Modeling and Simulation of Variable Mass, Flexible Structures
Patrick Tobbe, Alex Matras, Heath Wilson — Dynamic Concepts, Inc.

The advent of the new Ares I launch vehicle has highlighted the need for
advanced dynamic analysis tools for variable mass, flexible structures. This system is
composed of interconnected flexible stages or components undergoing rapid mass
depletion through the consumption of solid or liquid propellant. In addition to large rigid
body configuration changes, the system simultaneously experiences elastic deformations.
In most applications, the elastic deformations are compatible with linear strain-
displacement relationships and are typically modeled using the assumed modes
technique. The deformation of the system is approximated through the linear combination
of the products of spatial shape functions and generalized time coordinates. Spatial shape
functions are traditionally composed of normal mode shapes of the system or even
constraint modes and static deformations derived from finite element models of the
system. Equations of motion for systems undergoing coupled large rigid body motion and
elastic deformation have previously been derived through a number of techniques [1].
However, in these derivations, the mode shapes or spatial shape functions of the system
components were considered constant. But with the Ares I vehicle, the structural
characteristics of the system are changing with the mass of the system.

Previous approaches to solving this problem involve periodic updates to the
spatial shape functions or interpolation between shape functions based on system mass or
elapsed mission time. These solutions often introduce misleading or even unstable
numerical transients into the system. Plus, interpolation on a shape function is not
intuitive. This paper presents an approach in which the shape functions are held constant
and operate on the changing mass and stiffness matrices of the vehicle components. Each
vehicle stage or component finite element model is broken into dry structure and
propellant models. A library of propellant models is used to describe the distribution of
mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels.
Based on the mass consumed by the liquid engine or SRB, the appropriate propellant
model is coupled with the dry structure model for the stage. Then using vehicle
configuration data, the integrated vehicle model is assembled and operated on by the
constant system shape functions. The system mode shapes and frequencies can then be
computed from the resulting generalized mass and stiffness matrices for that mass
configuration. The rigid body mass properties of the vehicle are derived from the
integrated vehicle model. The coupling terms between the vehicle rigid body motion and
elastic deformation are also updated from the constant system shape functions and the
integrated vehicle model. This approach was first used to analyze variable mass spinning
beams and then prototyped into a generic dynamics simulation engine. The resulting code
was tested against Crew Launch Vehicle (CLV-)class problems worked in the
TREETOPS simulation package and by Wilson [2].

The Ares I System Integration Laboratory (SIL) is currently being developed at
the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software
in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is
prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for
Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle



and stimulate avionics hardware. Due to the presence of vehicle control system filters and
the thrust oscillation suppression system, which are tuned to the structural characteristics
of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I
launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled
nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia
effects combined with mass and flexible body properties that vary significantly with time
during the flight. All forces that act on the vehicle during flight must be simulated,
including deflected engine thrust force, spatially distributed aerodynamic forces, gravity,
and reaction control jet thrust forces. These forces are used to excite an integrated
flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates
large rigid body translations and rotations along with small elastic deformations. Highly
effective matrix math operations on a distributed, threaded high-performance simulation
node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage
elements that separate from the stack during flight are propagated as independent rigid
six degrees of freedom (6DOF) bodies. This paper will present the formulation of the
resulting equations of motion, solutions to example problems, and describe the resulting
dynamics simulation engine within ARTEMIS.
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The advent of the new Ares I launch vehicle has highlighted the need for advanced
dynamics analysis tools for variable mass, flexible structures. Traditional flexible body
simulation tools are based on the assumed modes technique in which component modes are
constant. However, for variable mass systems, component and system modes vary with mass.
This paper presents a technique that accurately simulates the response of a variable mass,
flexible body while utilizing a constant set of shape functions. The approach allows for
continued use of current flexible body simulation dynamics engines. The Ares Real-Time
Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for
use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight
Center. ARTEMIS utilizes the proposed approach in a real-time environment. Variable
mass, flexible body test cases will be solved and presented from ARTEMIS and the
multibody simulation tool TREETOPS.

