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Abstract 

 

Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft 

exposed to space radiation are highly influenced by secondary neutron production. The 

deterministic transport code HZETRN (High charge (Z) and Energy TRaNsport) has 

been identified as a reliable and efficient tool for such studies, but improvements to the 

underlying transport models and numerical methods are still necessary. In this paper, the 

forward-backward (FB) and directionally coupled forward-backward (DC) neutron 

transport models are derived, numerical methods for the FB model are reviewed, and a 

computationally efficient numerical solution is presented for the DC model. Both models 

are compared to the Monte Carlo codes HETC-HEDS (High Energy Transport Code – 

Human Exploration and Development of Space), FLUKA (FLUctuating KAskade), and 

MCNPX (Monte Carlo Neutral Particle eXtended), and the DC model is shown to agree 

closely with the Monte Carlo results. Finally, it is found in the development of either 

model that the decoupling of low energy neutrons from the light particle transport 

procedure adversely affects low energy light ion fluence spectra and the subsequent 

exposure quantities. A first order correction is presented to resolve the problem, and it is 

shown to be both accurate and efficient.  

1. Introduction  

 

Radiation exposure guidelines are a primary concern for the design of personal shielding, 

spacecraft, instrumentation, and missions. Consequently, there is significant interest in developing 

computational tools that allow shield analyses not only in simplified geometries, but in more complex final 

design models as well [Wilson et al. 2003]. The deterministic transport code HZETRN [Wilson et al. 1991, 

2006; Slaba et al. 2008], developed at NASA Langley Research Center has emerged in recent years as a 

reliable and efficient tool for such studies. It has shown reasonable accuracy in deep space Galactic Cosmic 

Ray (GCR), Solar Particle Event (SPE), and Low Earth Orbit (LEO) simulations when compared to either 

Monte Carlo results or experimental data [Wilson et al. 2005; Heinbockel et al. 2009]. However, such 

verification and validation has revealed a deficiency in the low energy neutron transport procedure [Shinn 

et al. 1994; Heinbockel et al. 2009]. HZETRN utilizes the straight ahead approximation in which all 

fragments are assumed to propagate in the same direction as the projectile. The assumption is accurate for 

high energy charged particles but begins to break down for low energy neutrons which are nearly isotropic 

[Alsmiller et al. 1965]. This is significant for heavily shielded space vehicles, surface habitats, and high 

altitude aircraft where secondary neutron production is important in exposure calculations [Getselev et al. 

2004]. 

Several neutron transport models have been developed for HZETRN, with recent efforts focused 

on identifying an optimal bi-directional neutron transport model and solution method. The terms model and 

method are used extensively throughout this paper; model is used to refer to the set of governing transport 

equations, while method is used to refer to the analytic or numerical techniques used to solve a model. 

Heinbockel et al. [2000] and Clowdsley et al. [2000a, 2000b] developed the forward-backward (FB) 

neutron transport model. The FB model assumes that low energy neutrons can be split into forward and 

backward components, and multiple reflections from forward to backward (or vice versa) can be ignored. 

Feldman [2003] expanded on the work of Heinbockel and Clowdsley by developing the directionally 

coupled forward-backward (DC) neutron transport model. The DC model also assumes that low energy 

neutrons can be split into forward and backward components, but multiple reflections are accounted for in 

the governing transport equations. The numerical methods used for each model were significantly different 

as well.   

Heinbockel et al. [2000] and Clowdsley et al. [2000a, 2000b] used a multigroup method for 

solving the FB model. Multigroup methods have a long history in nuclear reactor theory and assume that 

fluences or cross sections are constant over small regions, or groups, of the energy spectrum [Marchuk and 

Lebedev 1986]. Feldman [2003] used a collocation technique along with first order finite differencing for 

the DC model. Collocation and finite differencing methods use polynomial expansions of the solution to 
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transform a differential equation into a system of linear equations [Deuflhard and Bornemann 2002]. In this 

case, the system was sufficiently large that it had to be solved numerically.  

Recently, Slaba et al. [2006, 2007] and Heinbockel et al. [2007] developed three methods for 

solving the FB model which they called the collocation method, the fixed-point series method, and Wilson's 

method. The latter two methods are both based on a Neumann series solution wherein each term of the 

series solves a simple set of equations related to the original model. This allowed for intensive verification 

of the multigroup method, and the collocation method was identified as the most accurate and 

computationally efficient of all the methods [Slaba 2007]. Slaba [2007] also indicated that a combination of 

the methods could be used to obtain a computationally efficient Neumann series solution to the DC model.  

Finally, despite all of the attention given to neutron transport models and methods, accurately coupling 

these models back into HZETRN remained unresolved. The impact of such a coupling has not been 

previously studied in detail and must be examined if any of the neutron transport models are to be used in 

design studies.   

In this paper, we first give a summary of the neutron transport models and methods developed thus 

far and present an efficient method for solving the DC model.  Next, comparisons are made between the FB 

and DC models and the Monte Carlo codes HETC-HEDS [Gabriel et al. 1995; Townsend et al. 2005], 

FLUKA [Fasso et al. 2003, 2005], and MCNPX [Briesmeister, 2000; MCNPX 2.6.0 Manual, 2008]. 

Finally, the impact of decoupling low energy neutrons from the light ion transport procedure in HZETRN is 

also examined, and a first order coupling is presented. Fluence spectra and dose quantities are given to 

exhibit the accuracy of the proposed correction. 

