X-48B Preliminary Flight Test Results

Brian R Taylor
Aerospace Engineer
Dryden Flight Research Center

2009 Annual Meeting
Fundamental Aeronautics Program
Subsonic Fixed Wing Project
September 29-October 1, 2009
Outline

• System Level Metrics
• X-48B Background
• Flight Research Program Approach
• Flight Status
• Research
 – Turbofan Development
 – Intelligent Flight Control and Optimization
 – Airdata Calibration
 – Parameter Identification
 • Background
 • Hybrid Wing Body Unique Challenges
 • Approach and Methods
 • Preliminary Results
 • Future Research and Improvements
• Future Efforts
NASA Subsonic Transport System Level Metrics
.... technology for dramatically improving noise, emissions, & performance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise (cum below Stage 4)</td>
<td>- 32 dB</td>
<td>- 42 dB</td>
<td>- 71 dB</td>
</tr>
<tr>
<td>LTO NOx Emissions</td>
<td>-60%</td>
<td>-75%</td>
<td>better than -75%</td>
</tr>
<tr>
<td>(below CAEP 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance: Aircraft Fuel Burn</td>
<td>-33%**</td>
<td>-40%**</td>
<td>better than -70%</td>
</tr>
<tr>
<td>Performance: Field Length</td>
<td>-33%</td>
<td>-50%</td>
<td>exploit metroplex* concepts</td>
</tr>
</tbody>
</table>

*** Technology Readiness Level for key technologies = 4-6
** Additional gains may be possible through operational improvements
* Concepts that enable optimal use of runways at multiple airports within the metropolitan areas

SFW Approach
- **Conduct Discipline-based Foundational Research**
- **Investigate Advanced Multi-Discipline Based Concepts and Technologies**
- **Reduce Uncertainty in Multi-Disciplinary Design and Analysis Tools and Processes**
- **Enable Major Changes in Engine Cycle/Airframe Configurations**
X-48B Background

- Research partnership of Boeing, NASA, and AFRL
 - Design and fabrication contracted to Cranfield Aerospace
- Purpose
 - Evaluate low speed stability and control of hybrid wing body configuration in free-flight
 - Evaluate flight control algorithms
 - Evaluate prediction and test methods for hybrid wing body class vehicles
- Airframe
 - Remotely piloted from ground control station
 - 8.5% dynamically scaled (rigid body)
 - Wingspan: 20.4 ft
 - Weight: 525 lbf
 - Thrust: 54 lbf each (3 JetCat turbojets)
 - 20 control surfaces
 - 10 elevons
 - 8 split ailerons (4 clamshell pairs)
 - 2 winglet rudders
Flight Research Program Approach

Block 1: Flights 1-12
- Slats Extended

Block 2: Flights 13-20
- Slats Retracted

Block 3: Flights 21-XX
- Slats Extended

Block 4: Flights 35-XX
- Slats Retracted

Block 5: Flights XX-XX
- Slats Extended

Block 6: Flights XX-XX
- Slats Retracted

PID / Stalls / Engine Out Maneuvering

Departure Limiter Assauts

Envelope Expansion

Increasing Risk
Flight Status

• 58 flights completed as of the end of August

• Initial envelope expansion complete
 – Angle of attack up to 23 degrees
 – Angle of sideslip up to 20 degrees

• PID and approaches to stall have been performed
 – Slats extended and retracted
 – Forward and aft C.G.

• Stalls performed at forward C.G., slats extended and retracted

• Regression testing of software update in preparation for departure limiter assaults in work
Research Leads

<table>
<thead>
<tr>
<th>NASA DFRC Lead</th>
<th>Boeing Lead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time Stability Monitoring</td>
<td>Turbofan Development</td>
</tr>
<tr>
<td>Adaptive Flight Control</td>
<td>Envelope Expansion</td>
</tr>
<tr>
<td>Intelligent Flight Control and Optimization</td>
<td>Increments to Aero Model (Parameter Estimation)</td>
</tr>
<tr>
<td>Airdata Calibration Method Development</td>
<td>Dynamic Departure Limiters</td>
</tr>
<tr>
<td>Parameter Estimation Method Development</td>
<td>Stall Characterization</td>
</tr>
</tbody>
</table>

Included in presentation
Turbofan Development

• Objectives
 – Gain engine development experience
 – Increase flight time
 • From 35 to 60 minutes

• Approach
 – Initial development of 50 lb thrust direct replacement followed by 80 lb thrust to reduce number of engines from 3 to 2
 – Build turbofan around existing engine core and gear reduction set
 – Initial fan geometry scaled existing open rotor helicopter fans
 • Analyze fan performance using CFD (SWIFT)
 – 3-D multiblock Navier-Stokes turbomachinery analysis code
 • Results of testing and analysis used to develop improved fan

• Status
 – Currently performing static and dynamic thrust testing at DFRC
 – Planned installation on X-48C if flight tested
Turbofan Development

CFD analysis courtesy of Rod Chima, NASA GRC
Intelligent Flight Control and Optimization

- **Objective**
 - Demonstrate real-time drag minimization

- **Benefits**
 - Operable over a wide range of flight conditions and weight variations
 - HWB trailing edge control surfaces allow tailoring spanwise lift distribution

- **Approach**
 - Estimation of local performance index gradient
 - Kalman filter
 - Control surface positions as controls
 - Define optimal control surface trim positions

- **Status**
 - X-48B aero database shows potential for ~5% drag reduction
 - Does not accurately model induced drag effects
 - Likely not representative of real world aerodynamics
 - Provides adequate gradient for testing in simulation
 - X-48B simulation
 - Evaluate sensor and computational requirements
Airdata Calibration