Nomenclature

= force and moment vector for component a

block diagonal of all component stiffness matrices
stiffness matrix

block diagonal of all component mass matrices

= mass matrix for component a

= propellant mass flow rate for i engine/thruster on component

= propellant mass consumed for t" tank on component

= dry component structural mass matrix

= component propellant structural mass matrix

component mass matrix

state vector of constrained system

constraint matrix

transformation to sort dependent and independent degrees of freedom order
state vector in arbitrary order for component a

state vector in arbitrary order

state vector sorted into dependent and independent degrees of freedom
product of transformation, constraint and mode shape matrices
submatrix of V, partitioned to size of component a

first mass integral

second mass integral

generalized stiffness matrix

generalized mass matrix

= mode shape matrix
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I. Introduction

Innovative dynamics analysis tools are essential for modeling and simulation of variable mass, flexible structures
such as the new Ares I launch vehicle. This system is composed of interconnected flexible stages or components
undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid
body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the
elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the
assumed modes technique. The deformation of the system is approximated through the linear combination of the
products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally
composed of normal mode shapes of the system or even constraint modes and static deformations derived from
finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion
and elastic deformation have previously been derived through a number of techniques'. In these derivations, the
mode shapes or spatial shape functions of the system components were considered constant; however, the structural
characteristics of the Ares I vehicle change with the mass of the system.

Previous approaches to solving this problem involve periodic updates to the spatial shape functions or
interpolation between shape functions based on system mass or elapsed mission time. The effects of these
techniques have been studied’. These solutions often introduce misleading or even unstable numerical transients into
the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the
shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle
components. Each vehicle stage or component finite element model is broken into dry structure and propellant
models. A library of propellant models is used to describe the distribution of mass in the fuel tanks or Solid Rocket
Booster (SRB) for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the
appropriate propellant model is coupled with the dry structure model for the stage. Then, using vehicle configuration
data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The rigid
body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the
vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the
integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped
into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV) class
problems worked in the TREETOPS® simulation package.

The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center
(MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify
that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for
Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and avionics hardware. Due
to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the
structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch
vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body
dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that
vary significantly with time during the flight. All forces that act on the vehicle during flight must be simulated,
including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet
thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the
vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Cache
optimized matrix math operations on a high-performance, multiprocessor, multi-node simulation computer allow
ARTEMIS to achieve real-time while retaining up to 30 flexural modes. Stages that separate from the stack during
flight are propagated as independent, rigid six degree of freedom (6DOF) bodies. This paper will present the
formulation of the resulting equations of motion, solutions to example problems, and describe the resulting
dynamics simulation engine within ARTEMIS.

II. Equations of Motion

The vehicle equations of motion, which constitute the dynamics engine of the ARTEMIS simulation, were
derived using Boltzmann-Hamel equations'. Some of that derivation will be repeated here. Boltzmann-Hamel
equations, often referred to as Lagrange's equations in quasi-coordinates, are a modified form of Lagrange's
equations which operate in a moving reference frame. The elastic deformations of each body will be approximated
using the assumed modes technique. This method is a popular technique for modeling structural flexibility in multi-
body simulation packages. In this technique, the elastic deformation of each body is approximated through a linear
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combination of the products of shape functions and generalized time coordinates. The shape functions are typically a
subset of normal modes derived from a finite element model of the component.

Figure 1. Undeformed Flexible Body

Shown in Fig. 1 is a generic flexible body with vectors describing the position of the i™ nodal body relative to
inertial space O and a body fixed frame B. The nodal body has mass m; and an inertia tensor /;. The location of the
nodal body relative to the body fixed frame is denoted by p;. In the deformed state of Fig. 2, the translational
deformation of i relative to B is &; and the rotational deformation is 6;. These deformations are assumed to be small,

Figure 2. Deformed Flexible Body

as well as compatible with linear strain-displacement relations. The deformed nodal body position is

1, =R+p;+6; (1)
The inertial translational velocity of point i is
i = R+ox(p; +8;)+8, )
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where o is the angular velocity of the body frame B and §; is the time rate of change of the deformation relative
to B. The kinetic energy of the system can be written as

T:Z{%mi(@-fi)+%(w+éi)rli(w+éi)} (3)

The system potential energy is the strain energy resulting from body deformations. It can be computed from a
finite element stiffness matrix of the structure as

v =l(5JTK(5J—ATa(q,t) (4)

216 0

where K is the stiffness matrix, o and 6 are the nodal displacements, a(q,?) are the system constraint equations,
and A is the array of Lagrange multipliers. The nodal displacements can be approximated using the assumed modes
technique as

;= 2%17_/ (%)
J
and

0, = Z‘l/g/n_/ (6)
J

where ¢); and y; are the ™ shape functions or modes at node i and n; is the associated generalized coordinate.
This is essentially a coordinate transformation from the finite element nodal displacements to a set of modal
coordinates. The model is reduced in size by truncating the number of modes or shape functions used in the
coordinate transformation. By inserting the energy expressions into Boltzmann-Hamel equations, the following
equations of motion are derived.