2. HZETRN Description 

 

The one-dimensional Boltzmann transport equation for charged and neutral particles with the 

continuous slowing down and straight ahead approximations is given as [Wilson et al. 1991]  

 

 φ σ φ
∞

  =  ∑∫ ( , ') ( , ') 'j jk k
E

k

B E E x E dE , (1) 

 

with the linear differential operator  

 

 σφ φ
 ∂ ∂   − +≡   ∂ ∂ 

1
( ) ( )j jj j

j

S E EB
x A E

, (2) 

 

where φj  is the fluence of type j ions at depth x  with kinetic energy E  (MeV/amu), jA  is the atomic 

mass of a type j particle, ( )jS E is the stopping power of a type j ion with kinetic energy E , σ ( )j E  is the 

total macroscopic cross section for a type j particle with kinetic energy E , and σ ( , ')jk E E  is the 

macroscopic production cross section for interactions in which a type k particle with kinetic energy 'E  

produce a type j particle with kinetic energy E.  Macroscopic cross sections are obtained by multiplying the 

corresponding microscopic cross section by the target particle mass density [Wilson et al. 1991]. Hereafter, 

it is assumed that all cross sections are macroscopic whether it is explicitly written or not.  The summation 

over k on the right hand side of equation (1) will be explained shortly. 

Wilson et al. [1986, 1991, 2006] obtained approximate solutions to equation (1)  by introducing 

the scaled quantities  

 

 ( , ) ( ) ( , )
j j p j
x r S E x Eψ ν φ≡ , (3) 

 

 ( , ') ( ) ( , ')jk p jks r r S E E Eσ≡ , (4) 

 

where ( )pS E  is the proton stopping power, r  is the residual proton range 
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0

'

( ')

E

p

dE
r

S E
≡ ∫ , (5) 

 

the scaling parameter 2 /j j jZ Aν ≡ , and Zj is the charge of a type j ion. For neutrons, ν  is taken as unity 

in fluence scaling relations and zero in range scaling relations.  This will be explained in more detail 

shortly. Equation (1) is now given in terms of the variables x  and r  as  

 

 ( , ) ( , ') ( , ') '( )
j

j jk kj j r
k k

x r s r r x r drr
x r

ν
ψ ψν σ

ν

∞ ∂ ∂ = − +
  ∂ ∂ 

∑ ∫ , (6) 

 

which can be inverted using the method of characteristics [Haberman 1998] and written as the Volterra 

type integral equation [Wilson et al. 2006] 

 

 

ς

ς

ν

ψ ψ ν

ν
ν ψ

ν

−

∞ −

+

= +

+ + −∑ ∫ ∫

( , )

( , ')

0

( , ) (0, )

( ', ') ( ', ') ' ' ,

j

j

j

r x

j j j

x r xj

jk j k
r x

k k

x r e r x

e s r x r x x r dr dx
 (7) 

 

with the exponential attenuation term 

 

 
0

( , ) ( )
x

j j jr x r t dtς σ ν≡ +∫ . (8) 

 

Note that ν j  in equation (3) and ν ν/j k  in equation (6) are both fluence scaling relations, and ν = 1n  in 

both cases to provide a nontrivial scaling. Conversely, wherever ν  appears as the argument of a fluence or 

cross section in equations (7) and (8), it is a range scaling relation and ν = 0n . This convention is taken to 

reflect the absence of atomic interactions in neutron transport ( ( ) 0nS E ≡ ) and to avoid a trivial scaling for 

the neutron fluence.  

From here, the problem is split into two parts: heavy ions >( 4)A  and light particles ≤( 4)A .  

For heavy ions, it is noted that projectile fragments have energy and direction very near that of the 

projectile (equal velocity assumption), while target fragments are produced nearly isotropically with low 

energy and travel only a short distance before being absorbed. This approximate decoupling of target and 

projectile fragments is discussed in detail by Wilson et al. [1991] and suggests that target fragments can be 

neglected in the heavy ion transport procedure (their contribution to dose is approximately accounted for 

after the transport procedure). The equal velocity assumption allows the production cross section to be 

recast as 

 

 ( , ') ( ) ( '),
jk jk
s r r r r rσ δ= −  (9) 

 

or equivalently, in terms of energy as  

 

 ( , ') ( ) ( ').
jk jk
E E E E Eσ σ δ= −  (10) 

 

Note that ( )jk Eσ  can be written interchangeably with E or r since, for a given E, equation (5) can be 

evaluated to obtain r. The absence of target fragments in the heavy ion transport procedure allows one to 

take the summation in equation (7) over all projectiles with mass greater than that of the fragment. If all 
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transported heavy ions are ordered according to mass, then the final marching procedure for heavy ions is 

given by [Wilson et al. 2006] 

 

 

( , )

( )
2 2

2

( , ) ( , )

, ( )
2 2

( )
2 2

( ) ,

j

j kj j k

r h

j j j

j

jk kj j k
k j k

h h
h hr r

k jj k j

x h r e x r h

h h
r x r

e e

h h
r r

O h

ζ

σ σν ν ν

ψ ψ ν

ν
σ ψν ν ν

ν

σ σν ν ν

−

>
     − − + + +      

+ = +

     + +  + +       
 
 

− ×       −+ + +          
+

∑
 (11) 

 

where h is the step size in g/cm
2
. The summation over all k > j reflects the fact that only heavy ion 

projectiles fragments are explicitly transported and that the transported heavy ions have been ordered 

according to mass. The upper summation limit in equation (11) can vary, but it is now common to use no 

fewer than 59 isotopes. See Cucinotta et al. [2006] for a discussion of isotopes grids. 

