
Interface Generation and Compositional
Verification in JavaPathfinder

Dimitra Giannakopoulou and Corina Pasareanu

NASA Ames Research Center,
Moffett Field, CA 94035, USA,

{dimitra.giannakopoulou, corina.s.pasareanu}@nasa.gov

Abstract. We present a novel algorithm for interface generation of soft-
ware components. Given a component, our algorithm uses learning tech-
niques to compute a permissive interface representing legal usage of the
component. Unlike our previous work, this algorithm does not require
knowledge about the component’s environment. Furthermore, in con-
trast to other related approaches, our algorithm computes permissive in-
terfaces even in the presence of non-determinism in the component. Our
algorithm is implemented in the JavaPathfinder model checking frame-
work for UML statechart components. We have also added support for
automated assume-guarantee style compositional verification in JavaP-
athfinder, using component interfaces. We report on the application of
the presented approach to the generation of interfaces for flight software
components.

1 Introduction

Component interfaces are a central concept in component-based software engi-
neering. Although in current practice, interfaces typically describe the services
that a component provides and requires at a purely syntactic level, the need
has been identified for interfaces that document richer aspects of component
behavior. Such extended interfaces are usually not provided, which makes their
automatic generation an area of active research[?,?,?].

This paper addresses the automatic generation of interfaces that describe le-
gal sequences of component calls. Such interfaces can serve as a documentation
aid to application programmers, but can also be used by verification tools in
checking that components are invoked correctly within a system. In fact, com-
ponent interfaces are key for modular program analysis. They reduce the task of
verifying a system consisting of a component and a client, to the more tractable
task of verifying that the client satisfies the component’s interface.

In previous work [?,?,?], we presented a framework based on learning, to per-
form automated assume-guarantee model checking of safety properties. To check
that a system consisting of components M1 and M2 satisfies a safety property
P, the framework automatically builds and refines assumptions A for one of the
components, for example M1 , to satisfy P, which it then tries to discharge on

the other component, M2. Although assumptions A essentially constitute inter-
faces for component M1, their generation relies on knowledge of component M2.
Moreover, the focus of the framework was to compute assumptions that would
allow to prove or disprove the property in the system, rather than assumptions
that precisely document the behavior of a component.

The algorithm presented here for interface generation is also based on learn-
ing. However, in contrast to our work discussed above, it concentrates on the
creation of precise component interfaces, irrespective of the component clients.
By precise, we mean safe and permissive, as defined in [?]. An interface is safe if it
accepts no illegal sequence of calls to the component. An interface is permissive if
it includes all the legal sequences of calls to the component. Moreover, in [?], we
presented an algorithm for generating what we call weakest assumptions in the
context of Labeled Transition Systems. Weakest assumptions essentially consti-
tute precise component interfaces. The difference of the current algorithm is that
it is iterative, meaning that it can return partial results. Moreover, our experi-
ence has been that the learning-based approach is more efficient for components
that have relatively small interfaces.

Henzinger et al. also target the generation of safe and permissive interfaces
in [?]. Unlike our framework, their work based on abstraction techniques and
it is only applicable to components that are visibly deterministic. The latter
requires that the behavior of the component be deterministic with respect to
the methods / actions in its communication interface (we will henceforth call the
communication interface of a component its alphabet in order to avoid confusion
with interface in this context). In the applications that we have been dealing
with, this requirement proved too restrictive. For example, we often need to
generate interfaces that focus on specific aspects of the component behavior, and
that therefore include only a subset of the component’s alphabet. Components
that are visibly deterministic with respect to their full alphabet, typically lose
this property when a subset of that alphabet is considered. Finally, Alur et al.
also use learning to synthesize interface specifications for Java Classes. However,
their approach is heuristic-based, meaning that they do not always obtain precise
interfaces.