o
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The off axis terms in the system mass matrix of Eq. (7) are defined as
p
Ly, = zmi¢j/ (®)
i=1
P
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i=1
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P
1, =Y mlele,1-4,07) (10)
i=1

P
FZ_/k = Z(mi¢j/ X¢ik) (11)
i=1
P
IZ_/k = z m; (¢5¢ik 1- ¢j/¢i€ ) (12)
i=l

These terms are often referred to as the mass integrals and are a function of the rigid body mass properties and
selected shape functions. Generally, Egs. (8) through (12) are evaluated using shape functions and a finite element
mass matrix. The mass integral terms couple the rigid body motion to the structural deformation as characterized by
the shape functions. If the shape functions are orthogonal to the rigid body modes of the system, the mass integral
terms defined by Eqgs. (8) and (9) are zero. Typically the higher order terms of Egs. (10), (11), and (12) are ignored
except for extremely flexible systems. The system natural frequencies and mode shapes can be computed from the
system mass matrix (coefficient matrix of the acceleration vector in the equations of motion) and the generalized
stiffness matrix (augmented with rows and columns of zeroes for the rigid body degrees of freedom).

III. Variable Mass

The changing structural characteristics of a variable mass system are difficult to model in a time domain
simulation. In the previous derivation of equations of motion, the shape functions were considered constant. In order
to account for variations in the structural characteristics, the equations of motion could be expanded to include time-
varying terms for the shape functions. However, time derivatives of the shape functions are difficult to compute or
measure and add significantly to the numerical computations. Alternatively, different sets of mode shapes for each
mass distribution can be processed before running the simulation. These sets can be periodically updated or
interpolated during the simulation using Eq. (7), which introduces discontinuities in the vehicle deformations.
Finally, a constant set of shape vectors that describe the bending characteristics of the vehicle for the entire
propellant burn can be built from combinations of the mode shapes derived from different mass distributions. In this
approach, the stage mass and stiffness matrices are combined to build the integrated vehicle mass and stiffness
matrices in physical coordinates. The vehicle mass properties, mass integrals, and generalized mass and stiffness
matrices are computed from the integrated vehicle mass and stiffness matrices and constant shape functions each
time step and updated in Eq. (7). Through these updates, the system equations of motion reflect the current structural
characteristics of the vehicle in a continuous manner while using a constant set of shape vectors.

Vehicles simulated by the ARTEMIS dynamics engine are decomposed into stages. Each stage is further
subdivided into a dry substructure and propellant or tank substructures. Finite element models of each of the stage
substructures are created and the mass and stiffness matrices extracted. Multiple propellant or tank models are
constructed for various levels of propellant. Within ARTEMIS, the propellant consumed by each substructure is
tracked through integration of mass flow rates and the corresponding mass and stiffness matrices are updated using
interpolation. The mass and stiffness matrices for the stages and integrated vehicle are assembled through
substructure coupling techniques, based on the appropriate vehicle configuration, and are used to calculate mass
properties, mass integrals, and generalized mass and stiffness matrices. System shapes are selected off line to
characterize the integrated vehicle flexibility for the appropriate configuration of stages. These shapes are
orthogonalized with respect to the vehicle geometric rigid body modes to avoid singularities caused through
dependencies with explicit rigid body degrees of freedom defined in Eq. (7). Mass properties are found through
geometric rigid body modes operating on the system mass matrix. The process to update the vehicle properties based
on propellant consumption in ARTEMIS is shown in Fig. 3 for parallel processing.
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Figure 3. Vehicle Properties Calculation

IV. Algorithm Description

The primary goals of the implementation of these methods are to derive equations in forms that yield a minimal
number of run-time calculations, to parallelize tasks for efficient multithreading, and to design structures and
algorithms to utilize the CPU cache as efficiently as possible.

The main technique used to reduce the number of run-time calculations is to partition the equations into terms
that only need to be recomputed for a stage consuming mass, which is usually only one stage at a time. Additionally,
the equations are written as a function of the individual stage mass and stiffness matrices before any transformations
are applied. Thus, the equations reduce to simple matrix multiplications where most calculations may be performed
one time at initialization and used for the duration of the simulation. The substructure coupling technique is
particularly useful for deriving in this form.

A. Substructure Coupling

Substructure coupling is a convenient technique to assemble composite mass and stiffness matrices for structures
from individual components. This method, also known as Component Mode Synthesis, is described in detail by
Craig®. The formulation presented here has been modified to account for multiple components and to provide for
more efficient calculations.