For light particles, both projectile and target fragments are included in the transport procedure; 

therefore, the summation is taken over all light particles. The broad energy distribution in collision events 

also indicates that equal velocity assumption cannot be used. The final marching procedure for light 

particles is given by [Wilson et al. 1991, 2006] 

 

 

( , )

, ',
2 2

/2

2

( , ) ( , )

( , '; ) ', '
2

( ),

j

j k

j

r h

j j j

h h
r rj

jk k kr h
k k

x h r e x r h

h
e F r r h drx r

O h

ζ

ζ ζ

ν

ψ ψ ν

ν
ψ ν

ν

−

     − − ∞        ∆

+

+ = +

 + +   

+

∑ ∫  (12) 

 

where the integrand has been simplified using  

 

 
0

( , '; ) ( , ')
h

jk jk jF r r h s r z r dzν∆ ≡ +∫ , (13) 

 

and the neutron elastic interactions in this equation are handled separately as [Slaba et al. 2008] 

 

 , ( , '; ) ( , ')el el
nn nn
F r r h h s r r∆ ≡ � , (14) 

 

where , ( , '; )el
nnF r r h∆  denotes the elastic component and ( , ')el

nn
s r r�  is the average value of the 

differential neutron elastic cross section over a small interval, 'r� , centered at r'.  

The nature of the boundary condition, or environment, determines how equations (11) and (12) are 

evaluated and coupled. For most SPE environments, there is usually a negligible heavy ion component, and 

only equation (12) is evaluated. For GCR environments, equation (11) is evaluated for heavy ions; equation 

(12) is evaluated for light particles, and the summation term appearing in equation (11) is added. The 

summation is taken only over heavy ion projectiles, and it physically accounts for light ion production from 

heavy ion projectiles. The marching equations (11) and (12) will be referred to throughout this paper as the 

HZETRN marching algorithm, with the proper equations evaluated and coupled for a given environment.  

3. Neutron Transport Models 

 

To derive the neutron transport models, we first decompose the particle fluence and neutron 

production cross section into straight ahead and isotropic components. This approximation is justified by 
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Wilson et al. [1991] who showed that projectile fragments are produced with energy and direction very 

near that of the projectile, while target fragments are produced nearly isotropically with very low energy. 

For particle fluences, the decomposition is given as [Wilson et al. 2005] 

 

 ( , ) ( , ) ( , ).iso sa
j j j
x E x E x Eφ φ φ= +  (15) 

 

To decompose the neutron production cross section, we first distinguish between the nuclear 

reactive and elastic parts  

 

 σ σ σ= +( , ') ( , ') ( , '),r el
nk nk nk
E E E E E E  (16) 

 

where σ =( , ') 0el
nk E E  for ≠k n . The angularly dependent nuclear reactive neutron production cross 

section can be represented as [Wilson et al. 2005]  

 

 Ω Ωσ θ σ=ˆ ( , ', , ) ( , , ) ( , '),r r
nk T nk
E E g A E E E'  (17) 

 

where Ω and Ω' are unit vectors in the direction of the secondary neutron and projectile particle, 

respectively. The parameterization for g(AT,E,θ) is given by the piecewise definition [Ranft, 1980]  

 

 

2

2

/

/4

, 0 2
( , , )

, 2 ,T

Ne
g A E

Ne

θ λ

π λ

θ π
θ

π θ π

−

−

 ≤ ≤≡  < ≤
 (18) 

 

and (120 0.36 ) /TA Eλ ≡ + , where E  is the produced neutron kinetic energy in MeV, TA  is the atomic 

mass of the target nucleus, θ  is the production angle with respect to the direction of propagation, andN  is 

a normalization constant such that  

 

 
π

π θ θ =∫ 02 ( , , ) 1.Tg A E d  (19) 

 

The parameterization constants, 120 and 0.36 have units MeV and MeV/amu, respectively, so that λ  is 

dimensionless.  

The nuclear reactive neutron production cross section can now be decomposed into forward 

(scattering angle [0, 2]θ π∈ ) and backward (scattering angle ( 2, ]θ π π∈ ) components 

 

 
σ σ σ

σ σ

+ −

+ −

= +

≡ +

( ) ( )

,( ) ,( )

( , ') ( , ) ( , ') ( , ) ( , ')

( , ') ( , '),

r r r
nk T nk T nk

r r
nk nk

E E F A E E E F A E E E

E E E E
 (20) 

 

where the forward and backward coefficients are  

 

 
/2

( )

0
( , ) ( , , ) ,T TF A E g A E d

π
θ θ+ ≡ ∫  (21) 

 

 ( ) ( )( , ) 1 ( , ).
T T

F A E F A E− +≡ −  (22) 

 

The straight ahead and isotropic coefficients are therefore defined as [Clowdsley et al. 2000b]  
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 ( , ) 1 ( , ),sa iso
T T

F A E F A E≡ −  (23) 

 

 ( )( , ) 2 ( , ),iso
T T

F A E F A E−≡  (24) 

 

so that the nuclear reactive neutron production cross section can be expressed in terms of isotropic and 

straight ahead components  

 

 
, ,

( , ') ( , ) ( , ') ( , ) ( , ')

( , ') ( , ').

r sa r iso r
nk T nk T nk

r sa r iso
nk nk

E E F A E E E F A E E E

E E E E

σ σ σ

σ σ

= +

≡ +
 (25) 

 

The decompositions in equations (20) and (25) are depicted in Figs. 1 and 2 for a 500 MeV proton 

projectile and an Aluminum target. It should be noted that in Fig. 2 the straight ahead component of the 

nuclear reactive neutron production cross section is dominant at high fragment energies, while the isotropic 

component is dominant at low fragment energies as discussed earlier.  

