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ABSTRACT
X-ray telescopes having a relatively wide field-of-view and spatial resolution vs. polar off-axis angle curves much
flatter than the parabolic dependence characteristic of Wolter I designs are of great interest for surveys of the
X-ray sky and potentially for study of the Sun’s X-ray emission. We discuss the various considerations affecting
the design of such telescopes, including the possible use of polynomial mirror surface prescriptions, a method of
optimizing the polynomial coefficients, scaling laws for mirror segment length vs. intersection radius, the loss of
on-axis spatial resolution, and the positioning of focal plane detectors.
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1. INTRODUCTION
X-ray optics involving polynomial extensions of Wolter I mirror prescriptions are of astronomical interest in the
context of wide-field X-ray surveys, the goal of the proposed Wide-Field X-ray Telescope (WFXT) mission, and
potentially also for study of the Sun’s X-ray disk. In this paper, we explore methods for designing, optimizing,
and evaluating such optics.

Mirror presciptions and ray trace methods are reviewed in §2—§7. Expressions for evaluating spatial reso-
lution and effective area using Monte-Carlo simulations are presented in §8 and §9. The approximate analytic
expressions for Wolter I optics given in VanSpeybroeck and Chase 1 are reviewed and extended to a broader
domain in §10. Effects due to figure errors and surface roughness are briefly discussed in §11. Our methods for
designing and optimizing telescopes are described in §12, including the topics of figures of merit §12.1, design
considerations §12.2, single shell optimization §12.3, and nested configuations §12.4. A few closing remarks and
plans for the future are presented in §13.

2. MIRROR PRESCRIPTIONS
We assume the lengths and nominal grazing angles for the primary (P) and secondary (H) mirror segments are
the same. We place the origin of the optical (z) axis at the intersection plane between the two mirror segments,
with z increasing toward the front of the primary and decreasing toward the back of the secondary. (This points
the z-axis in the direction opposite to that in Burrows, Burg, and Giacconi, 2 henceforth BBG).) The mirror
surface prescriptions for the conical approximation are:

r2c,P (zP) = r
2
0 [ 1 + tan (α0) (zP/r0 )] 2

(1)

r2c,H (zH) = r
2
0 [ 1 + tan (3α0) (zH/r0 )] 2

The mirror surface prescriptions for Wolter I and polynomial optics are:
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r2p,P(zP) = ro[ 1 + 2 tan (α0 ) (zP/r0) + δa2 (zP/r0 ) 2 + δa3 (zP/r0 )3 1

r2p,H (zP) = r2
0 [ 1 + 2 tan (3α0) (zP/r0) + tan2 (3α0) h(α0) (zP/r0 )2	(2)

+ δb2 (zP/r0 )2 + δb3 (zP/r0 ) 3 ]

h(α0) = 1 — 1/(1 + 2 cos (2α0))2 ,

where

α0 = (
1
4
 ) tan-1 (r0

f 
),	 (3)

r0 is the radius of the segments at their intersection plane (z P = zH = 0), and f is the the distance from
the intersection plane to the on-axis focus for Wolter I optics. Thus the on-axis focus for Wolter I optics is at
z = −f. We denote the mirror segment length by ℓ . The mirror shell length is 2 ℓ . Wolter I optics require
δa2 =δa3 =δb2 =δb3 =0.

3. APERTURE FOR INCIDENT RAYS
For a given shell s, the maximum radius of the aperture, rmax,s, is independent of off-axis polar angle, θ, and
position azimuthal angle, φ. The value of rmax,s is determined from the equation for the surface of the primary
with z set equal to ℓ . The minimum radius of the aperture, rm in,s (θ, φ), is a function of θ and φ. Straightforward
geometry leads to the expression

min,s (θ, φ) = − ℓ tan θ cos φ + ^r 20 s — ℓ2 tan2 θ sin2 φ,	 (4)

where r0,s is the intersection radius for shell s. Amusingly, although the shape and centroid of the incident
aperture varies with θ, the total geometric area of the incident aperture is independent of θ, and is given by

/ 2	 2	 /Ageom,s = π ( rmax,s − r0,s ).	 l5)

These expressions neglect possible shadowing by the next inner shell, a pre-collimator, or any support structures.