Consider a set of components (stages or substructures) (a, f, y, 0) where each component has a mass and
stiffness matrix modeled by the following equation:

my iy +kguy = [y’ (13)

The subscript 0 represents an arbitrary DOF order. In this notation, the superscript represents the component (a
in this case). The state vector is represented by u, the mass matrix by m, the stiffness matrix by 4, and the external
force and moments by .

In order to perform substructure coupling, the states must first be reordered into dependent and independent
DOFs with a transformation matrix, 7}y, to compute the reordered state vector u,. Following Craig's approach, the
constraint equations are applied to the system to generate a new, constrained state vector, g. These constraint
equations take the form of a matrix multiplication.
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u, =38q (14)

The generalized forms of the mass and stiffness matrices are used in the vehicle dynamics. These matrices are
determined by assembling the component mass and stiffness matrices into block-diagonal form (M,, Kj), applying
the transformation into independent/dependent coordinates (77), and then applying the constraint equations (S).
These matrices are further reduced into generalized coordinates for flexible degrees of freedom (7)) based on the
number of modes in the mode shape matrix (®). For simplicity, define the transformation to be:

V=S"T,,® (15)

The generalized mass (¢) and stiffness (x) matrices become

mg 0

u=0'Ts S"h,@=v"My (16)
[
0 m
k& 0

k=®"T,(S SThy®=VTKV (17)
0 kS

Since the mode shapes are held constant, }” does not depend on time nor mass properties and can be calculated at
initialization. Thus, the generalized mass and stiffness matrices may be calculated directly from the component
matrices which are determined by interpolation each frame. Usually one component varies mass for a given time;
therefore, Eqs. (16) and (17) are rewritten into a summation that is a function of each component independently.
This modification allows the generalized mass and stiffness matrices to be computed once and stored for the
constant mass components. A significant reduction in the number of computations is accomplished since the matrix
multiplications are on the order of the number of degrees of freedom of one component instead of the entire system.

The separation of V' for each component involves partitioning V into submatrices (v, V4, ...) with the same width
as the original V, but the number of rows of each submatrix is the same as the number of degrees of freedom of the
corresponding component.

mo 0 Va
,u=[v£ e vE : =2v,~Tm(i)v,~ (18)
9 i
0 mo V5
kg 0 |v,
K=[v£ vg : =2viTkévi (19)
0 kg V5 i

A simple diagonal damping matrix is created based on a desired damping ratio. The mass integrals are calculated
in a similar manner, although detailed derivations of the equations are beyond the scope of this paper.

The matrix multiplications are performed by a special function that implements the Goto/Van de Geijin method’,
which ensures that the processor is utilizing floating point units while avoiding cache misses. This method uses an
inner loop, which iterates over the maximum amount of data that can fit in a processor's level 1 (L1) cache at a time,
with outer loops for each higher level of processor cache (L2, L3, etc.).

The individual mass and stiffness matrices for each component must be determined based on stage mass. Lookup
tables provide these matrices using the substructure or stage mass as the independent variable. The center of mass
and moment of inertia for each stage are determined using the component mass matrix from the geometric rigid
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body modes technique. The center of mass and moment of inertia for the composite vehicle are calculated using the
parallel axis theorem and the component mass properties.

B. Multithreading

The algorithms for looking up the mass and stiffness matrices, calculating mass properties, and solving the
equations of motion have been designed to run on multi-core and multi-processor systems. Multi-threading of mass
property and matrix calculations is straightforward since the calculations for each stage can be performed on a
separate thread. Additionally, the mass integrals can be calculated on a separate thread.

The functions that solve the equations are separated into different tasks, which can be executed in parallel. A
function (FApp) sums all the applied forces and moments (including force following terms) about the vehicle frame
and calculates the generalized forces and moments. Another function (RHS) calculates the right hand side kinematic
terms of Eq. (7). A third function calculates the system mass matrix and performs an LU decomposition. A fourth
function performs the forward and backwards substitution (FBS) for the LU decomposed system mass matrix.
Figure 4 illustrates a potential multithreading scheme. This scheme is based on using a separate thread for each stage
and using separate threads for interpolating components and calculating generalized mass and stiffness matrices.