We have implemented our algorithms in the JavaPathfinder (JPF) model
checking framework for UML statechart components[?]. We have also added
support for automated assume-guarantee style compositional verification in JPF,
using component interfaces. JPF is an open source model checker for Java pro-
grams which, until now, provided no support for compositional verification. This
work, which is included in a new extension (namely CV), adds the following
features to JPF: 1) support for verification of safety properties expressed as
finite state automata; 2) support for learning-based interface generation; and
3) support for assume-guarantee reasoning, where assumptions and guarantees
are both expressed as finite-state automata. We finally report on the applica-
tion of the presented approach to the generation of interfaces for flight software
components.

The contributions of this work can be summarized as follows:

1. A novel algorithm for automated generation of precise component interfaces,
also applicable to components that are not visibly deterministic

2. Implementation of our algorithm in the JPF open source model checker.
In addition to interface generation, we have provided support for assume-
guarantee reasoning in JPF, where assumptions and guarantees are both
expressed as finite-state automata.

3. Case studies in the context of NASA applications that demonstrate the use
of our algorithm in practice.

Related Work The work closest to ours was discussed above. Several other ap-
proaches to automatic generation of component interfaces have been proposed
in the literature. For example, Whaley et al. [] use a combination of static and
dynamic analyses to generate interfaces for Java components. Tkachuk et. al []
use static analysis to obtain component abstractions, used as environments dur-
ing modular analysis. Some approaches are based on extracting interfaces from
sample execution traces [?, ?]. All these techniques generate approximate inter-
faces, as opposed to our work that aims at producing interfaces that provide
correctness guarantees. Interface generation is related to compositional verifi-
cation. In particular, assume-guarantee reasoning is a compositional approach
that uses assumptions when reasoning about components in isolation [?,?,?, ?].
Component interfaces can be used as assumptions in this context.

2 Background

We model software components using labeled finite state transition systems
(LTSs), where transitions are labeled with component actions.

Let Act be the universal set of observable actions and let T denote a local
action unobservable to a component’s environment. Let 7r denote a special error
state, which models safety violations in the associated transition system; 7r has
no outgoing transitions.

LTSs An LTS M is a four-tuple (Q, αM, S, q0) where: Q is a finite non-empty
set of states; αM C_ Act is a set of observable actions called the alphabet of M;
S C_ Q x (αM U {T}) x Q is a transition relation; and q0 E Q is the initial state.

Let M = (Q, αM, S, q0) and M' = (Q' , αM' , S' , q'
0). M transits into M' with

action a, denoted M a−→ M' , if (q0 , a, q'
0) E S and either Q = Q' , αM = αM',

and S = S' for q'
0 =6 7r .

An LTS M = (Q, αM, S, q0) is non-deterministic if it contains T-transitions
or if there exists (q, a, q'), (q, a, q'') E S such that q' =6 q'' . Otherwise, M is
deterministic.

Traces A trace t of an LTS M is a finite sequence of observable actions that
label the transitions that M can perform starting at its initial state, ignoring
the T-transitions. For Z C_ Act, we use t T Z to denote the trace obtained

4

by removing from t all occurrences of actions a 0 Z. For a set of traces T,
T T Z = {t I∃t, E T.t, T Z = t} .

Parallel Composition Parallel composition “11” is a commutative and as-
sociative operator such that: given LTSs M1 = (Q1 , αM1 , S1 , q1

0) and M2 =
(Q2 , αM2 , S2 , q2

0) , M1 11 M2 is an LTS M = (Q, αM, S, q0) , where Q = Q 1 x Q2 ,
q0 = (q1

0 , q2
0), αM = αM1 U αM2 , and S is defined as follows (the symmetric

version also applies): (1) M1 11 M2 -_
a
+ M1

, 11 M2 if M1 a + Mi and a V αM2 ,
and (2) M1 11 M2 a + M1

, 11
M2, if M1 a + Mi , M2 a + M2 , and a =6 τ.

3 Interface Generation

In this section we define safe and permissive interfaces for software components
and we describe our approach to synthesizing such interfaces autmatically.

