Applicability of Aerospace Materials
Ground Flammability Test Data to Spacecraft Environments
Theory and Applied Technologies

David Hirsch
Jim Williams
Harold Beeson

NASA White Sands Test Facility
Las Cruces, New Mexico
USA

Technical Interchange Meeting on Aerospace Materials Flammability
German Aerospace Agency
Bremen, Germany
October 2009

Agenda

• Current approach to spacecraft fire safety
• Constellation Program fire safety challenges
• Current trends in evaluation of Constellation materials flammability
• Correlation of ground flammability test data with spacecraft environments
Slide 3

Current Approach to Spacecraft Fire Safety

- General Strategy: Prevent Fires
- Control materials
- Minimize potential ignition sources and materials that can propagate a fire
- Control the quantity and configuration of flammable materials to eliminate fire propagation paths

Slide 4

Current Flammability Qualification Tests

- Major flammability tests – NASA STD 6001.A Tests 1 and 4
- Upward flame propagation
- Conducted under worst-expected spacecraft conditions, usually in 30% oxygen at 10.2 psia
- Pass/fail test logic

Discuss:
materials passing criteria (pass/fail approach) - qualitative
ignition source - simulates a worst case
testing in the "worst" case expected, usually 30% oxygen, 10.2 psia - explain (pre-EVA operations)
note that the pass/fail logic assumes a direct correlation between 1-g data and flammability behavior in spacecraft environments.
Current safety design challenges:

ECLSS designed to handle a CM leak equivalent to 1/4-in. diameter for an hour

Unplanned transitory events:

Crew Module (CM) depressurization - real event in ISS during late 2002

Loss of nitrogen - will drive the need to know what max oxygen concentration we can expose the CM to and still manage fire risks;

Frequency and duration of EVAs will increase, so there may be an increase in emergency rescues of an astronaut in EVA distress; need the capability to respond quickly to EVA emergencies

Increasing communication delays

The MIR fire of 1997

Limited options for mission termination:

a salvageable event in Earth orbit could be catastrophic during most of the transitory Earth-Mars voyages; the result could be loss of crew and mission.

Flexibility in selecting different environments for various spacecraft, surface habitats, planetary landers, or pressurized extraterrestrial rovers will allow flexibility in space system design and operation. The complexity of space system design often requires changes to mitigate various safety issues, financial impacts, and so on. Design and operational flexibility could result in increased ability to mitigate hazards or develop superior systems with less financial burdens. For example, retesting of materials will not be required if new spacecraft conditions are selected.
Space system environments
Range of gravities - large at launch, microgravity during interplanetary travel, reduced gravity on the Moon and Mars
Ventilated environment, for mixing and spacecraft skin temperature control; for example, a velocity magnitude of up to 20 cm/s is encountered in 75% of the U.S. Airlock. Velocities up to 100 cm/s are also encountered.
Range of oxygen concentrations and total pressures for various operations (i.e., pre-EVA acclimatization to prevent decompression sickness) - with the oxygen partial pressures kept above the hypoxic levels and oxygen concentrations below what is believed to be the materials’ flammability level (subject to epistemic uncertainty)

Slide 7
• 1-g Constellation materials flammability qualification tests conducted at NASA WSTF determine the oxygen concentration flammability extinguishment limits

• NASA WSTF also conducted a series of tests to evaluate total pressure effects on the flammability threshold

The tests conducted at WSTF will allow flexibility in spacecraft environment selection. For example, we are contemplating having environments of up to 34% in the Lunar surface habitation modules; the oxygen-enriched environments require less nitrogen and would minimize the acclimatization time required for astronauts prior to an EVA. A practical application example of knowing the pressure effects on the flammability threshold is establishing the internal pressure limit for landing spacecraft at KSC. The WSTF data in corroboration with flammability threshold data in spacecraft environments will allow us to determine fire safety factors. American microgravity test facilities initiated flammability threshold testing following the WSTF approach. In the long term, we will be able to have accurate fire risk assessments, which will allow proper mitigation. As a consequence, we will be able to achieve increased spacecraft fire safety.
• Likelihood of fire events, with limited options for mission termination, will increase with longer duration space missions.