Key:
Tl FS |IFs [ [eMM][FS | IRHS |[FBS |[integ | o o5 mrst suge
M MP MP US - Upper Stage
== oo = MM - Mass Mairix Interpolation
M App SM - Stiffa. Matrix Interpolation
fLeae SM » G - Gen. Mass Matrix
GSM - Gen. Stiffiess Matrix
us us GO us LUD GO, G - Mass Integrals, I'y T';
Thread3 — M P [ Y =EE > RFS - Right hand side
FApp - Sum Applied Forces
Thread4 —— SM P FBS - Forward-Backward Sub
Integ - Numerical integrator

Figure 4. Multithreading of ARTEMIS Dynamics

V. Example

To demonstrate the feasibility of this approach, an example problem was formulated and solved with the
simulation package TREETOPS. TREETOPS is a non-linear, multibody simulation tool which supports flexible
bodies through the assumed modes technique. An example five-element beam, shown in Fig. 5, was constructed in
NASTRAN and used as a model of dry structure.

_— 'S s s 'S

X
Node 1 Node 2 Node 3 Node 4 Node 3 Node 6

Figure 5. Flexible Beam Structure

Table 1 contains the properties for the dry beam. To simulate propellant, rigid bodies with mass and inertia were
connected to each of the six nodes of the beam. The masses were depleted over time using a prescribed flow rate. A
TREETOPS model was constructed with seven bodies. Body one was the dry flexible beam. Bodies two through
seven represented the propellant nodal masses and inertias rigidly attached to the beam. The structural
characteristics of body one were derived from the NASTRAN model of the dry beam.
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Table 1. Beam Properties

Radius 0.5 in
Length 10 ft
Density 5.0 slug/ft’

1.44 x 10° Ibf/ft’
2.367x 10° ft
0.334
4735x 10° ft

Young’s Modulus

Area Moment of Inertia
Poisson’s ratio

Polar Moment of Inertia

Table 2 contains the mass properties of each of the rigid bodies attached to the beam nodes representing the full
propellant beam configuration. Eleven system NASTRAN models of the beam were created with concentrated
masses and inertias attached at each beam node. Each of these models represented a separate mass configuration of
the beam during the propellant burn. The propellant burn reduced the masses from the initial value of one slug to
zero slugs over a period of fifteen seconds. The inertia of each mass remained unchanged for this example.

Table 2. Propellant Mass Properties

Mass 1 slug
Ixx 0.0 slug-ft”
Iyy 1.0 slug-ft”
Izz 1.0 slug-ft”
Ixy 0.0 slug-ft”
Ixz 0.0 slug-ft”
Iyz 0.0 slug-ft”

Table 3 contains the first ten frequencies computed in NASTRAN for the final or empty propellant configuration
and for the initial or full propellant beam configuration. In this table, the empty propellant configuration consists of
the dry beam with attached lumped inertias.

Table 3. Bending Frequency Range for Propellant Depletion

Bending Mode | Empty Propellant | Full Propellant
1 3.295551 Hz 1.798136 Hz
2 3.295551 Hz 1.798136 Hz
3 6.188647 Hz 4.327146 Hz
4 6.188647 Hz 4.327146 Hz
5 9.068079 Hz 7.236610 Hz
6 9.068079 Hz 7.236610 Hz
7 11.25814 Hz 10.15644 Hz
8 11.25814 Hz 10.15644 Hz
9 12.62832 Hz 12.27924 Hz
10 12.62832 Hz 12.27924 Hz

Typically, the propellant would be simulated in ARTEMIS as a separate structure and then substructure coupled
to the dry beam. But for this example, the system was modeled as a single structure. ARTEMIS interpolated directly
on the NASTRAN mass matrices of the integrated system. Three sets of system modes were evaluated in
ARTEMIS: (A) ten modes from dry beam with lumped inertias (empty configuration), (B) ten modes from dry beam
with full masses (full configuration), (C) sixteen combined shapes from ten half full modes, three full modes, and
three empty modes. Table 4 lists system frequencies derived from a NASTRAN model of the empty configuration
and ARTEMIS frequencies using the various basis vectors. Table 5 lists the same system frequencies for a full
system.
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Table 4. Empty System Frequencies

(A) (B) (©)
NASTRAN | ARTEMIS | ARTEMIS | ARTEMIS
System Empty Full Combined
Mode Modes Modes Modes Modes
1 3.2956 3.2956 3.3143 3.2956
2 3.2956 3.2956 3.3143 3.2956
3 6.1886 6.1886 6.2775 6.1886
4 6.1886 6.1886 6.2775 6.2282
5 9.0681 9.0681 9.3115 9.0681
6 9.0681 9.0681 9.3115 9.0681
7 11.2581 11.2581 11.5788 11.2949
8 11.2581 11.2581 11.5788 11.3658
9 12.6283 12.6283 12.7900 12.6283
10 12.6283 12.6283 12.7900 12.6283
Table 5. Full System Frequencies
(A) (B) (©)
NASTRAN | ARTEMIS | ARTEMIS | ARTEMIS
System Empty Full Combined
Mode Modes Modes Modes Modes