3.1 Safe and Permissive Interfaces

Let M be a software component. For simplicity of presentation, we will first
assume that M includes an error state that expresses the undesired behavior of
M (for example, some asertion violations). This same case is considered in the
related work of Alur et al. [] and Henzinger et al. []. Later in this section we
will discuss the more general case where the component property is given as a
separate (safety) automaton.

Let Z C αM denote the communication alphabet of component M, i.e., the
set of actions through which M communicates with its environment. Our goal
is to compute M ’s precise interface as a finite state automaton A over Z. As
mentioned, we need to make sure that A is both safe and permissive, as defined
formally below.

Let us first define the legal and illegal languages of component M. A word
t E αM* is illegal if it corresponds to some trace of M that leads to error state
π; otherwise, the word is legal. Then G legal (M) denotes the set of legal words of
M and Gillegal (M) denotes the set of illegal words of M. Note that Glegal (M)
and Gillegal (M) are complementary. Furthermore, note that, while illegal words
correspond to actual traces in the component, legal words may also represent
behavior that is never executed by the component (and hence could never lead
to violations).

Definition 1. A is a safe interface iff Glegal (A) n Gillegal (M) T Z = 0.

In other words, an interface is safe if it accepts no illegal words of M.

Definition 2. A is a permissive interface iff G legal (M) T Z C G legal (A).

In other words, an interface is permissive if it accepts all legal words of M.

return true

query: trace w :	
no

7r reachable in lts(w) JIM
return false	 yes

return t T E
yes and

conjecture: A	
trace t

Oracle 1: 7r reachable in AJIM

no

Oracle 2: (7r ,ok) reachable in Aπ JIMC 	
no	 interface

specification A
yes and
trace t	 t backtrack

7r reachable in lts (t T E) JIM

return t T E

Fig. 1. Learning interface specifications with L*

3.2 Learning Interface Specifications with L*

Our approach for learning interface specifications is illustrated in Figure 1. We
use an off-the-shelf learning algorithm, namely L* [?], to iteratively compute the
interface specification A for M that is both safe and permissive. L* learns an
unknown language (over a given alphabet) and produces a deterministic finite
state automaton that accepts it; the learning process is iterative and it uses a
teacher that provides answers to queries and counterexamples to conjectures (for
more details on L* see []). In our framework, the problem of answering queries
and counterexamples is reduced to reachability problems, solved by a model
checker.

Queries L* is first used to repeatedly query M to check whether or not, in the
context of strings w, M violates the property. This is equivalent with checking
if an error state π is reachable in lts (w) JI M. Here lts (w) denotes an LTS over
Z that accepts only string w. The results of the queries are used by L* to first
make a “conjecture”, i.e. it builds an automaton A that accepts all the strings
for the positive queries (the case error unreachable), and does not accept the
strings for the negative queries (the case error reachable).

The conjectured automaton A is then checked to make sure it is both safe
and permissive. This is done with the help of a teacher that implements two
oracles as described below.

L*

Oracle 1 checks if A is safe by checking whether 7r is reachable in A 11 M. If it
is, then it means that A is un-safe. The resulting counterexample t, projected on
the interface alphabet Z, is returned to L* to refine its conjecture. If the error
state is un-reachable, then it means A is safe and we proceed to Oracle 2.

Oracle 2 checks if safe interface A is also permissive, i.e. we want to check
that Glegal (M) T Z C_ Glegal (A). This amounts to making sure that there are no
words w E Z* such that w E G legal (M) T Z n Gillegal (A). This is equivalent to
w E G illegal (A) and dt E aM such that w = t T Z, t E G legal (M).

We search for such words using a special reachability procedure performed
on A, 11 MC (see pseudo-code in Figure 2). Here A, denotes the completion
of A with an error state, i.e. we complete each state with outgoing transitions
to 7r, such that each state has outgoing transitions labeled with every action in
Z. Similarly, MC denotes the completion of M with a special s ink state. We
need these constructions to reason about traces in Gillegal (A) and G legal (M),
respectively. Note that Gillegal (A) = Gillegal (A,) and Glegal (M) = Glegal (MC).