• Rigorous correlations between 1-g ground materials flammability qualification test data with data in ventilated microgravity environments of spacecraft will lead to realistic evaluations of proper fire safety factors and spacecraft fire risks.

Unexpected space mission events could challenge space system fire safety design boundaries. Correlations of 1-g flammability test data relies on many assumptions, some of which may not stand up to future findings.

• Understanding fire risks in transient spacecraft environments will allow flexibility in spacecraft design and operability.

• NASA White Sands Test Facility (WSTF) currently works with NASA Glenn Research Center (GRC) on ground flammability test qualification data correlation with data in Lunar surface habitation environments.

Operational flexibility is of critical importance for advanced space programs relying on integrated designs extending across multiple vehicle atmospheres and focusing strongly on crew safety and operational effectiveness.
In the future, we’ll need to work on reducing the epistemic uncertainty related to space system fire safety factors and fire risks in various space vehicles, Lunar and Mars surface habitats, planetary landers, pressurized extraterrestrial vehicles, and other space systems.

Slide 11

NASA GRC Zero Gravity Facility

Partial gravity centrifuge installed in the NASA GRC Zero Gravity Facility drop bus

Slide 12

Future Work

- NASA GRC and WSTF proposed a comprehensive program on correlating 1-g flammability threshold data with a variety of spacecraft-specific environments (response to a NASA Research Announcement)
 - Oxygen concentration and pressure effects (prevalent, transitions, extremes)
 - Ventilation effects (0 to 1 m/s)
 - Microgravity or partial gravity effects
Slide 13

Proposed Testing – 1 g

- Materials with oxygen concentration thresholds in the 25 to 35 range will be tested
- Most oxygen concentration flammability thresholds will be evaluated at the spacecraft prevalent pressure (14.7 psia)
- Further 1-g tests will focus on the immediate post-ignition and extinguishment flammability behavior to attempt determination of a pass/fail criteria amenable to the short duration of ground microgravity tests

Slide 14

Proposed Testing – Parabolic Flights

- Most reduced gravity and microgravity testing will be conducted in parabolic aircraft flights
- Approximate test time: 22 s
Proposed Testing – Parabolic Flights (cont’d)

- The NASA GRC microgravity wind tunnel will be modified for parabolic flights

Microgravity Wind Tunnel Capabilities

- Flow velocities of 0 to 30 cm/s while maintaining the total test chamber pressure constant
- Total pressure range: 0-14.7 psia
- Oxygen concentration range: 0-100% oxygen
Under set conditions (prevalent spacecraft pressure, commonly encountered surface flow velocities of 30 cm/s), determine the oxygen concentration flammability threshold in reduced gravity and microgravity.

Current limited data indicates that somewhere between zero and 30 cm/s flow velocities the 1-g data becomes less conservative than data in microgravity and reduced lunar gravity.

Continue oxygen concentration flammability threshold measurements at lower velocities until a flammability velocity threshold is obtained where the oxygen concentration thresholds in 1-g and microgravity coincide.

Build a flammability threshold map and compare microgravity and 1-g threshold limits. The data will allow to evaluation of the level of conservativeness (or the lack of it) of 1-g data ("safety factors").
Computational Fluid Dynamics (CFD) of spacecraft flow velocities will identify zones where 1-g materials qualification data is not conservative and if ignition occurs, flame propagation would be possible. This will provide information for ventilation design to improve spacecraft fire safety.

Knowing parametric effects on the flammability threshold will allow effective spacecraft fire risk management.

Verification flight experiments in the International Space Station Combustion Module will be conducted.

Flammability threshold maps will be determined to validate the ground microgravity testing approach for several materials.

The information obtained will be correlated with materials characteristics to predict flammability thresholds for other aerospace materials.

In the long term, we’ll have comprehensive mapping of spacecraft flammability hazards and associated risks.