Equations (15), (16) and (25) are substituted into equation (1), and the HZETRN marching 

algorithm is used to solve the straight ahead transport equation 

 

 ( , ') ( , ') ' ,sa sa sa
j jk k

E
k

B E E x E dEφ κ φ
∞  =   ∑∫  (26) 

 

where the summation limits for equation (26) are environment dependent and have been discussed 

previously, and the production cross section κ ( , ')jk E E  is piecewise defined as  

 

 

, ,( , ') ( , ')
( , ')

, .( , ')

r sa el
nk nksa

jk
jk

j nE E E E
E E

j nE E

σ σ
κ

σ

 =+≡  ≠
 (27) 

 

Energy (MeV)

σ
n

pr (E
,5

0
0

)
(c

m
2
/

(M
eV

-
g
))

0 100 200 300 400

10
-5

10
-4

10
-3

10
-2

σ
np

r,(+)
(E,500)

σ
np

r,(-)
(E,500)

σ
np

r
(E,500)

 
Figure 1. Forward (+), backward (-), and total neutron nuclear reactive production cross section for a 500 

MeV proton projectile and Aluminum target. 
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Figure 2. Straight ahead (sa), isotropic (iso), and total neutron nuclear reactive production cross section for 

a 500 MeV proton projectile and Aluminum target. 
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Figure 3. Neutron and 

4
He fluence spectra at 50 g/cm

2
 in an Aluminum target exposed to the February, 

1956 Webber SPE. 
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Note that for light particle projectile/fragment combinations, ( , ')jk E Eσ  will be fully energy dependent, 

while for heavy ion projectiles, ( , ')jk E Eσ  incorporates the equal velocity assumption and assumes the 

simplified form in equation (10).  

The only difference between equations (1) and (26) is the form of the neutron production cross 

section; equation (1) uses the total nuclear reactive neutron production cross section, while equation (26) 

uses only the straight ahead component. Fig. 2 suggests that neutron fluences obtained from equation (26) 

will have attenuated low energy spectra, and an examination of the HZETRN marching algorithm indicates 

that a residual attenuation will occur in the low energy light ion spectra as well. This behavior is evident in 

Fig. 3. More will be said about this later.  

We are now left to solve for the isotropic neutron fluence 

 

 ( , ') ( , ') ' ( , ),iso iso
n nk k n

E
k

B E E x E dE x Eφ σ φ η
∞  = +   ∑∫  (28) 

 

with the isotropic neutron source term  

 

 ,( , ) ( , ') ( , ') ' ,r iso sa
n nk k

E
k

x E E E x E dEη σ φ
∞

≡ ∑∫  (29) 

 

The isotropic component of the charged particles is obtained by solving  

 

 φ σ φ
∞  =   ∑∫ ( , ') ( , ') ',iso iso

j jk k
E

k

B E E x E dE  (30) 

 

which will be handled later. For the moment, the summations in equation (28)-(30) are taken over all 

transported particles; the summations will be simplified later based on physical arguments. 

We now return to equation (28) and note that the contribution to the secondary neutron field from 

isotropic, low energy, charged target fragments will be small since the range of the range of these charged 

particles is small compared to their mean free path length [Wilson et al. 1991] as seen in Fig. 4. Thus, only 

the neutron projectile – neutron fragment integral need be retained. In this case, the isotropic neutron 

transport equation reduces to  

 

 φ σ φ η
∞  = +   ∫ ( , ') ( , ') ' ( , ) .iso iso

n nn n n
E

B E E x E dE x E  (31) 

 

The isotropic neutron fluence is now decomposed into forward and backward components 

according to  

 

 φ φ φ= +( , ) ( , ) ( , ) .iso f b
n n n
x E x E x E  (32) 

 

The terms forward and backward have different meanings when applied to fluences and cross sections. The 

forward component of the isotropic neutron fluence refers to all neutrons propagating in the forward 

direction; the backward component of the isotropic neutron fluence refers to all neutrons propagating in the 

backward direction. The forward component of the neutron production cross section refers to those 

neutrons produced with scattering angle in the interval [0, 2]π  (no change in direction of propagation); the 

backward component of the neutron production cross section refers to those neutrons produced with 

scattering angle in the interval ( 2, ]π π  (change in direction of propagation from forward to backward or 

vice versa).    
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Figure 4. Range and mean free path length of 

4
He in Aluminum. 

 

 

The nuclear reactive neutron production cross section is assumed to take the form of equation (20), 

thereby splitting it into forward and backward components. The elastic portion is also decomposed, but it is 

accomplished by considering the approximate relationship between scattering angle, pre-collision energy 

( ')E  and post-collision energy ( )E  given by Haffner [1967] 

  

 
θ + + =  +  

2

2

2 cos 1
' .

( 1)

T T

T

A A
E E

A
 (33) 

 

Forward scattering occurs for [0, 2]θ π∈  or for ' [ , ]E E E β∈ , and backward scattering occurs for 

( 2, ]θ π π∈  or for ' ( , ]E E Eβ α∈  where  

 

 

2
1
,

1

T

T

A

A
α

 −  ≡    + 
 (34) 

 

 

2

2

1
.