Note that, for Oracle 2, since both A, and MC contain error states, we need to
distinguish between the two in A, 11 MC (this was not necessary for queries and
Oracle 1).

Given the above constructions, checking permissiveness reduces to checking
reachability of states of the form: (7r, ok), were 7r is an error state coming from A,
and ok denotes a non-error state in MC . If such a combined state is found, then
the trace t leading to it may indicate that A is not permissive, since w = t T Z
leads to an error state in A, but it is legal in MC (and hence in M). However,
due to non-determinism in M (and hence in MC), it may be the case that on
another path, t does lead to the error state. Even if this is not the case, there
may exist other traces t' such that w = t' T Z and t' leads to an error in MC

on a different path (see Figure 3). We check both these cases by performing a
query on t T Z. Note that we do not stop the state space exploration in JPF, but
rather, we take trace t that is returned, and we check if, in the context of t T Z,
M violates its properties.

If the query returns true, then it means the interface is not permissive, and
therefore t T Z is returned to L* for refinement, and the learning process con-
tinues with more queries and eventually with a new conjecture.

If the query returns false, then t does not correspond to a real counterexam-
ple. Model checking therefore ignores this state; it backtracks, and then continues
its state space exploration. If no traces that satisfy the condition above exist,
then indeed the conjectured automaton is also the most permissive interface,
and therefore it is output to the user.

We note that every query is stored in the L* memoized table, so the result of
the query on the same trace t T Z later (when A is the same) will be obtained
directly (and faster) from the table.

Example: dealing with observable non-determinism We use the Exam-
ple in Figure 3 to illustrate the reason for the extra query to deal with non-

Oracle 2
input: safe interface A;
begin
(1) Model-check A,r IlMC :
(2) if (it , ok) is reachable by trace t then
(3) if it is not reachable in lts (t T E) JI M then
(4) return t T E to L*;
(5) else
(6) backtrack;
(7) output: safe and permissive interface A;
end.

Fig. 2. Oracle 2

State space of A,r 11 MC

A so , so)
t ↑Σ = t' ↑Σ

'race t	 'race t'

...

Or ,sink)
	

Aπ, π)

Fig. 3. Example for Oracle 2: dealing with non-determinism

determinism in the component behavior. Assume that model checking A, kMC

finds a state of the form (7r, ok) that is reachable by trace t.
Assume also that there is another trace t' such that t T E = t' T E; we say

that M (and MC) is observable non-deterministic (to keep a similar terminology
to the one introduced in []).

Furthermore, assume that t' leads to (7r, 7r). In this case, A is permissive with
respect to w; therefore, the model-checker is instructed to backtrack and then to
continue the search for other states of the form (7r, ok) (that may indicate that
A is not permissive enough).

Properties as safety automata Assume now that M does not have error
states, and we want to generate an interface specification for ensuring a property
P, given as a (deterministic) safety automaton, encoding all the desired behaviors
of the component. Conversely, P, encodes all the un-desired behaviors of the

component. The procedure described above will be exactly applicable to this
case as well, if we treat M 11 P, as M above.

3.3 Correctness and Termination

We argue here the correctness and termination of our approach. To argue cor-
rectness, we first show that Oracle 1 guarantees a safe interface while Oracle 2
guarantees a permissive interface.

Proposition 1. 7r is un-reachable in A 11 M iff Llegal (A) n Lillegal (M) T Z = 0.

Proof. “If:” By contradiction. Assume Llegal (A) n Lillegal (M) T Z =6 0. Then,
Elt E aM* such that t T Z E L (A) and t leads to error in M. Then t is also
leading to an error in A 11 M which is a contradiction. q.e.d.

“Only If:”

Proposition 2. (7r, ok) is un-reachable in A, 11MC iff Llegal (M) T Z C Llegal (A) .