1 1.7981 1.8114 1.7981 1.7981
2 1.7981 1.8114 1.7981 1.7981
3 4.3471 4.4220 4.3471 4.3471
4 4.3471 4.4220 4.3471 4.3540
5 7.3266 7.5091 7.3266 7.3266
6 7.3266 7.5091 7.3266 7.3266
7 10.1564 10.3638 10.1564 10.1844
8 10.1564 10.3638 10.1564 10.1934
9 12.2792 12.3725 12.2792 12.2792
10 12.2792 12.3725 12.2792 12.2792

As seen in Tables 4 and 5, no single mode basis set works well for the full spectrum of propellant levels. However,
at the computational expense of additional shapes, the combined set of vectors from various mass configurations
performs well. Any screening or shape selection process should, as a minimum, evaluate the predicted system
frequencies for the configurations being studied. Resulting system mode shapes also need to be considered.

The simulations began with the system at rest. A 500-pound excitation force was applied along the beam Y-axis
at node 1 for 0.004 seconds and then released. The simulation was run for constant mass and variable mass
problems. Figure 6 depicts the angular velocity of node 1, including bending, and Fig. 7 contains the lateral
deflection of node 6 for the full constant mass run. The results show excellent agreement between TREETOPS and
ARTEMIS while using different dynamic formulations and support the verification of Eq. 7. Next, a variable mass
case was run to evaluate the feasibility of the approach utilized in ARTEMIS and outlined in this paper. A 15 second
burn with a burn rate of 1/15 slugs/second for each propellant mass started at 2 seconds. At the end of the burn, the
propellant masses were completely depleted. The inertia of each of the propellant masses was not changed for this
problem. Figure 8 is the angular velocity of node 1 and Fig. 9 is the lateral deflection of node 1. Again, there is
excellent agreement between TREETOPS and ARTEMIS.
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Figure 9. Variable Mass, Node 6 Lateral Deflection

VI. Conclusion

An approach to efficiently simulate variable mass, flexible body systems has been presented and demonstrated.
In this method, shape functions are held constant over a wide range of mass configurations, allowing the simulation
tool to utilize existing formulations for the equations of motion of a single flexible body. This technique does not
employ time-varying shape functions, which are difficult to characterize and are computationally intensive. This
approach also does not utilize scheduled or interpolated shape functions that can introduce numerical discontinuities
into the solution. Instead, this method operates directly on substructure mass matrices and updates the system mass
matrix, mass properties, and coupling terms in the equations of motion. The Ares I simulation tool ARTEMIS has
adopted this technique and expanded the formulation to real-time operation through selective partitioning of the
equations and parallel computations. Future work will focus on developing methods to select system modes,
evaluating different types of system modes, and reducing numerical discontinuities that can occur during vehicle
staging events.
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Equations of Motion for Flexible Body A

Formulation to accurately simulate the response of a
single vehicle

Derived using modified form of Boltzmann-Hamel
equations
e Energy method allowing kinetic and potential energies to
be expressed in coordinates in rotating frame
Structural flexibility of vehicles / bodies modeled
using assumed modes technique

Equations of motion allow for large rigid body
translations and rotations coupled with small body
deformations



Boltzman-Hamel Method A

Boltzmann-Hamel Equations Kinematics
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Equations of Motion A
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Mass Integrals A

r, =2.m9,

i Ilj = Zm[(p[(p[jl3x3 _(p[jpiT)
Flj :Z(mipix(pij +Ii\|lij) :

. Iij = Zm[(p[(p[]T'I3x3 _(P;j(l’gc)
Fij = Z(mi(pij X(pik) !

i

¢+ Mass integrals model coupling between rigid body and flex
body dynamics
¢ Using momentum arguments, developed ways of calculating
these from mass matrices
¢ [,and I, go to zero when mode shapes are orthogonal to
mass matrix, the others are negligible
e Not always the case using our approach

¢ TheTl,, I, &I, mass integrals may be neglected for systems
that do not undergo very large deformations (e.g. for the Ares

)



Equations of Motion

Flex Body Egs. of Motion

3N

omly;  =(Com+mp) Ty]|R
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Modal Reduction
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K=0'K ®

Notation

0 —-x

0

Xy

X
-x
0

m — Total vehicle mass

| — Total vehicle MOI

p — Center of mass

FB — Sum of forces

T8 — Sum of torques

¢ — Trans. mode shapes

) — Rot. mode shapes

® — Mode shape matrix

M, — Total veh. mass matrix
K, — Total veh. stiff matrix
State vector:

R'— Pos. in inertial space

RB —Vel. in body frame

g®' - Quaternions

w8 — Ang. vel. in body frame
n — Flex states

State derivative vector:

R'—Total vel. in inertial space
RB — Acc. in body frame

g% — Quaternion derivatives
@8- Ang. acc. in body frame
N — Flex state derivatives .