4. RAY INTERSECTION WITH OPTIC
The equations of ray tracing X-ray optics are simple in principle. Given a starting position (x 0 , y0 , z0) and
normalized wavevector k̂0 = (kx,0, ky,0, kz,0), the intersection (x 1 , y1 , z1 ) with an optic is determined from:

x1 = x0 + kx,0 t

y1 = y0 + ky,0 t
	

(6)

z 1 = z0 + kz,0 t.

The parametric variable t is determined from

( x0 + kx,0 t ) 2 + ( y0 + ky,0 t ) 2 = r2O (z0 + kz,0 t ).	 (7)



∂rp, P =
∂z

tan (α0) + δa2 (z/r0) + (3/2)δa3 (z/r0 )2

p
1 + 2(z/r0) tan (α0) + δa2 (z/r0 )2 + δa3 (z/r0 ) 3

(12)

Here rO (z) is the radius of the optic as a function of distance along the optical axis. For simple ideal surfaces with
no figure errors, rO (z), Eq. (7) can be solved analytically for t, and hence for (x1 , y1 , z1). For more complicated
surfaces or in the presence of surface errors, we proceed by first finding the intersection (x10, y10, z10) with a
simple surface, rO,0(z), approximating the actual one, r(z) = r O,0 (z) +Or(z), and then correcting the solution
using a perturbation method. The 1st order corrections to the intersection point are given by:

x1 = x10 + kx,0 δt

	

y1 = y10 + ky,0 δt	 (8)

z1 = z10 + kz,0 δt,

where δt is given by

δt =	
rO,0(z10) Or(z10) .(9)

kx,0 x10 + ky,0 y10 − kz,0 rO,0 (z10 ) ∂rO,0
 ∂z |z=z10

In Eqs. (8) & (9), we’ve neglected radial perturbations dependent on x and y. This is justified because contribu-
tions from axial slope perturbations dominate those from (x, y, z) perturbations in intersection points or from
azimuthal slope errors to the PSF. This method can also be used to deal with low-frequency figure errors.

5. SPECULAR REFLECTION FROM A SURFACE

Neglecting azimuthal variations as is appropriate for ideal surfaces, unit normals n̂1 = (nx,1, ny,1, nz,1) to the
surface O at the intersection point (x 1 , y1 , z1) are given by

nx 1 =	
n

−	
x2+

 y2
 J1

1 y1=ny 1
	 nn px21

+y2
1

J

∂rOnz, 1
	 nn \ ∂z	 | z=z1

/

where

s
_ 2

nn	1 + (
∂rO

∂z | z=z1
 ) .

For example, for a polynomial primary surface:

(10)

(11)

The direction vector k̂1 = (kx,1, ky,1, kz,1) of the ray specularly reflected from the surface is given by



k̂1 = (n̂1 x k̂0 ) x n̂1 — n̂1 ( k̂0 • n̂1) = k̂0 ( ˆn1 • n̂1 ) — 2 n̂1 ( k̂0 • n̂1 )

2	 2	 2kx,1 = kx,0 (ny,1 + nz 1 — nx 1) — 2 nx , 1 (ky,0 ny,1 + kz,0 nz,1 )

(13)

ky, 1 = ky,0 (n2x,1 + n2z,1 — n2y,1 ) — 2 ny , 1 (kx,0 nx, 1 + kz,0 nz, 1 )

kz, 1 = kz,0 (n2x,1 + n2
y,1 — n2z,1 ) — 2 nz, 1 (kx,0 nz, 1 + ky,0 ny, 1 ).

The right-hand-side of the top relation in Eqs. (13) follows from the vector identity (Â x B̂) x Cˆ = B̂(A • C) —
Â(B̂ • Ĉ). The vector k̂1 will be normalized to unity if k̂0 and n̂1 are, as the reader can demonstrate for himself.

If included directly in the ray trace, scattering due to dust or surface roughness introduces perturbations to
the specularly reflected direction vector.

6. PROPAGATION TO THE FOCAL PLANE
Given the intersection position (x 2 , y2 , z2 ) with the secondary and the normalized wavevector (kx,2, ky , 2 , and
kz , 2 ) reflected from the secondary, the ray is propagated to the focal surface plane z = —f + δz by solving
—f + δz = z2 + kz , 2 t for t and substituting in x f = x2 + kx , 2 t and y f = y2 + ky , 2 t to find x f and y f:

x f = x2 + k
z;2

 
(—f + δz — z2 )

(14)

yf = y2 + k
z, 2

 (— f + δz — z2 ).

