X-48B Preliminary Flight Test Results

Brian R Taylor
Aerospace Engineer
Dryden Flight Research Center

2009 Annual Meeting
Fundamental Aeronautics Program
Subsonic Fixed Wing Project
September 29-October 1, 2009
Outline

• System Level Metrics
• X-48B Background
• Flight Research Program Approach
• Flight Status
• Research
 – Turbofan Development
 – Intelligent Flight Control and Optimization
 – Airdata Calibration
 – Parameter Identification
 • Background
 • Hybrid Wing Body Unique Challenges
 • Approach and Methods
 • Preliminary Results
 • Future Research and Improvements

• Future Efforts
NASA Subsonic Transport System Level Metrics

... technology for dramatically improving noise, emissions, & performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise (cum below Stage 4)</td>
<td>-32 dB</td>
<td>-42 dB</td>
<td>-71 dB</td>
</tr>
<tr>
<td>LTO NOx Emissions (below CAEP 6)</td>
<td>-60%</td>
<td>-75%</td>
<td>better than -75%</td>
</tr>
<tr>
<td>Performance: Aircraft Fuel Burn</td>
<td>-33%**</td>
<td>-40%**</td>
<td>better than -70%</td>
</tr>
<tr>
<td>Performance: Field Length</td>
<td>-33%</td>
<td>-50%</td>
<td>exploit metroplex* concepts</td>
</tr>
</tbody>
</table>

*** Technology Readiness Level for key technologies = 4-6
** Additional gains may be possible through operational improvements
* Concepts that enable optimal use of runways at multiple airports within the metropolitan areas

SFW Approach

- Conduct Discipline-based Foundational Research
- Investigate Advanced Multi-Discipline Based Concepts and Technologies
- Reduce Uncertainty in Multi-Disciplinary Design and Analysis Tools and Processes
- Enable Major Changes in Engine Cycle/Airframe Configurations
X-48B Background

• Research partnership of Boeing, NASA, and AFRL
 – Design and fabrication contracted to Cranfield Aerospace

• Purpose
 – Evaluate low speed stability and control of hybrid wing body configuration in free-flight
 – Evaluate flight control algorithms
 – Evaluate prediction and test methods for hybrid wing body class vehicles

• Airframe
 – Remotely piloted from ground control station
 – 8.5% dynamically scaled (rigid body)
 • Wingspan: 20.4 ft
 • Weight: 525 lbf
 • Thrust: 54 lbf each (3 JetCat turbojets)
 – 20 control surfaces
 • 10 elevons
 • 8 split ailerons (4 clamshell pairs)
 • 2 winglet rudders
Flight Research Program Approach

Block 1: Flights 1-12
Slats Extended

Block 2: Flights 13-20
Slats Retracted

Block 3: Flights 21-XX
Slats Extended

Block 4: Flights 35-XX
Slats Retracted

Block 5: Flights XX-XX
Slats Extended

Block 6: Flights XX-XX
Slats Retracted

PID / Stalls / Engine Out Maneuvering

Departure Limiter Assaults

Increasing Risk

Envelope Expansion

Fundamental Aeronautics Program
Subsonic Fixed Wing Project
Flight Status

• 58 flights completed as of the end of August

• Initial envelope expansion complete
 – Angle of attack up to 23 degrees
 – Angle of sideslip up to 20 degrees

• PID and approaches to stall have been performed
 – Slats extended and retracted
 – Forward and aft C.G.

• Stalls performed at forward C.G., slats extended and retracted

• Regression testing of software update in preparation for departure limiter assaults in work
Research Leads

<table>
<thead>
<tr>
<th>NASA DFRC Lead</th>
<th>Boeing Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time Stability Monitoring</td>
<td>Turbofan Development</td>
</tr>
<tr>
<td>Adaptive Flight Control</td>
<td>Envelope Expansion</td>
</tr>
<tr>
<td>Intelligent Flight Control and Optimization</td>
<td>Increments to Aero Model (Parameter Estimation)</td>
</tr>
<tr>
<td>Airdata Calibration Method Development</td>
<td>Dynamic Departure Limiters</td>
</tr>
<tr>
<td>Parameter Estimation Method Development</td>
<td>Stall Characterization</td>
</tr>
</tbody>
</table>