( 1)

T

T

A

A
β

+
≡

+
 (35) 

 

The neutron elastic production cross section is then decomposed into forward and backward components as  

 

 ( )
, ' [ , ]( , ')

( , ')
, otherwise ,0

el
nnel

nn

E E EE E
E E

βσ
σ +

 ∈≡ 
 (36) 
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( )
, ' ( , ]( , ')

( , ')
, otherwise .0

el
nnel

nn

E E EE E
E E

β ασ
σ −

 ∈≡   (37) 

The complete neutron production cross section can now be expressed as forward and backward components 

according to  

 

 σ σ σ+ −= +( ) ( )( , ') ( , ') ( , '),
nn nn nn
E E E E E E  (38) 

 

with  

 

 ( ) ( ) ( )( , ') ( , ') ( , '),el r
nn nn nn
E E E E E Eσ σ σ+ + +≡ +  (39) 

 

 ( ) ( ) ( )( , ') ( , ') ( , ').el r
nn nn nn
E E E E E Eσ σ σ− − −≡ +  (40) 

 

From Feldman [2003], substitution of equations (32) and (38) into equation (31) results in the DC neutron 

transport model 

 

 ( ) ( ) ( )[ ] ( , ') ( , ') ' ( , ') ( , ') ' ( , ),f f b f
n nn n nn n n

E E
B E E x E dE E E x E dE x Eφ σ φ σ φ η

∞ ∞+ + −= + +∫ ∫  (41) 

 

 φ σ φ σ φ η
∞ ∞− + −= + +∫ ∫( ) ( ) ( )[ ] ( , ') ( , ') ' ( , ') ( , ') ' ( , ),b b f b

n nn n nn n n
E E

B E E x E dE E E x E dE x E  (42) 

 

with the source terms η ( , )f
n x E  and η ( , )b

n x E  each taken to be one half of the isotropic source term 

η ( , )n x E , and the linear differential operators are  

 

 ( )[ ] ( , ),( )n
B x EE

x
φ φσ

+  ∂≡  +  ∂ 
 (43) 

 

 ( )[ ] ( , ).( )n
B x EE

x
φ φσ

−  ∂≡  − +  ∂ 
 (44) 

 

Note that the minus sign in equation (44) accounts for a directional change in propagation. In equation (41), 

the second integral represents neutrons produced in the forward direction by backward propagating 

neutrons. In equation (42), the second integral represents neutrons produced in the backward direction by 

forward propagating neutrons.  

Slaba [2007] then showed that by making the simple approximation φ φ≈( , ) ( , )f b
n nx E x E  one 

obtains 

 

 ( )[ ] ( , ') ( , ') ' ( , ),f f f
n nn n n

E
B E E x E dE x Eφ σ φ η

∞+ = +∫  (45) 

 

 φ σ φ η
∞− = +∫( )[ ] ( , ') ( , ') ' ( , ).b b b

n nn n n
E

B E E x E dE x E  (46) 

 

Equations (45) and (46) define the FB neutron transport model. The physical difference between the 

models can be deduced by examining the collision integrals. The DC model accounts for multiple changes 
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of direction (from forward to backward or vice versa) in the coupling source integrals, while the FB model 

only accounts for a single change of direction. That is, after the initial decomposition of the isotropic 

neutron source term into forward and backward components, it is assumed in the FB model that all forward 

neutrons propagate forward, and all backward neutrons propagate backward. The two models will be 

compared later in the paper. 

4. FB Neutron Transport Methods 

 

Heinbockel et al. [2000] and Clowdsley et al. [2000a, 2000b] used a multigroup method for 

solving the FB neutron transport model. The computational procedure is developed by partitioning the 

energy grid with respect to the elastic interaction parameter α  defined in equation (34). Equations (45) and 

(46) are then integrated with respect to energy for some discrete set of energy values. The order of 

integration is switched in the collision integral and a mean value theorem is applied to evaluate the 

integrals. The result is an upper triangular system of first order ordinary differential equations solved using 

back substitution. Though the computational procedure turned out to be relatively efficient, the target 

dependent energy grid made energy grid convergence testing difficult, and selection of the free parameter 

in a mean value theorem came down to trial and error for several materials.  

Slaba et al. [2006, 2007] and Heinbockel et al. [2007] developed three different methods 

(collocation method, fixed point series method, and Wilson's method) for solving the FB model and found 

them to be in good agreement with the multigroup technique. The collocation method [Slaba 2007, 

Heinbockel et al. 2007] is implemented by assuming that forward and backward neutron fluences can be 

expressed as a sum of linear basis splines 

 

 
1

( , ) ( ) ( , ),
N

f f
n j n j

j

x E B E x Eφ φ
=

≈∑  (47) 

 

 
1

( , ) ( ) ( , ),
N

b b
n j n j

j

x E B E x Eφ φ
=

≈∑  (48) 

 

with 

 

 

1 1 1

1 1 1

( ) / ( ) , [ , ]

( ) ( ) / ( ) , ( , ] .

0 , otherwise

j j j j j

j j j j j j

E E E E E E E

B E E E E E E E E

− − −

+ + +

 − − ∈≡ − − ∈

 (49) 

 

The approximations are substituted into the FB model resulting in two upper triangular systems of first 

order linear ordinary differential equations. Using back substitution, the analytic solution to the systems 

have been found to be [Slaba 2007, Heinbockel et al. 2007] 

  

 

, ,

,

( ) ( ')

0

1
( ')

0 , 0
0

( , ) (0, ) ( ', ) '

(1 ) ( ', ) ' ,

N j N j N j N j

N j N j

xa x a x xf f f
n N j n N j n N j

j
x a x x f

j N j N k n N k
k

x E e E e x E dx

a e x E dx

φ φ η

δ φ

− − − −

− −

−
− − −

−
−

− − −
=

= +

+ −

∫

∑ ∫
 (50) 