Proof. “If:” By contradiction. Assume Llegal (M) T Z C Llegal (A) does not hold.
Then Elt E aM* such that t E L legal (M) and t T Z E Lillegal (A) . Then t is also
leading to (7r, ok) in A, 11MC which is a contradiction. q.e.d.

“Only If:”

Theorem 1. Given component finite state M (that may include error states),
the algorithm implemented by our approach terminates and it returns a safe and
permissive interface A.

Proof. Correctness follows from the two propositions above. Termination follows
from the correctness of L *, which is guaranteed that, if it keeps receiving coun-
terexamples, it will eventually terminate.

We note here that the approach of Henzinger et al. [] can only handle com-
ponents that are observable deterministic. However, we believe that this is very
limited in practice, since even if the component itself is deterministic, consider-
ing only its interface behavior (and abstracting away its internal behavior) leads
to non-determinism.

Furthermore, the approach of Alur et al. ?? proposes to generate safe inter-
face specifications for Java components, that are made finite state using predicate
abstraction techniques (and therefore they can be non-deterministic). However
the approach does not guarantee that the interface is also permissive, since it
only uses heuristics to implement what it amounts to Oracle 2 (which is called
“superset query” in []). That work argues that Oracle 2 can not be implemented
efficiently, since it involves determinization of component M. We note that in
our approach we avoid the expensive determinization step by performing the
extra query on the traces that lead to (7r, ok). While the worst case complexity
of our approach can not be avoided, in practice we noticed that Oracle 2 is not
called very often.

How does it compare with our old approach at ASE? It also involved deter-
minization.

4 Compositional verification in JPF

4.1 Java PathFinder

Java PathFinder (JPF) [?] is a verification framework developed by the RSE
group at NASA Ames. It has been started as an explicit state model checker for
Java byte-code. The focus of JPF is on finding bugs, such as concurrency related
bugs (deadlocks, races, missed signals etc.), runtime related bugs (e.g. unhan-
dled exceptions), etc. JPF can also check for violations of user-specified assertions
that encode application specific requirements. JPF uses a variety of scalability
enhancing mechanisms, such as user extensible state abstraction and matching,
on-the-fly partial order reduction, configurable search strategies, and user defin-
able heuristics (searches, choice generators). JPF has been open sourced since
04/2005 under NOSA 1.3 license and it is available for download from javap-
athfinder. sourceforge. net .

4.2 JPF’s UML Statechart Extension

To address the needs for model analysis of flight software, JPF has recently been
extended with a state-chart modeling and analysis capability that allows Java
modeling of UML state machines []. Many UML development systems can pro-
duce code from diagrams, but this code is usually aimed at production systems,
and is not suitable for software model checkers. The approach taken in JPF
(Figure 4) is based on a specific translation scheme from UML state charts into
Java code that (a) is highly readable, (b) shows close correspondence between
diagram and program, (c) provides a 1:1 mapping between model and program
states, and (d) imposes no restrictions about aspects and actions that can be
modeled.

The JPF statechart extension is specialized to handle the obtained Java
models more efficiently than random Java code. These Java models can be run
in isolation, which corresponds to running them in the context of an external
environment that may provide any input event at any stage (we will call this the
universal environment). Alternatively, a guidance script may be provided by the
user, which represents the input event sequences that can be provided by the
external environment.

We have used the JPF statechart extension to implement our interface syn-
thesis algorithms for components expressed in the JPF statechart framework. In
the context of this work, we do not attempt to perform compositional reason-
ing for UML statecharts. The reason is that statechart composition semantics is
obfuscated and setting up compositional reasoning for statecharts is a challenge
even at a purely theoretical level. Rather, we use UML statecharts, as supported
by JPF, to represent finite state components with Labeled Transition System
semantics. Therefore composition of components comes down to LTS composi-
tion, as described in Section ??. The interfaces that we generate are expressed
as LTSs in the FSP notation [].