From Eqs. (14), and the quantities x2 , y2 , z2 , kx,2 /kz,2 and ky , 2 /kz , 2 we can construct the rms blur radius,
σrms (θ, δz), as described in § 8.1.

7. GRAZE ANGLES

The graze angles, α1 and α2 , for the ray at the primary and secondary, respectively, are:

α1 = 
I 

2J cos-1 (k1 • k0 ),

(15)

α2 = 

I 
2J co s-1 (k2 • k1 ).

Values of the graze angles are needed for applications requiring the calculation of reflectivities for the weighting
of individual rays.



8. MEASURES OF SPATIAL RESOLUTION
8.1 Calculation of σrms from a ray bundle
RMS dispersion radii for PSFs derived from a Monte-Carlo simulation are determined as follows:

NEQi
1

22	 2=σrms	 σx,rms + σx,rms

σ2x,rms = NN 1(< x2 > − < x >2 )	 (17)

2	 Nσy,rms = N −1 (< y2 > − < y >2 ),

where N is the number of doubly reflected rays reaching the focal plane. We define x i = x f,i + δz(kx,i /kz,i ) and
yi = yf,i + δz(ky,i/kz,i ), where x f,i is the ray x-position in the flat focal plane through the on-axis focus, k x,i

the x-component of the doubly reflected ray direction vector, x i the ray x-component at a height δz above that
plane, and similar definitions for the y-components. Then Eqs. (17) become:

σ2rms (δz) = σ2
x,rms (δz) + σ2

y,rms (δz),	 (18)

(N

	

σx
2

,rms (δz) =	 N − 1 
(
cx,rms + 2 bx,rms δz + ax,rms δz2

)

cx,rms = < x2
f > − < x f >2

111II
	 (19)

kxbx,rms = [< x f 
(kx ) > − < x f >< k

z >J

ax,rms = L < (kx
) 2

 > − < (z 
)

 
>2

1

	

(
σy

2
,rms (δz) =	 N −N 1 ) 

(
cy,rms + 2 by,rms δz + ay,rms δz2

)

cy,rms = < y2
f > − < y f >2

(20)

by,rms = [< y f (kz
) > − < yf >< (ky ) >J

kz
L	

l 2

ay,rms = < ( z J > − < (kz ) >2

For a flat detector with face perpendicular to the optical axis, the optimal focal height, δzmin, determined by
minimizing the RMS blur σrms, then is:



δzmin - - bx,rms + by,rms	 (21)—
( ax,rms + ay,rms ).

Substituting Eq. (21) into Eqs. (19)—(20), and assuming N/(N - 1) ^_- 1, leads to:

σ2rms (δz = 0) = cx,rms +cy,rms,	 (22)

σ2
rms (δzmin) =σr 	

(bx,rms +by,rms )2

^ns (0) —

	

	 (23)
(ax,rms + ay,rms)

These equations apply independent of the mirror prescription.

For Wolter I optics, δz min is nearly a parabola in the polar off-axis angle θ, and the best focal surface is
usually not a flat plane. This leads to schemes for arranging focal plane detectors to follow the best focal surface
as closely as physically possible.

8.2 Measures of encircled energy
Encircled energy (EE(r)) vs. r is just the fraction of rays falling inside a radius r, and obviously varies from
0 at r = 0 to 1 as r -> oo. Common measures of spatial resolution are r 50 = HPD/2, the radius inside which
50% of the rays fall, and r80 = D80 /2, the radius inside which 80% of the rays fall. Here HPD is the PSF
half-power diameter. For a two-dimensional gaussian PSF with a 1/r cusp, one finds HPD = 1.35 σrms and
D80 = 2.56 σrm s.

9. EFFECTIVE AREA AEFF (θ) AT E = 0

In the zero energy limit, where reflectivities are all unity, the effective area is defined by

Aeff (E = 0, θ) = Ageom (θ) x n2 (θ)/ ninc(θ),	 (24)

where Ageom (θ) is the geometrical area of the incident aperture (whether for a single shell or a set of nested
shells) at polar off-axis angle θ (see § 3), n2 (θ) the number of doubly reflected rays through the optic, and n inc (θ)
the number incident on the aperture.

10. APPROXIMATE ANALYTIC EXPRESSIONS FOR WOLTER I OPTICS

We now consider Wolter I optics, for which δa2 = δa3 = δb2 = δb3 = 0 in Eqs. (2).