Variable Mass Challenges A

For variable mass systems, such as the Ares | launch
vehicle, system mode shapes are not constant

Depending on structure, system stiffness
characteristics could also vary with mass

Current flexible body simulation tools are not
configured for this class of systems

Mass and stiffness must be determined each step

Generalized mass and stiffness and mass integrals
must be recomputed (large matrices, very time
consuming)



Variable Mass Solutions A

¢ Schedule / interpolate new system shapes as a function of
mass
e Discontinuities in deformations at updates

e Orthogonality of modes with respect to system mass and stiffness
matrices

e Determining the rate to update modal data

¢+ Add time varying mode shape terms to derivation of EOM
(Wilson)
e Additional terms add significant computation time
e Computing derivatives of mode shapes for vehicle configurations is
very difficult
¢ Hold shape functions constant between staging and vary
physical (FEM) mass and stiffness matrix (i.e. use Ritz vectors)

¢ Partition matrix equations by component, and only perform
calculations on parts which change



Substructure Coupling

V:\

¢+ Method of applying constraints in order to assemble multiple
mass matrices into one composite matrix (Craig)

¢+ Select dependent degrees of freedom to be constrained out
¢ Reorder degrees of freedom to separate dependent DOFs out

¢+ Used to assemble and partition generalized vehicle mass and
stiffness matrix calculations

— Reorder DOF

Block diagonal of comp. m & k
Composite stack M & K l

Constraint Matrix
m 0 T
— M, :STTOT1 TOIS:STTOTIMOTOIS
0 m;
k; 0
— K, = STTOT1 T,S = STTOTIKOTOIS

Components

o — Crew module

B — Service module

vy — Upper stage

0 — Interstage

€ — First stage

{— Launch abort system
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Partitioning of Calculations

¢ Gen. mass matrix as function of comp. mass matrices

m, 0
n=0'S"'T" T, S®
0 m,
n=V'M,V

¢+ Partition by component
e Only components whose mass properties change need to be recalculated
e (Calculations can be done in parallel on multi-processor computers
e v, can be calculated at initialization

Vslva \F R V§J

_ a T BT coT
B=V,m v, +V,m vy +--+V, mgv,

e Generalized stiffness matrix and mass integrals are derived into an analogous
form
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ARTEMIS A

* Ares Real Time Environment for Modeling, Simulation and Integration
(ARTEMIS) is the real time simulation of Ares | supporting the
development and validation of Ares | flight software and avionics
components

¢ Accurately models all Ares I/Orion/Ground systems which interact with
Ares | avionics components from pre-launch through orbit insertion

¢ Interacts with lab configuration and control software to support model
selection and fault insertion

¢ Operates in a hardware-in-the-loop environment such that a user can
select between software models of avionics components or interface to
actual avionics hardware

¢  Simulated models must communicate with actual hardware via MIL-STD-
1553B, Gigabit ethernet, RS-422, discrete and analog signals

¢ Includes models of vehicle dynamics, environment and subsystem models
¢ Must maintain hard real-time operation

¢ Uses very specialized functions for matrix multiplication (see Goto & van
de Geijn) for optimal performance

12



Example Lab Configurations
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Example Lab Configurations
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ARTEMIS Flexible Body Configuration &

Define vehicle as a single body composed of components (stages)
connected at nodes

Each component is composed of structure and propellant

Component input data consists of FEM mass and stiffness matrices, DOF
map, and node geometry of structure and propellant

Re-compute propellant mass and stiffness matrices each integration time
step via interpolation with respect to mass

Update component mass properties using geometric rigid body modes
technique

Assemble vehicle mass and stiffness matrices each integration time step
via automated substructure coupling

Use linearly independent combination of vehicle mode shapes / Ritz
vectors computed from various mass configurations analyzed

* Hold mode shapes or Ritz vectors constant
At staging event, update vehicle geometry, mass properties, Ritz vectors

Spawn and propagate separated rigid vehicle (can be composed of
multiple cores or stages) based on flight phase