10

Fig. 4. Example illustrating JPF’s UML extension

4.3 Assume-guarantee Reasoning in JPF

Model checking using assumptions and properties has been implemented using
JPF listeners. A JPF listener is an extension mechanism that enables client
code to be informed of certain events that occur while JPF performs its search.
Listeners can also interact with JPF, for example, a property listener will in-
form JPF of the fact that a property has failed, through a condition that it
provides in its check() method. Both assumptions and properties are imple-
mented with the gov.nasa.jpf .cv . SCSafetyListener class, which extends the
gov.nasa.jpf.PropertyListenerAdapter class, provided by JPF to ease property
creation. On creation, a SCSafetyListener is associated with a finite state au-
tomaton (gov.nasa. jpf .cv .SCSafetyAutomaton) P, which expresses the prop-
erty or assumption to be used during model checking. Note that the state of a
listener is not included in the state that JPF explores / stores during model
checking. However, the state of the automaton P needs to be part of the state
space for correct state-space exploration and backtracking. *** We perform this
by adding a static integer field AssumptionState of class CVState for the CV
extension. It can be set as follows:
MJIEnv env = ti.getEnv();

env.setStaticIntField("gov.nasa.jpf.cv .CVState", "AssumptionState",
P .getCurrentState ()) ;

An SCSafetyListener listens for and reacts to the following events:

– instructionExecuted: signals the fact that an instruction was executed by
JPF. The reaction of the listener is to invoke method advance(...) on

11

the automaton P. Advancing the automaton corresponds to making a state
transition, if the instruction that was executed corresponds to an action
in the alphabet of the automaton. If a transition on an alphabet action is
undefined from the current state, this is an illegal transition (corresponds to
a transition to the error state). For properties, this means that an error has
occurred, so the result returned by the check() method of the listener is set
to false.

– choiceGeneratorAdvanced: signals the fact that the next statechart action
is selected for execution. The reaction of the listener is to enquire with
P whether this action would make it transition to the error state if it
were to be executed (this does not change the state of P since the tran-
sition is not really executed yet). Reaching an error state in an assump-
tions means that the current path explored is not a valid path under this
assumption and must therefore be ignored. The listener performs this as fol-
lows: vm.getSystemState() . set Ignored (true), which requests for JPF to
backtrack.

– stateBacktracked: when the model checker backtracks, then the automaton
must backtrack accordingly. We perform this by getting the JPF path to the
current model state after backtracking, and replay the path on the automa-
ton, to ensure that the two are in synch.
Could we not do getStaticIntField instead???

For example, in order to check some property described as an automaton pro-
vided in some file Foo, we need to include the following arguments when running
JPF’s main class gov.nasa.jpf.JPF:

+jpf.listener=.cv.SCSafetyListener
+safetyListener1.property= Foo

The first argument informs JPF that an SCSafetyListener will need to be
notified of specific events, and the second one provides details for the listener,
i.e., its unique id is “1”, it is of type property (as opposed to assumption), and
the automaton associated with it is provided in file Foo (this may also include
the full path to Foo).

4.4 Interface Generation and Discharge

Interface generation in JPF can be performed by invoking the main class gov .nasa.jpf .tools.cv.ScRunCV.
Argument +assumption. alphabet=<actions> is used to define the alphabet of
the interface to be generated, in terms of method names. Argument +assumption. outputFile=<file
name> defines a file in which the generated interface is output. This allows for a
generated interface to be used for subsequent reasoning, either as an assumption,
or as a property. The format currently used for expressing the interface is the
FSP language [].