10.1 Single shell
VanSpeybroeck & Chase 1 provide a number of useful approximate analytic expressions characterizing the per-
formance of Wolter 1 optics. For the RMS blur radius, σrms,0 (θ), as a function of off-axis angle, θ, in a flat plane
perpendicular to the optical axis at the on-axis focus ( δz = 0), their expression is

σrms,0 (θ, α0 , µ0) ^_- µ0 (2/4) (ℓ/ f) (tan 2θ/ tanα0) + 4 tanθ tan 2α0 .	 (25)

In Eq. (25), α0 = (1/4) tan-1 (r0 / f), the graze angle at the optic radius of the primary-secondary intersection,
f the focal length, ℓ the mirror segment length (so that 2 ℓ is the shell length), and µ0 - 1 an adjustment
factor. The second term on the RHS of this equation is due to coma. Since coma grows linearly with θ, while
the spherical aberration term grows as θ2 , coma is only important at the smallest values of θ. In the flat on-axis
focal plane, the cross-over occurs at tan θ ^_- (8 f / ℓ) tan3 α0 .

The VanSpeybroeck & Chase 1 expression for the best focal position, δzbest(θ), above the on-axis focal plane
as a function of off-axis angle, θ, is



δzbest (θ,α0 ,µ,5z) ≃ µ,5z (1/8) ℓ (tan θ / tan α0 )2 ,	 (26)

where µ ,5z ∼ 1 is another adjustment factor. On the best focal surface given by Eq. (26), VanSpeyBroeck &
Chase1 find that the RMS blur radius, σTms(θ), neglecting coma, is

σTms,best (θ, α0 , µ1) ≃ µ1 (1/4) (ℓ/f) (tan2θ/ tanα0).	 (27)

Comparing Eqs. (25) and (27), we see that on the best focal surface the first term on the RHS, due to spherical
abberations, is half its value in the on-axis focal plane.

In the low energy limit E → 0, VanSpeybroeck & Chase (1972) find that the effective area as a function of
θ is

Aeff (θ, α0 , µA,1 , µA,2) ≃ µA, 1 Ageom [1 − µA , 2 (2/3) (θ/α0)],	 (28)

where Ageom is the on-axis geometric area, and µ A , 1 ∼ 1 and µA , 2 ∼ 1 are adjustment factors.

10.2 Single shell generalization

The results of §8.1 show that we can write the RMS blur radius, in linear dimensions (such as cm), as a function
of off-axis angle θ and height δz above the flat on-axis focal plane as

σ2
Tms (θ,δz) ≃ cs + 2 bs δz + a s δz2 .	 (29)

Here

cs = < x2
f + y2

f > − < xf >2 − < yf >2

bs = [< xf
 (z 

)

 
+ yf (—

ky ) > − < x f > < (kz ) > − < y f > < (kz ) >J
	

(30)

"

as = <
(kx

) 2 +(ky
) 2

 >−<(1) >2 −<(1)>21.

According to the results from §10.1, we can write

cs (θ, α0 , µc) ≃ [ µc (2/4) ℓ (tan 2θ/ tanα0) + 4 f tanθ tan 2α0 ] 2,	 (31)

where µc ∼ 1.

Monte-Carlo simulations show that a very good approximation for a s is given by

as (α0 , µa) ≃ (4 µa tan α0 )2 ,	 (32)

where µa ∼ 1.

The condition that the first term in Eq. (25) is cut in half on the best focal surface now gives us a way to
determine b s . Neglecting the coma term in the expression for c s , the result is

bs (θ, µc , µa) ≃ − µa µc √3 ℓ tan2 θ.	 (33)



So far this expression has been followed by the results of the Monte-Carlo simulations for Wolter I optics that
we have done. Then we have

σ2
rms (δz, θ, α0,s, Pc , Pa) ≃ cs (θ, α0 , Pc) + 2 bs (θ, Pc , Pa) δz + as (α0 , Pa) δz2

(34)
bs (θ, Pc , Pa)

δzmin =−
as (α0 ,Pa) .

Substitution of as (α0 , Pa) and bs (θ, Pc , Pa) in the last expression above reproduces the dependences in the
expression for the best focal surface, Eq. (26).

