
- Regen. HX (recovers heat)
- Gas/Liquid Separator (removes oxygen)
- Particulate Filter (removes particulates)
- Multifiltration Beds (remove dissolved contaminants)
- Mostly Liquid Separator (removes air)
- Filter Pump
- Wastewater Tank
- Product Water Tank
- Delivery Pump
- Accumulator
- O₂ from Node 3 to Node 3 cabin
- from Node 3 wastewater bus to Node 3 potable water bus
- Heat Exchanger to/from Node 3 MTL
- Reject Line (allows reprocessing)
- Microbial Check Valve (provides isolation)
- C Reactor Health Sensor (verifies reactor is operating w/in limits)
ECLSS Microbial Challenges

• Wetted Materials in space life support systems include:
 – Titanium
 – 316L Stainless Steel
 – Teflon
 – Viton O-rings
 – Nickel-Brazed Stainless Steel
ECLSS Microbial Challenges

ISS Microbial Acceptability Limits (U.S.)

<table>
<thead>
<tr>
<th></th>
<th>Bacteria</th>
<th>Fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surfaces</td>
<td>10,000 CFU/100 cm²</td>
<td>100 CFU/100 cm²</td>
</tr>
<tr>
<td>Water</td>
<td>100 CFU/100 ml (no detectable coliforms)</td>
<td>N/A</td>
</tr>
<tr>
<td>Air</td>
<td>≤ 1,000 CFU/m³</td>
<td>100 CFU/m³</td>
</tr>
</tbody>
</table>

CFU/cm² = colony forming units per square centimeter; CFU/m³ = colony forming units per cubic meter; CFU/ml = colony forming units per milliliter.
ADVERSE EFFECTS OF MICROBIAL CONTAMINATION

Short-term Effects (days to weeks)
Air/Surfaces:
- Release of volatiles (e.g., odors)
- Allergies (e.g., skin, respiratory)
- Infectious diseases (e.g., Legionnaire’s)

Water:
- Objectionable taste/odor
- Gastrointestinal distress

From Victoria Castro, ICES 2006, JSC

Long-term Effects (weeks to years)
Air/Surfaces (same as short-term plus):
- Release of toxins (e.g., mycotoxins)
- Sick building syndrome
- Environmental contamination
- Biodegradation of materials
- Systems performance

Water (same as short-term plus):
- System failure
- Clogging, corrosion, pitting, antimicrobial resistance/regrowth potential (biofilm)
ECLS Microbial Challenges

- **Urine/Pretreated Urine**
 - Hardware Performance Issues
 - Control of biofilm on wetted surfaces
 - Control of fungal growth in pretreated urine

- **Water (potable/wastewater)**
 - Health and Hardware Performance/Life Issues
 - Control of biofilm on wetted surfaces
 - Conditions of flight equipment unknown
 - Control of microorganisms in potable water
 - Re-growth potential/resistance to antimicrobials/MIC
 - Control microorganisms in humidity condensate
ECLS Microbial Challenges

- **Coolant**
 - Health and Hardware Performance/Life Issues
 - Control of microorganisms in the fluid
 - Control of biofilm on wetted surfaces
 - Microbiologically Influenced Corrosion (MIC)

- **Surfaces**
 - Health and Hardware Performance/Life Issues
 - Fungi, bacteria

- **Air**
 - Health and Hardware Performance/Life Issues
 - Fungi, bacteria
ECLSS Microbial Challenges (Design and Test)

- Flow rates: low, intermittent or no flow
- Dead-legs
- Potential long term storage of water in Teflon bags
- Limitations with the use of antimicrobials
- Gravity/microgravity effects
- Wastewater in narrow tubes
ECLSS Microbial Challenges (Design and Test)

- Holding time (between sample and analysis)
- Limited monitoring technology available
- Data interpretation
- Acceptable levels of microorganisms/biofilm
- Need for long term ground testing
- Replicate applicable flight conditions to ground tests
<table>
<thead>
<tr>
<th></th>
<th>Fleet Leader (Ground Test)</th>
<th>ISS LTL (Flight Sample)</th>
<th>ISS MTL (Flight Sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acidovorax avenae</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Acidovorax delafieldii</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidovorax facilis</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidovorax konjacii</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidovorax temperans</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Acinetobacter lwofii/genospecies 9</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Brevibacterium casei</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Brevundimonas vesicularis</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Burkholderia glumae</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comamonas acidovorans</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Flavobacterium resinovorum</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Janthinobacterium lividum</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligella species</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ralstonia eutropha (very similar genetically to R. paucula)</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ralstonia paucula</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ralstonia pickettii</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sphingobacterium spiritovorum</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sphingomonas paucimobilis</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Stenotrophomonas maltophilia</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Unidentified non-fermenting Gram Negative Rod (GNR)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Variovorax paradoxus</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Challenges with monitoring ECLS systems in-flight include:

- Microbial count (quantification)
 - Viable vs non-viable
 - How will it compare with culture methods?
- Real-time identification
 - Bacteria, Fungi, Viruses
- Flexible
 - Integrated to systems (in-line)
 - Hand-held (for clinical applications)
- Robustness
 - Will the hardware survive qual/acceptance testing?
ECLSS Microbial Challenges

- If gene-base technology will be used what challenges, like damage to genetic material due to radiation, will need to be addressed?
- Expendables (how much waste will be generated)
- Consumables (reusable is preferred)
- Low power consumption
- Equipment size
- Non-hazardous reagents
- Non-generation of hazardous waste
ECLSS Microbial Challenges

- Calibration (positive/negative controls?)
- Cleaning/disinfection of the sample collection areas
 - How to avoid cross contamination?
- What chemicals/conditions (temp, humidity, etc) could cause a problem (void the reaction)?
- Maintenance/repair (ORU’s?)
- Construction materials
 - Are the materials acceptable in a close environment?
ECLSS Microbial Challenges

- Sample size
- Detection limit (currently <300 CFU/100 mL)
- Microgravity sensitivity
- Sensitivity to particles/precipitates in the fluid
- A system that can be upgraded as needed is preferable (as “target” organisms are identified)
- Will the crew be able to “read” the results on-orbit; can the results be sent to the ground?
- Sample archival for later analyses