The main method of gov.nasa.jpf.tools.cv . ScRunCV creates an instance
of class gov. nasa. jpf . tools.cv .SETLearner to carry out the learning of the in-
terface, with an associated instance of gov.nasa. jpf .tools.cv .SCModularTeacher
to serve as the teacher. Our learning algorithm implementation uses JPF to

12

public boolean query(Vector sequence) throws SETException {

Boolean recalled = memoized_.getResult(sequence);

if (recalled != null) {

return (!recalled.booleanValue());

} else {

// play the query as an assumption

System.out.println("\n New query: " + sequence);

SCSafetyListener assumption = new SCSafetyListener(

new SCSafetyAutomaton

(true, sequence, alphabet_, "Query", module1_));

JPF jpf = createJPFInstance(assumption, property, module1_);

jpf.run();

boolean violating = jpf.foundErrors() ;

memoized_.setResult(sequence, violating);

return (!violating);
}

}

Fig. 5. Answering queries in SCModularTeacher

perform the model checking steps described in Section ??. JPF model checks
individual components in the context of the universal environment. Listeners
are added as necessary to reflect the work of the Teacher, which consists of an-
swering Queries, and implementing Oracle 1 and Oracle 2 in order to answer
conjectures, as described in more detail below.

Queries and Oracle 1. Queries and Oracle 1 are performed in a similar fash-
ion because they are concerned with checking whether error states are reachable
in the component, in the context of a particular sequence (for queries) or finite
state automaton (for Oracle1). As illustrated in Figure 5, to respond to a query,
a listener instance assumption is created with an associated automaton that re-
flects the particular sequence that is being queried. The automaton is considered
as an assumption. JPF is then invoked, together with the assumption listener.
If JPF returns errors, the answer to the query is false, otherwise the answer is
true. Oracle 1 works in a similar fashion, with the difference that it also returns
a counterexample.

Oracle 2. Oracle 2 checks for permissiveness of a computed interface. It needs
to work on the completed component, as described in Section ??. This is a man-
ual step that we intend to automate in the future. It similarly invokes JPF,
but performs the search in the context of a specialized type of listener, the
gov. nasa. jpf . cv . SCConformanceListener. Its aim is to detect the reachabil-
ity of a (ok, error) combination of states in the component and interface where
the component is in a non-error state, while the interface is in an error state.

13

The gov.nasa. jpf .cv .SCConformanceListener listens for and reacts to the
following events:

– executeInstruction: When the instruction about to be executed by JPF is
an assertion violation, then it means that the component has entered an
error state. Since such states are not targeted by the listener, it performs
ti . skipInstruction() ; followed by vm.getSyst emSt ate () .set Ignored (true);.
The first command ensures that the exception is not processed by JPF, for
efficiency. The second asks JPF to backtrack since this path cannot lead
to the targeted combination of states. Note that choiceGeneratorAdvanced
(which gov.nasa. jpf . cv .SCSafetyListener listens to), does not monitor
exceptions.

– instructionExecuted: reacts similarly to gov.nasa.jpf . cv .SCSafetyListener.
When the automaton associated with the listener moves to an error state,
the result returned by the check() method of the listener is set to false. This
is because the component is in a legal state (illegal states are never reached
since the listener advises JPF to backtrack when it reacts to executeInstruc-
tion events), while the interface is in an error state.

– stateBacktracked: reacts similarly to gov.nasa.jpf . cv .SCSafetyListener.

As described in Section ??, when an (ok, error) state is detected by the model
checker, if the counterexample leading to this state is queried, so that if it is not
a real counterexample, the model checker will backtrack. Since a query involved
calling the model checker, this would involve nested model checker calls. To avoid
such nesting, our implementation exploits a memoized table that is used by the
learner to store results of previous queries. Oracle 2 checks for the reachability
of (ok, error) states in a loop. Whenever a counterexample is obtained by the
model checker, then Oracle2 invokes a query on it. Each query stores its result
in the memoized table.