10.3 Nested shells
Eqs. (29)—(34) are for a single Wolter I shell. For a telescope consisting of nested shells, we might consider
summing expressions for each shell, weighted by effective area:

NS

Aeff,nested (θ, P4 , P5) = E Aeff (θ, α0,s , PA, 1, PA, 2 ),	 (35)
s=1

	

σrms,0,nested (θ, Pc , PA,1 , PA,2) =	
1
	 ×

(

Aeff,nested (θ, PA,1 , PA,2))

NS

E Aeff (θ, α0,s , PA,1 , PA, 2 ) σrms (0, θ, α0,s, Pc, Pa )
s=1

	

δzbest,nested (θ, Pc , νa , PA,1 , PA,2) =	
1

(

Aeff,nested (θ41A,1 41A,2)) 
×

NS

E Aeff (θ, α0,s , PA,1 , PA,2) δzbest (θ, α0,s , Pc , Pa )	 (36)
s=1

	

σrms,nested (θ, Pc , Pa , PA, 1, PA,2) =	
1

(

Aeff,nested (θ, PA,1 , PA,2
))×

NS

E Aeff (θ, α0,s , PA,1 , PA,2) σrms (δz, θ, α0,s , Pc , Pa )
s=1

11. EFFECT OF FIGURE ERRORS AND SURFACE ROUGHNESS

All equations have been for ideal figures. There will of course be figure errors and surface roughness resulting
from the manufacturing process. Once the optics are manufactured and their figures measured, it is possible to
evaluate the effects of sufficiently low amplitude and low frequency figure errors using the perturbation equation
given in §4. It is also possible to evaluate the effects of surface roughness by convolving the predicted scattering
wings with the predicted geometric core (see, e.g., O’Dell et al. (1993) 3 ). A rough estimate of the resulting
dispersion follows from the root-summed-square of the contribution expected from manufacturing errors and the
contribution expected from ideal figures. We have already mentioned that positioning focal plane detectors to
follow as closely as physically possible the best focal surface leads to the best performance.



12. WIDE-FIELD X-RAY OPTICS WITH POLYNOMIAL COEFFICIENTS
In 1992 BBG 2 showed how by adding higher order polynomial terms to the Wolter I prescriptions, and hence
giving up some on-axis spatial resolution, one can obtain prescriptions for reflecting surfaces that provide im-
proved spatial resolution over a wide field-of-view (say — 30 — 45 arcmin). Such so-called polynomial optics,
Eqs. (2) with non-zero δa2 , δa3 , δb2 , and δb3 , would be particularly useful for moderately deep to deep surveys,
to be carried out by observatories such as for the proposed Wide-Field X-ray Telescope (WFXT) mission, and
for solar x-ray observations.

12.1 Figures of merit
Many of the methods outlined above for Wolter I optics carry over to the case of polynomial optics. The most
important new ingredient is how to choose the polynomial coefficients δa2 , δa3 , δb2 , and δb3 so as to optimize the
telescope performance for the chosen task. In the case of a survey mission, for example, in principle one
needs to create many simulated fields-of-view, provide accurate background, optical and detector
performance models, and chose the polynomial coefficients and other mission parameters, subject
to spacecraft and launch constraints, that unambiguously find the most sources. In practise, one
often designs the optics to optimize some suitably chosen merit function, 2, 4–8 and then test its performance using
simulated fields-of-view. Methods for opimizing parameters can get complex, one example being the Markov-
Chain-Monte-Carlo method.7, 8

One simple merit function stressing the minimization of the spatial resolution over some specified field-of-view,
θFOV , is

RθFOV dθ sin θ w(θ) σ2 (δz(θ) θ δa 6aSa3 , δb2 , δb3)
M(δz, θFOV, δa2 , δa3 , δb2 , δb3) ≡ 0

	 θFOV

m3	 (37)
L	 dθ sin θ w (θ)

The weighting factor, w(θ), is often set unity, but may also be set to the effective area, A e f f (θ). Since maximizing
Ae f f (θ) is also important for greatest sensitivity, one may want to consider the weighting factor w( θ) = 1/Ae f f (θ).

However, normally the effective area is constrained mostly by mass considerations and spacecraft dimensions.
Eq. (37) provides a spatial resolution figure of merit for the full field-of-view. It is important to recognize that
polynomial optics with ideal surfaces necessarily results in the loss of on-axis spatial resolution.
Of course, manufacturing errors may make this point irrevelant.