Included in presentation
Turbofan Development

• Objectives
 – Gain engine development experience
 – Increase flight time
 • From 35 to 60 minutes
• Approach
 – Initial development of 50 lb thrust direct replacement followed by 80 lb thrust to reduce number of engines from 3 to 2
 – Build turbofan around existing engine core and gear reduction set
 – Initial fan geometry scaled existing open rotor helicopter fans
 • Analyze fan performance using CFD (SWIFT)
 – 3-D multiblock Navier-Stokes turbomachinery analysis code
 • Results of testing and analysis used to develop improved fan
• Status
 – Currently performing static and dynamic thrust testing at DFRC
 – Planned installation on X-48C if flight tested
Turbofan Development

SPT5 Engine Runs -- Ambient Conditions -- 2009.04.09 (Big Bear Airport)

CFD analysis courtesy of Rod Chima, NASA GRC
Intelligent Flight Control and Optimization

- **Objective**
 - Demonstrate real-time drag minimization

- **Benefits**
 - Operable over a wide range of flight conditions and weight variations
 - HWB trailing edge control surfaces allow tailoring spanwise lift distribution

- **Approach**
 - Estimation of local performance index gradient
 - Kalman filter
 - Control surface positions as controls
 - Define optimal control surface trim positions

- **Status**
 - X-48B aero database shows potential for ~5% drag reduction
 - Does not accurately model induced drag effects
 - Likely not representative of real world aerodynamics
 - Provides adequate gradient for testing in simulation
 - X-48B simulation
 - Evaluate sensor and computational requirements
Airdata Calibration

- **Objective**
 - Reduce flight time required to evaluate air data calibration

- **Approach**
 - Fly "wind circle" maneuvers via autopilot
 - Constant airspeed and bank angle
 - Estimate vehicle states with linear regression
 - Time history of groundspeed, flight path angle, and heading
 - Estimated true airspeed, wind speed, and wind direction

- **Results**
 - True airspeed estimation converges well after 180° heading change
 - Reduced time to verify airdata calibration from 6 minutes to 1 minute

\[\begin{bmatrix} V_a \\ V_{w \cdot \cos(X_w)} \\ V_{w \cdot \sin(X_w)} \end{bmatrix} = \left(H^T \cdot H \right)^{-1} \cdot H^T \begin{bmatrix} V_{g_n} \\ \vdots \\ V_{g_{n+1}} \\ \vdots \\ V_{g_{n+k}} \end{bmatrix} = \Theta \]

\[H = \begin{bmatrix} \cos(\gamma) \cdot \cos(\psi) & 1 & 0 \\ \vdots & \vdots & \vdots \\ \cos(\gamma) \cdot \cos(\psi) & 1 & 0 \\ \cos(\gamma) \cdot \sin(\psi) & 0 & 1 \\ \vdots & \vdots & \vdots \\ \cos(\gamma) \cdot \sin(\psi) & 0 & 1 \end{bmatrix} \]
Parameter Identification Background

Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response

- Value of in-flight parameter estimation
 - Risk reduction during envelope expansion
 - Comparison to predictive results
 - Wind tunnel
 - Analytic
 - Control law refinement
 - Dynamic analysis
 - Validation of advanced techniques

- Focus on rigid body dynamics with an emphasis on control surface effectiveness
X-48B Parameter Estimation Benefits

• X-48B provides unique opportunity to validate test methods to address identification issues associated with HWB configurations

• Validation of parameter identification techniques and methods
 – Tools and methods developed to perform parameter estimation applicable to future vehicles
 – Better flight testing techniques to improve parameter estimation
HWB Unique Challenges

- **HWB**
 - Control surfaces
 - Adjacent control surfaces have similar response (nearly coplanar)
 - Adjacent control surfaces influence each other
 - Allocation of control effectiveness utilizes common surfaces for control of multiple dynamic modes
 - Unstable in large regions of the flight envelope
 - Closed-loop flight control responds to excitations as disturbances