15



Ares | Flight Phases A
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Variable Mass, Flexible Body Test Case A

Developed variable mass, flexible body example problem
composed of dry beam structure augmented with propellant
nodes

Applied sinusoidal force to end node of beam while depleting
mass from propellant nodes

No modal damping
Constructed 36 DOF FEM of dry beam
Developed FEMs of dry beam and various levels of propellant

Extracted mass and stiffness matrices from FEM for various
levels of propellant for use in ARTEMIS

Computed system frequencies for empty and full propellant
levels to support Ritz vector selection in ARTEMIS

Serves as validation for the implementation of flex body
dynamics in ARTEMIS

17



Test Case A

¢+ Sinusoidal force applied in -Y direction at node 1

from time = 0 for 0.4 seconds with a magnitude of 10
pounds

¢ Mass depletion rate of 1/15 slugs/second starting at
time = 2 seconds until time = 17 seconds

y
& . () (N 4 4 O
X S N4 _/ _/
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6
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ARTEMIS Configuration of Test Case A

¢ Configured ARTEMIS for a single, flexible body using
constant set of system modes and library of system
mass and stiffness matrices

¢ Used three different sets of shapes in ARTEMIS :
empty system, full system, and combination of
empty and full systems

¢+ Computed system frequencies from ARTEMIS M and
K for empty and full propellant levels, compared to
system FEM modes

¢+ Applied prescribed forcing function to node 1

¢+ Computed total angular velocity of node 1 and
translational deflection of node 6 for constant mass
and variable mass configurations

19



Test Case

Radius 0.5in Mass 1.0 slug
Length 10 ft | 0.0 slug-ft?
Density 5.0 slug/ft3 ly 1.0 slug-ft?
’ 9
I\:Z‘:j”ugluss l‘ﬁff />:ct120 L, 1.0 slug-ft?
AreaMoment |, 500 10 fis | 0.0 slug-ft2
of Inertia ad
Poisson’s ratio 0.334 I 0.0 slug-ft?

Xz

Polar Moment
of Inertia

4.735 x 10 ft*
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FEM System Natural Frequencies A

Bending Mode

Empty Propellant

Full Propellant

1 3.295551 Hz 1.798136 Hz
2 3.295551 Hz 1.798136 Hz
3 6.188647 Hz 4.327146 Hz
4 6.188647 Hz 4.327146 Hz
5 9.068079 Hz 7.236610 Hz
6 9.068079 Hz 7.236610 Hz
7 11.25814 Hz 10.15644 Hz
8 11.25814 Hz 10.15644 Hz
9 12.62832 Hz 12.27924 Hz
10 12.62832 Hz 12.27924 Hz

21



Full Propellant Configuration

(C) ARTEMIS
NASTRAN (A) ARTEMIS Empty |  (B) ARTEMIS Combined Modes
Mode System Modes Modes Basis Full Modes Basis Basis

1 1.7981 1.8114 1.7981 1.7981
2 1.7981 1.8114 1.7981 1.7981
3 4.3471 4.4220 4.3471 4.3471
4 4.3471 4.4220 4.3471 4.3540
5 7.3266 7.5091 7.3266 7.3266
6 7.3266 7.5091 7.3266 7.3266
7 10.1564 10.3638 10.1564 10.1844
8 10.1564 10.3638 10.1564 10.1934
9 12.2792 12.3725 12.2792 12.2792
10 12.2792 12.3725 12.2792 12.2792
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TREETOPS Configuration for Test Case A

¢+ TREETOPS is a multibody simulation package
developed at the Marshall Spaceflight Center that
supports flexible bodies

¢ Built TREETOPS simulation of dry flexible beam (body
1) rigidly attached to propellant masses (bodies 2
through 7)

¢ Described structural flexibility of body 1 through dry
beam modes

¢+ Applied prescribed forcing function to node 1

¢+ Computed total angular velocity of node 1 and
translational deflection of node 6 for constant mass
and variable mass configurations

23



@ Simulation Results A
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Observations A

¢* TREETOPS and ARTEMIS results agree for both
constant mass and variable mass

configurations using different formulations
and models

¢ System frequencies do not vary for constant
mass configuration

¢ System frequencies vary from 1.8 to 3.3 Hz for
variable mass configuration

¢ No discontinuities in simulated system
response as frequencies change
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Future Work A

¢ Investigate modal selection techniques for
ARTEMIS based on transfer functions

¢ Evaluate use of constraint and attachment
modes to augment free-free vehicle modes

¢ Clarify “modal damping” for non-orthogonal
basis vectors
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