12.2 Design considerations
Since X-ray optics necessarily involve grazing incidence, effective area is built up by nesting many shells in each
telescope module. This complicates the optimization procedure because:

1. The polynomial coefficients for each shell will be different, depending on the shell intersection radius, r 0,3,

and segment length, ℓ3 . Here s denotes the shell number; our convention is to number the outermost shell
as s = 1 with s increasing inward. Most telescope designs for wide-field surveys contain many shells (as
many as 100), so this fact greatly complicates the optimization procedure. In practise one often optimizes
the polynomial coefficients for each shell separately rather than all at once.

2. The best focal surfaces for the different shells will be different depending on the shell segment length, ℓ3 .
Thus the optimization procedure should include the possibility that the segment lengths of the various
shells are not all the same. The optimization procedure should also include placement of the focal plane
detectors.

3. Constraints due to mass limits, spacecraft dimensions, and optic manufacturing limits normally lead to an
envelope for the telescope optics prescribing values for the maxima and minima intersection radii and shell
segment lengths r0,max and r0,m in, and ℓmax, and ℓm in.



For Wolter I optics, we see from Eq. (26) and the fact α0 = (1/4) tan -1 (r0 / f) ^_ r0 /4f (see Eq. (3)) that

δzbest (θ,α0 ,µ,5z ) ^_ µ,5z (1/8) ℓ (tan θ / tan α0 )2 ^_ µ ,5z 2f ( 
ℓ

 ) θ2	(38)
r 20

Eq. (38) shows that Wolter I mirror shells satisfying the scaling relation

ℓmax >_ ℓs = ℓmax ( 
r0, s 

) 2 >_ ℓmin	 (39)
r0,max

are expected to have approximately the same best focal surfaces. The difficulty with this scaling relationship
is that for closely packed shells, necessary to build up effective area and to reduce or eliminate ghost rays
due to single reflections, the limit on shell length is normally reached well before the intersection radius r0,s
approaches the value r0,min, thus limiting the effective area. In addition, of course, introduction of the higher
order polynomial terms in the surface equations alter the shape of the best focal surface.

This suggests one should investigate scaling laws of the form

ℓmax >_ ℓs = ℓmax ( 
r0,s
 )ν >_ ℓmin.	 (40)r0,max

If the available space is to be filled up with mirror shells, one has

ν	
log (ℓmax/ℓmin)

-
log (r0,max /r0,min)

12.3 Symbolic optimization of a single shell using Mathematica©

We use the symbolic mathematics system Mathematica ĉ 9 to get an expression for M(δz, θFOV, δa2 , δa3 , δb2 , δb3 )
for given numerical values of r 0 , f (and therefore α0 ) and ℓ . This is done at each stage of the ray trace (intersection
with mirror surface, computing normals and reflected direction vectors, etc.) by expanding the appropriate
quantity to second order in δa2 , δa3 , δb2 , and δb3 , including cross-terms. For example, the x-component of the
normal vector from the secondary (H) surface is computed in the form:

nx,H = nxH,0000 + δa2 nxH, 1000 + δa3 nxH,0100 + δb2 nxH,0010 + δb3 nxH,0001

+ δa2
2 nxH,2000 + δa2

3 nxH,0200 + δb2
2 nxH,0020 + δb2

3 nxH,0002

(42)

+ δa2 δa3 nxH, 1100 + δa2 δb2 nxH, 1010 + δa2 δb3 nxH, 1001

+ δa3 δb2 nxH,0110 + δa3 δb3 nxH,0101 + δb2 δb3 nxH,0011,

where each of the 15 nxH,ijkl is a number. The normal vectors and direction vectors are kept normalized
to 1 to second order. Using Mathematica ĉ, ray traces over a set O of θ values produces expressions for
ax,rms, bx,rms, cx,rms, ay,rms, by,rms, cy,rms (see Eqs. (19) and (20)) in the form of Eq. (42). Then we con-
struct an expression for σ2rms (δz, θ, δa2 , δa3 , δb2 , δb3), which can be integrated over θ to produce an expres-
sion for M(δz, θFOV, δa2 , δa3 , δb2 , δb3). Finally the merit function can be minimized by setting derivatives of
M(δz, θFOV, δa2 , δa3 , δb2 , δb3) to zero and solving for δz, δa2 , δa3 , δb2 , and δb3 .