 

 

, ,

,

( ) ( ' )

1
( ' )

0 ,
0

( , ) ( , ) ( ', ) '

(1 ) ( ', ) ',

N j N j N j N j

N j N j

La L x a x xb b b
n N j n N j n N j

x

j
L a x x b

j N j N k n N k
x

k

x E e L E e x E dx

a e x E dx

φ φ η

δ φ

− − − −

− −

− −
− − −

−
−

− − −
=

= +

+ −

∫

∑ ∫
 (51) 
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where δ  is the Kronecker delta, L is the thickness of the material, and the coefficients ija  are defined  

 

 ( ) ( ) ( , ') ( ') ' .
i

ij n i j i nn i j
E

a E B E E E B E dEσ σ
∞

≡ − + ∫  (52) 

 

The fixed-point series method [Slaba 2007, Heinbockel et al. 2007] is a Neumann series solution 

to the FB model. The forward and backward components are expressed as  

 

 
( )
0

1

( , ) ( , ),kf
n

k

x E f x Eφ

∞

=

=∑  (53) 

 

 φ

∞

=

=∑ ( )
0

1

( , ) ( , ),kb
n

k

x E b x E  (54) 

 

where the thk  zero order term satisfies the relations 

 

 
( )( )
0 1[ ] ( , ),k f

k
B f x Eξ+

−=  (55) 

 

 ξ−
−=( )( )

0 1[ ] ( , ) ,k b
k

B b x E  (56) 

 

and for > 0k ,  the thk  set of source terms are defined according to 

 

 
( )
0( , ) ( , ') ( , ') ',kf

k nn
E

x E E E f x E dEξ σ
∞

≡ ∫  (57) 

 

 
( )
0( , ) ( , ') ( , ') ' .kb

k nn
E

x E E E b x E dEξ σ
∞

≡ ∫  (58) 

 

The initial set of source terms 0 ( , )
f x Eξ and 0( , )

b x Eξ  are simply the forward and backward components of 

the isotropic neutron source term η ( , )n x E . 

Wilson's method [Slaba et al. 2006, 2007; Heinbockel et al. 2007] is a combination of the 

collocation method and fixed-point series method. The forward and backward neutron fluences are 

expressed as the sum of a zero order and first order term by 

 

 0 1( , ) ( , ) ( , ),f
n
x E f x E f x Eφ = +  (59) 

 

 φ = +0 1( , ) ( , ) ( , ) .b
n
x E b x E b x E  (60) 

 

Equations (59) and (60) are substituted into the FB model, and it is assumed that the zero order terms 

satisfy the relations 

 

 ( )
0[ ] ( , ),f

n
B f x Eη+ =  (61) 

 

 η− =( )
0[ ] ( , ) .b

n
B b x E  (62) 



 

 13 

The FB model is now reduced to 

 

 ( )
1 1 1[ ] ( , ') ( , ') ' ( , ),f

nn
E

B f E E f x E dE x Eσ ξ
∞+ = +∫  (63) 

 

 σ ξ
∞− = +∫( )

1 1 1[ ] ( , ') ( , ') ' ( , ) ,b
nn

E
B b E E b x E dE x E  (64) 

 

where the source terms ξ1 ( , )
f x E  and ξ1 ( , )

b x E  are calculated from the zero order terms by  

 

 1 0( , ) ( , ') ( , ') ',f
nn

E
x E E E f x E dEξ σ

∞
≡ ∫  (65) 

 

 1 0( , ) ( , ') ( , ') ' .b
nn

E
x E E E b x E dEξ σ

∞
≡ ∫  (66) 

 

Equations (63) and (64) are solved using the collocation method.     

Slaba et al. [2006, 2007] and Heinbockel et al. [2007] showed that the three methods produce 

almost identical results in a variety of shielding configurations exposed to both SPE and GCR 

environments and compared well with the multigroup technique in all cases [Slaba 2007]. The work also 

revealed that the collocation method was the most computationally efficient of the four methods in terms of 

both memory requirements and run time. Hereafter, any neutron spectra labeled “FB model” are assumed to 

be generated using the collocation method. 

5. DC Neutron Transport Methods  

 

Feldman [2003] developed a numerical solution for the DC model. A collocation method was used 

to discretize the energy spectrum as in equations (47) and (48), and first order finite differencing was used 

to approximate the spatial derivatives and decouple the transport equations. Discretization of the energy 

and spatial domains in this way resulted in a large system of linear equations that was solved numerically 

using LU (Lower-Upper) factorization. LU factorization relies on writing the coefficient matrix as the 

product of a lower triangular and an upper triangular part so that forward and backward substitution can be 

used to obtain a solution [Demmel 1997]. It was reported that even single layer slab calculations quickly 

exhausted the memory capabilities of a desktop PC, and run times of over twenty hours were reported even 

on specialized computers with adequate memory [Feldman 2003].     