Whenever a real counterexample is obtained, then Oracle 2 exits the loop
and reports the result to the learner. When a counterexample is spurious, then
another iteration of the loop is entered. In this iteration, we wish to ensure
that the model checker will not report the same spurious counterexample. We
achieve this as follows. When a gov.nasa.jpf . cv .SCSafetyAutomaton is asked
to advance in the context of a gov.nasa. jpf .cv .SCConformanceListener, if
the automaton reaches an error state, it will get the path to this state from
JPF. It will then check the memoized table to see if there is a result for the
corresponding sequence stored there. If there is, and the result is true, then it
means that this is a spurious counterexample, and it notifies JPF to backtrack.
Therefore, we have implemented the nested model checking calls by consecutive
calls to the model checker, where the information of spurious counterexamples
is shared through the memoized table.

Interface discharge. For compositional reasoning, one needs to also discharge
the generated interface on the component environment. This can be performed by
model checking the environment in the presence of a gov.nasa.jpf . cv . SCSaf etyLi stener

using the interface as a property.

14

5 Experimental results

Fig. 6. Model of the Ascent and Earth Orbit flight phases of a spacecraft

In order to evaluate our implementation, we used a state-chart model of the
Ascent and EarthOrbit flight phases of a space-craft (see Figure 6). The JAVA
model is available with the JPF distribution under examples/jpfESAS. The
UML statechart diagrams corresponding to the model are included in examples/jpfESAS.doc.

The model was created and used to demonstrate the features of the JPF UML
statechart extension to our mission customers. Several properties were analyzed
on the model, and JPF returned violations for some of these properties. When the
counterexamples obtained were analyzed, it was clear that some of the violations
were spurious. The violations were related to the following properties:

— An event lsamRendezvous, which represents a docking maneuver with an-
other spacecraft, fails if the LAS (launch abort system) is still attached to
the spacecraft.

— Event tliBurn (trans-lunar interface burn takes spacecraft out of the earth
orbit and gets it into transition to the moon) can only be invoked if EDS
(Earth Departure Stage) rocket is available.

These violations were due to the fact that the universal environment was too
general. The models had been created under the assumption that the use of the
model respects some implicit flight rules. We decided to use our interface genera-
tion techniques to formalize the flight rules. More specifically, for each property,
we generated a safe and permissive interface to eliminate its corresponding vio-
lations. To do this, we added a listener that eliminated all assertion violations
that were not related to the targeted property, through the following arguments:

15

+jpf.listener=.tools.ChoiceTracker:.cv.AssertionFilteringListener

+assertionFilter.include=<methodname>

These arguments specify that all assertion violations that occur outside the
particular methodname> will be ignored.

Interface 1:	 Interface 2:

lasJetisson 	 lsamRendezvous
lasJetisson	 tliBurn

0	 1	 lsamRendezvous 	 0 	 1 	 lsamRendezvous

Fig. 7. Generated interface specifications encode assumptions about component envi-
ronments

The generated interface specifications are illustrated in Figure 7. The first
one expresses the fact that the lsamRendezvous maneuvers cannot start before
the las module of the spacecraft has jettisoned. According to the second one,
it does not make sense to perform tliBurn prior to performing lsamRendezvous.
These interfaces were inspected by the developer of the model that confirmed
that they encode actual flight rules. Interface generation can therefore be used by
developers to help them in the expression of the assumptions that their models
encode.

6 Conclusions

We have proposed an algorithm for automatically synthesizing behavioral in-
terface specifications for finite state software components. Our algorithm is the
first to compute precise interfaces even in the presence of non-determinism in
the visible behavior of a component. We have implemented our approach in
the JavaPathfinder model checking framework for UML statechart components,
and have obtained promising results from its application to several systems. The
source code of our implementation and the examples to which it has been applied
are available through j avapathf inder. sourcef orge .net.

In the future, we plan to investigate interface generation for methods with
parameters. We have made some initial experiments using JPF’s symbolic execu-
tion extension to generate values for parameters with infinite domains, and used
these values to define finite interface alphabets related to their corresponding
methods. We wish to pursue this direction further, and also plan to general-
ize our results for generic Java components. For generic Java components that
may be infinite, we will combine our approach with techniques such as predicate
abstraction.