- **X-48B**
 - Susceptible to turbulence
 - Low wing loading (~5 psf)
 - Low Reynold’s number
 - Airdata system in significant local flow
 - Control surface positions inferred from actuator position
Constraints Used in Parameter Estimation

- Constrained control effectiveness
 - Multiple elevators, ailerons, and rudders
 - Pitch is symmetric movement
 - Roll is differential movement
 - Yaw is winglet rudder movement or asymmetric clamshell deployment
 - Defined control surface movement correlates to control allocation architecture

- Boeing gangs control surfaces
 - Virtual elevator, aileron, and rudder
 - Surfaces 1, 2-5, 6, 7, and rudders
Treating Identifiability – Super Maneuvers

- **Super Maneuver**
 - Combines individual surface excitations
 - Enables identification of coplanar control derivatives

\[C_m = C_{m_0} + C_{m_\alpha} \alpha + C_{m_q} \frac{q_c}{2V} + C_{m_{\delta_1}} \delta_1 + C_{m_{\delta_2}} \delta_2 + \ldots \]
Treating Identifiability – Multisines

- Multisines
 - Excitation of surfaces simultaneously at different frequencies
 - Combinations for symmetric, anti-symmetric, clamshell, and fully independent
Method Validation with TG-14A

- TG-14A parameter estimation
 - Low wing loading at low Reynold’s number
 - Airdata in significant local flow
 - Open-loop response
 - Traditional control surfaces

- Flight data
 - Hand flown doublets
 - Airspeed: 60 – 80 knots

- CL\(\alpha\)
 - Analytic: 0.1097
 - Estimated: 0.1025

- Verified output error technique for low Reynolds number, low wing loading aircraft
Method Validation with Simulation

- X-48B simulation
 - Known environment
 - Airdata and turbulence models
 - Closed-loop response
 - 20 control surfaces

Diagram:
- Finite Differences on Aero Model
 - True Parameter Value
- Open Loop System + Controller
- Parameter Estimation from Input and Response
Method Validation with Simulation Results

- Surface pair symmetric doublets
 - Same initial conditions as longitudinal flight data
 - 10 degrees angle of attack
 - Slats extended, aft CG

Output Error Closed Loop Super Maneuver Time History Response

![Graph showing pitch rate over time with measured and computed data]

![Scatter plot comparing Cm percent error from aero model]
Preliminary Flight Results

- Surface pair symmetric doublets
 - Data collected during 1 flight
 - 10 degrees angle of attack
 - Slats extended, aft CG
 - 5 repeats of each doublet

Output Error Flight Super Maneuver Time History Response

![Graph showing time history response with measured and computed data](image)

![Scatter plot showing Cm percent difference from aero model](image)
Preliminary Flight Results

- Surface pair anti-symmetric doublets
 - Data collected during 3 flights
 - 10 degrees angle of attack
 - Slats extended, forward & aft CG
 - 5 repeats of each doublet

Output Error Flight Super Maneuver Time History Response

- Graph showing roll rate (deg/s) over time (sec)
- Graph showing percentage difference from the model
Future PID Research and Improvements

- Flight conditions of interest and doublet sequences defined for super maneuvers

- Multisine control surface excitations
 - Evaluation with X-48B simulation has started
 - Validate against aero model
 - An upgraded flight computer will provide the capability for performing multisine maneuvers in flight

- Measure control surface position
 - Currently deduced from actuator position
 - Linkage slop and bending could introduce significant and unknown errors

- Inertia swings
 - Aircraft inertia directly correlated to moment parameters
 - Parameter estimation only as accurate as the aircraft inertia
 - Roll/yaw coupling could have higher error
 - Trade between kinematics and aerodynamics
Future Efforts

- X-48C wind tunnel testing
 - Increments to aero table
- X-48B limiter assaults
- NASA DFRC research flights
 - Parameter estimation
 - Continue method development
 - Super maneuvers, multisines
 - Investigate non-linear control surface effectiveness
 - Effect of surface deflection and influence of adjacent surfaces
 - Intelligent control
 - Definition of necessary hardware upgrades for flight testing
- Research Opportunities
 - Tufting to investigate boundary layer
 - Improved control allocation
 - Reduced actuator requirements
 - Large potential for reduction in aircraft weight