We present here a computationally efficient Neumann series solution to the DC model based on 

the numerical methods verified for the FB model. The forward and backward components of the isotropic 

neutron fluence are expressed as a sum of zero order terms according to 

 

 
( )
0

1

( , ) ( , ),kf
n

k

x E f x Eφ

∞

=

= ∑  (67) 

 

 φ

∞

=

= ∑ ( )
0

1

( , ) ( , ) ,kb
n

k

x E b x E  (68) 

 

where the thk  zero order term satisfies  

 

 
( ) ( )( ) ( )
0 0 1[ ] ( , ') ( , ') ' ( , ),k k f

nn k
E

B f E E f x E dE x Eσ ξ
∞+ +

−= +∫  (69) 
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 σ ξ
∞− +

−= +∫( ) ( )( ) ( )
0 0 1[ ] ( , ') ( , ') ' ( , ),k k b

nn k
E

B b E E b x E dE x E  (70) 

 

and can be solved using the collocation method outlined previously. Note that solutions to equations (69) 

and (70) include neutron production with scattering angle between 0 and 2π . Neutron production with 

scattering angle between 2π  and π  is accounted for in the thk  set of source terms as 

 

 
( )( )
0( , ) ( , ') ( , ') ' ,kf

k nn
E

x E E E b x E dEξ σ
∞ −≡ ∫  (71) 

 

 
( )( )
0( , ) ( , ') ( , ') ',kb

k nn
E

x E E E f x E dEξ σ
∞ −≡ ∫  (72) 

 

for > 0k . The initial set of source terms, ξ0 ( , )
f x E  and ξ0( , )

b x E , are simply the forward and backward 

components of the isotropic neutron source term η ( , )n x E .   

While many terms in the Neumann series are required to adequately resolve the neutron fluence 

spectra (as many as 75 terms for each component), the computation is quite rapid since the coefficients ija  

used in the collocation method and the cross sections appearing in the source terms in equations (71) and 

(72)  can be pre-calculated and saved for repeated use. No published data exists from Feldman's work, and 

so any comparisons with data labeled “DC Model” were generated using the proposed Neumann series 

solution. 

6. Coupling to Light Ion Transport 

 

In the development of the neutron transport models, we did not solve the isotropic charged particle 

transport equation 

 

 φ σ φ
∞  =   ∑∫ ( , ') ( , ') ' .iso iso

j jk k
E

k

B E E x E dE  (73) 

 

At this point, the summation in equation (73) is taken over light particles only. This is justified by noting 

that φisoj  is associated with low energy target fragments, and heavy ion target fragments are not transported 

in HZETRN due to their small range [Wilson et al. 1986, 1991, 2006].  

The isotropic neutron fluence has already been obtained via one of the bi-directional neutron 

transport models, and so equation (73) can be expressed in the more explicit form   

 

 φ σ φ η
∞

≠

  = +   ∑∫ ( , ') ( , ') ' ( , ),iso iso
j jk k j

E
k n

B E E x E dE x E  (74) 

 

where the summation is taken over all charged, light particle projectiles (k n≠ ), and the neutron 

projectile term has been explicitly written as the source term  

 

 ( , ) ( , ') ( , ') ' .iso
j jn n

E
x E E E x E dEη σ φ

∞
≡ ∫  (75) 

 

We now approximate equation (74) by suppressing the remaining collision integrals. Such an 

approximation is expected to be valid since the mean free path of these low energy charged particles is 



 

 15 

much larger than their range [Wilson et al. 1991] as was seen earlier in Fig. 4. In this case, equation (74) is 

now reduced to    

 

 φ η  =   ( , ),iso
j j

B x E  (76) 

 

for which an analytic solution exists and is easily found by using the method of characteristics [Haberman 

1998].  The solution was given by Wilson et al. [1975] in terms of the nuclear survival probability  

 

 
0

( ')
( ) exp ' ,

( ')

E j

j j

j

E
P E A dE

S E

σ 
 ≡ − 
  
∫  (77) 

 

and the residual energy 1[ ( )]j jE R x R Eγ
−≡ +  as  

 

 

( ) ( )
( , ) (0, )

( ) ( )

( ')
[ ( ) ( '), '] ' ,

( ) ( )

j jiso iso
j j

j j

E j j

j j j
E

j j

P E S E
x E E

P E S E

A P E
x R E R E E dE

P E S E

γ

γ γ

γφ φ

η

=

+ + −∫
 (78) 

 

where ( )jR E  is given by following the range energy relation 

 

 = ∫ 0
'

( ) .
( ')

E

j j

j

dE
R E A

S E
 (79) 

 

Equation (78) can be evaluated rapidly using numerical integration schemes and imposes small memory 

requirements. 

7. Results 

 
Solutions to equation (1) using the HZETRN marching algorithm defined by equations (11) and 

(12) will be labeled “SA” for straight ahead, and it is assumed that all particles (including neutrons) are 

transported in the forward direction. Solutions to equation (26) using the HZETRN marching algorithm 

with FB or DC neutrons added and no light ion coupling will be labeled “FB” or “DC”, respectively. 

Finally, solutions to equation (26) using the HZETRN marching algorithm with FB or DC neutrons and the 

suggested light ion coupling will be labeled “FBLI” or “DCLI”, respectively. The only difference between 

FB and FBLI or DC and DCLI is the presence of the light ion coupling term given in the previous section. 

Therefore, neutron fluences predicted by FB and FBLI (or DC and DCLI) will be identical. In all of the 

neutron fluence comparisons, FB and DC will be used, but could be interchanged with FBLI and DCLI 

without consequence.     