Maintaining symbolic expressions as described above is time and memory consuming. Because of these
limitations, we proceed in three steps. The first step is not a Monte-Carlo simulation at all. Instead, we choose
rays spaced uniformly, but not randomly, over the full shell aperture. For each value for θ <_ θFOV, the subset
of rays incident on the shell are traced through the optic.

(41)



The second step uses the results from the first in order to determine trial values for δz, δa2 , δa3 , δb2 , and δb3

for the value of θFOV .

The third step is a full Monte-Carlo ray trace using these trial values with large numbers of rays per θ value.
The only approximation in the full Monte-Carlo ray trace involves calculating the intersections with the mirror
segments as if they were Wolter I optics, and then correcting the location of the intersections using a pertubation
method. The effects of this single approximation are insignificant compared to those of, say, axial slope errors.
This third step provides a full evaluation of the mirror shell performance for the given values of the polynomial
coefficients.

12.4 Nested Mirror Shells
As previously remarked, X-ray telescopes usually involve nested mirror shells. For example the Chandra X-ray
Observatory has 4 shells and ESA’s XMM-Newton 58. Since the plate scale and best focal surface for each shell
are different, it is not sufficient to optimize each shell separately. Assuming two coefficients per mirror segment,
one would need to simultaneously optimize 16 and 232 coefficients for the two telescopes mentioned above. Thus
far we have succeeded in optimizing polynomial coefficients for 7 mirror shells simultaneously. For telescopes
with significantly larger number of shells, as currently proposed for WFXT, we have not so far found it possible
to simultaneously optimize all the polynomial coefficients.

Instead, for a large number of mirror shells, we proceed as follows:

1. Given a focal length f , a desired field-of-view θFOV, values for r0,max, r0,m in, ℓmax, and ℓmin, shell thickness
t, the dependence of ℓs on r0,s, and an algorithm for nesting the shells, we produce a Wolter I telescope
design.

2. We select a subset of these shells, separated for example by a constant amount in r0,s, for which we
individually determine the polynomial coefficients δa2 , δa3 , δb2 , and δb3 as described in §12.3.

3. The coefficients determined in this way form smooth functions of r0,s, which we use to interpolate values
for the polynomial coefficients of the intervening shells.

4. Now having polynomial coefficients for every shell, we run large numbers of rays in Mathematica© for
each individual shell.

5. We use the results of these ray traces to evaluate the performance of the wide-field X-ray telescope we have
constructed.

6. One way to improve spatial resolution performance is to shift the individual shells relative to each other
by a small amount in the axial direction. 2,4,5

7. A particularly effective way to improve spatial resolution performance is to tilt focal plane detectors so as
to conform more closely to the best focal surface. This was done with the ACIS CCD detectors on the
Chandra X-ray Observatory.

In this way, we are able to construct and fully evaluate a wide-field X-ray telescope consisting of nested polynomial
optics, as are needed for the WFXT mission.

13. CONCLUDING REMARKS AND FUTURE WORK
We have outlined our methods for designing and evaluating wide-field X-ray telescopes for use on X-ray astronomy
survey missions, with the proposed WFXT mission particularly in mind. Along the way we have extended to a
broader domain the analytic approximations for Wolter I optics given in VanSpeybroeck and Chase. 1

Our method for determining the polynomial coefficients for wide-field grazing incidence optics uses the sym-
bolic mathematics system Mathematica ĉ .9 This method does not require a Monte-Carlo search of parameter
space to find values for these coefficients. However, Monte-Carlo simulations are still required to fully evaluate



performance. Up to the present, we have been able to simultaneously optimize coefficients for up to seven mirror
shells. Most designs require many more shells and for those cases we still must optimize each shell individually.
The resulting differences in plate scale and best focal surface can be partially compensated for by varying the
mirror segement length, ℓS , with intersection radius, r0,S, adjusting the relative axial positions of the individ-
ual shells with respect to each other, 2, 4, 5 and tilting the focal plane detectors to most closely conform to the
telescope’s best focal surface.

In the future, we intend to:

1. Explore and evaluate wide-field designs for the WFXT mission.

2. Investigate designs satisfying the scaling relation Eq. (40) in order to reach the most favorable compromise
between best spatial resolution over the field-of-view and largest effective area for the available physical
volume.

3. Explore incorporating detector tilt into the optimization of polynomial coefficients.

4. Provide point-spread functions for individual designs in order to enable their evaluation using simulated
fields-of-view.
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