- **Objective**
 - Reduce flight time required to evaluate air data calibration

- **Approach**
 - Fly “wind circle” maneuvers via autopilot
 - Constant airspeed and bank angle
 - Estimate vehicle states with linear regression
 - Time history of groundspeed, flight path angle, and heading
 - Estimated true airspeed, wind speed, and wind direction

- **Results**
 - True airspeed estimation converges well after 180° heading change
 - Reduced time to verify airdata calibration from 6 minutes to 1 minute

\[
\begin{bmatrix}
V_a \\
V_w \cos(X_w) \\
V_w \sin(X_w)
\end{bmatrix} = \left(H^T H \right)^{-1} H^T \begin{bmatrix}
V_{g_N} \\
\vdots \\
V_{g_E}
\end{bmatrix} = \Theta
\]

\[
H = \begin{bmatrix}
\cos(\gamma) \cos(\psi) & 1 & 0 \\
\vdots & \vdots & \vdots \\
\cos(\gamma) \cos(\psi) & 1 & 0 \\
\cos(\gamma) \sin(\psi) & 0 & 1 \\
\vdots & \vdots & \vdots \\
\cos(\gamma) \sin(\psi) & 0 & 1
\end{bmatrix}
\]
Parameter Identification Background

Determination of the parameters of a mathematical model of a system based on observation of the system inputs and response

- Value of in-flight parameter estimation
 - Risk reduction during envelope expansion
 - Comparison to predictive results
 - Wind tunnel
 - Analytic
 - Control law refinement
 - Dynamic analysis
 - Validation of advanced techniques

- Focus on rigid body dynamics with an emphasis on control surface effectiveness
X-48B Parameter Estimation Benefits

- X-48B provides unique opportunity to validate test methods to address identification issues associated with HWB configurations

- Validation of parameter identification techniques and methods
 - Tools and methods developed to perform parameter estimation applicable to future vehicles
 - Better flight testing techniques to improve parameter estimation
HWB Unique Challenges

- HWB
 - Control surfaces
 - Adjacent control surfaces have similar response (nearly coplanar)
 - Adjacent control surfaces influence each other
 - Allocation of control effectiveness utilizes common surfaces for control of multiple dynamic modes
 - Unstable in large regions of the flight envelope
 - Closed-loop flight control responds to excitations as disturbances

- X-48B
 - Susceptible to turbulence
 - Low wing loading (~5 psf)
 - Low Reynold’s number
 - Airdata system in significant local flow
 - Control surface positions inferred from actuator position
Constraints Used in Parameter Estimation

- Constrained control effectiveness
 - Multiple elevators, ailerons, and rudders
 - Pitch is symmetric movement
 - Roll is differential movement
 - Yaw is winglet rudder movement or asymmetric clamshell deployment
 - Defined control surface movement correlates to control allocation architecture

- Boeing gangs control surfaces
 - Virtual elevator, aileron, and rudder
 - Surfaces 1, 2-5, 6, 7, and rudders
Treating Identifiability – Super Maneuvers

- Super Maneuver
 - Combines individual surface excitations
 - Enables identification of coplanar control derivatives

\[Cm = Cm_0 + Cm_\alpha \alpha + Cm_q \frac{q_c}{2V} + Cm_{\delta e_1} \delta e_1 + Cm_{\delta e_2} \delta e_2 + \ldots \]
Treating Identifiability – Multisines

- Multisines
 - Excitation of surfaces simultaneously at different frequencies
 - Combinations for symmetric, anti-symmetric, clamshell, and fully independent
Method Validation with TG-14A

- TG-14A parameter estimation
 - Low wing loading at low Reynold’s number
 - Airdata in significant local flow
 - Open-loop response
 - Traditional control surfaces

- Flight data
 - Hand flown doublets
 - Airspeed: 60 – 80 knots

- $CL\alpha$
 - Analytic: 0.1097
 - Estimated: 0.1025

- Verified output error technique for low Reynolds number, low wing loading aircraft
Method Validation with Simulation

- X-48B simulation
 - Known environment
 - Airdata and turbulence models
 - Closed-loop response
 - 20 control surfaces
Method Validation with Simulation Results

- Surface pair symmetric doublets
 - Same initial conditions as longitudinal flight data
 - 10 degrees angle of attack
 - Slats extended, aft CG
Preliminary Flight Results

- Surface pair symmetric doublets
 - Data collected during 1 flight
 - 10 degrees angle of attack
 - Slats extended, aft CG
 - 5 repeats of each doublet
Preliminary Flight Results

- Surface pair anti-symmetric doublets
 - Data collected during 3 flights
 - 10 degrees angle of attack
 - Slats extended, forward & aft CG
 - 5 repeats of each doublet
Future PID Research and Improvements

• Flight conditions of interest and doublet sequences defined for super maneuvers

• Multisine control surface excitations
 – Evaluation with X-48B simulation has started
 – Validate against aero model
 – An upgraded flight computer will provide the capability for performing multisine maneuvers in flight

• Measure control surface position
 – Currently deduced from actuator position
 – Linkage slop and bending could introduce significant and unknown errors

• Inertia swings
 – Aircraft inertia directly correlated to moment parameters
 – Parameter estimation only as accurate as the aircraft inertia
 • Roll/yaw coupling could have higher error
 – Trade between kinematics and aerodynamics
Future Efforts

• X-48C wind tunnel testing
 – Increments to aero table
• X-48B limiter assaults
• NASA DFRC research flights
 – Parameter estimation
 • Continue method development
 – Super maneuvers, multisines
 • Investigate non-linear control surface effectiveness
 – Effect of surface deflection and influence of adjacent surfaces
 – Intelligent control
 • Definition of necessary hardware upgrades for flight testing
• Research Opportunities
 – Tufting to investigate boundary layer
 – Improved control allocation
 • Reduced actuator requirements
 – Large potential for reduction in aircraft weight