Results are now given at various depths in a 30 g/cm
2
 water target behind a 20 g/cm

2
 Aluminum 

shield exposed to the February 1956 Webber SPE spectrum [Quenby et al. 1959]. The Aluminum shield 

depth is indicative of spacecraft shielding, and the water depth is indicative of human tissue. This particular 

SPE spectrum was chosen because of the availability of Monte Carlo data. Fig. 5 shows the forward 

component of the neutron fluences at 20 g/cm
2
 in the water target. The DC model compares quite well to 

HETC-HEDS and is within the bounds set by FLUKA and MCNPX; the FB and SA solutions predict much 

higher neutron fluences for energies below 100 MeV. Fig. 6 gives the backward neutron fluences at 20 

g/cm
2
 in the water target. The DC model again compares well to HETC-HEDS and is within the bounds set 

by FLUKA and MCNPX; it is a significant improvement over the FB model. There is no backward 

component of the SA model since all particles are transported in the forward direction. Finally, Fig. 7 gives 

the total neutron fluence at 20 g/cm
2
 in the water target.  
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Figure 5. Forward neutron fluence at 20 g/cm

2
 in a 30 g/cm

2
  water target behind a 20 g/cm

2
 Aluminum 

shield exposed to the February, 1956 Webber SPE. 
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Figure 6. Backward neutron fluence at 20 g/cm

2
 in a 30 g/cm

2
 water target behind a 20 g/cm

2
 Aluminum 

shield exposed to the February, 1956 Webber SPE. 
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Figure 7. Total neutron fluence at 20 g/cm

2
 in a 30 g/cm

2
  water target behind a 20 g/cm

2
 Aluminum shield 

exposed to the February, 1956 Webber SPE. 

 

 

As in each of the previous figures, the DC model compares well to HETC-HEDS and is within the 

bounds set by FLUKA and MCNPX. Most importantly, it now appears that HZETRN compares as well to 

the Monte Carlo codes as they compare with each other. Figs. 8-10 give the proton, 
3
H, and 

4
He fluence 

spectra generated from the SA, FB, DC, FBLI, and DCLI models at 20 g/cm
2
 in the water target. First, note 

that the spectra predicted by the FB and DC models are identical. This behavior is expected since neither of 

these models include the suggested light ion coupling, and the charged particle fluences are determined by 

solutions to equation (26).  
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Figure 8. Proton fluence at 20 g/cm

2
 in a 30 g/cm

2
  water target behind a 20 g/cm

2
 Aluminum shield 

exposed to the February, 1956 Webber SPE. 
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Figure 9. 

3
H fluence at 20 g/cm

2
 in a 30 g/cm

2
  water target behind a 20 g/cm

2
 Aluminum shield exposed to 

the February, 1956 Webber SPE. 
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Figure 10. 

4
He fluence at 20 g/cm

2
 in a 30 g/cm

2
  water target behind a 20 g/cm

2
 Aluminum shield exposed 

to the February, 1956 Webber SPE. 

 

 

Next, the spectra predicted by the FBLI and DCLI models are similar but not identical. In fact, the 

FBLI model seems to over-estimate the DCLI model in all three cases. This trend is caused by the light ion 

coupling source term in equation (74) and the neutron transport model used. If the FB model is used for 

neutron transport, then the light ion source term in equation (74) will be over predicted and so will the 
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isotropic light ion fluences. Surprisingly, the FBLI and DCLI light ion spectra agree quite well even though 

the FB and DC neutron fluences in Fig. 7 are almost an order of magnitude different at the lowest energies.   

Most importantly, Fig. 9 and Fig. 10 show that a significant reduction in low energy fluence 

spectra can occur if the suggested light ion coupling term is not included. Though little difference is seen in 

the proton fluence spectra (Fig. 8), the 
4
He spectrum drops by almost a factor of four if the light ion 

coupling term is not included. Similar results are also seen for the other light ions transported in HZETRN 

(
2
H and 

3
He). Such deviations can alter integrated quantities as well. For example, Tables 1 and 2 give the 

dose and dose equivalent values at various depths in the water target. As expected, these values are all 

reduced if the light ion coupling is not included.  Dose and dose equivalent values were not available from 

FLUKA and MCNPX at the time of this report. 

 

 

Table 1.  Dose (cGy) in a 30 g/cm
2
 water target behind 20 g/cm

2
 of Aluminum exposed to the February, 

1956 Webber SPE spectrum. 

 

Depth 

g/cm
2
 

SA DCLI FBLI DC FB HETC- 

HEDS 

0 6.97 6.99 6.98 6.95 6.93 7.20 

5 3.78 3.78 3.78 3.75 3.75 4.04 

10 2.28 2.28 2.29 2.26 2.26 2.50 

20 0.98 0.98 0.99 0.96 0.97 1.10 

30 0.49 0.48 0.49 0.47 0.47 0.53 

 

 

Table 2.  Dose equivalent (cSv) in a 30 g/cm
2
 water target behind 20 g/cm

2
 of Aluminum exposed to the 

February, 1956 Webber SPE spectrum. 

 

Depth 

g/cm
2
 

SA DCLI FBLI DC FB HETC- 

HEDS 

0 11.70 11.83 11.50 11.36 11.03 8.87 

5 6.21 6.18 6.27 5.80 5.84 4.85 

10 3.94 3.87 4.01 3.56 3.69 3.03 

20 1.87 1.79 1.94 1.59 1.71 1.36 

30 1.05 0.91 1.07 0.78 0.91 0.63 

 

 

8. Conclusions 

 

A directionally coupled neutron transport model and computationally efficient solution method 

were presented. Results compared well with HETC-HEDS and were within the bounds set by FLUKA and 

MCNPX. Therefore, the neutron transport algorithm in HZETRN now agrees with the Monte Carlo codes 

to the extent that they agree with each other. A first order approximation was also presented for coupling 

the neutron models to low energy light ion transport, and results indicated that such a coupling is indeed 

necessary not only for accurate estimates of low energy fluence spectra, but for integrated quantities such 

as dose and dose equivalent as well. It is recommended that future studies with HZETRN and bi-directional 

neutrons use the directionally coupled neutron transport model along with the first order light ion coupling 

presented here.  
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