The Fermi Observatory

First Year Results from the Fermi Gamma-ray Space Telescope

Elizabeth Hays (NASA/GSFC)

Large Area Telescope (LAT)

ACD scintillator
89 tiles

Gamma-ray Burst Monitor

Tracker
Si strip detectors
Tungsten foil converters
pitch = 228 um
8.8x10^5 channels
18 planes

Calorimeter
CsI crystals
hodoscopic array
6.1x10^5 channels
8 layers

Candidate Gamma-ray Events

Tracker Performance and Calibration

Hit Efficiency

Tight Data

Ground Data

- Hit efficiency >99.9% on average
- No significant change in alignment constants (extra/inter-tower) after launch (4g acceleration)
- No evidence of increase in the overall noise level (-1 noise hit in Tracker per event)

October 15, 2009

https://ntrs.nasa.gov/search.jsp?R=20090038180 2019-06-30T21:58:31+00:00Z
ACD and Calorimeter Stability

- Continuous Monitoring of ACD
- Minimum ionizing particle peak
- Pedestals
- Veto threshold

Continuous Monitoring of CAL
- Zero suppression thresholds
- Trigger thresholds

CAL zero-suppression (single crystal)

On-orbit Energy Calibration

- Occasional charge injection runs
- Low energy - protons
- High energy - "heavy ions" triggers that overlap low and high range readout
- Energy scale monitored heavy cosmic-ray nuclei
 - 500 MeV Carbon
 - 8 GeV Iron

On-orbit Rates

- Overall trigger rate: ~few KHz
- Huge variations due to orbital effects
- Downlink rate: ~400-500 Hz
- ~90% from gamma filter
- ~20-30 Hz from diagnostic filter
- ~5 Hz from heavy ion filter
- Photon-selected event rate (passing standard background rejection cuts): ~1 Hz

Gamma ray... Cosmic ray... Both?

On-orbit effect - reduced effective area at low energy due to signals from out-of-time particles in the readout
Post-launch update - properly modeled in simulations
Planned update - improve reconstruction to regain area

A GeV, Wide-field Instrument

- Energy Dependence
- Incidence Angle Dependence

LAT Sensitivity with Time

Transient Science: Flares, bursts, multiwavelength campaigns, unidentified transients
Accumulated Science: New source types, populations, long-term monitoring, spatially extended and diffuse studies
Deepest and most uniform survey of the sky at these energies

All-sky coverage
- ~3 hrs
- (2 orbits)

Minor asymmetry due to passages through South Atlantic Anomaly
Fermi Gamma-ray Bursts

Fermi GRBs as of 090629

12 LAT GRBs (>2x pre-Fermi for E> 100 MeV)
2 short GRBs detected by LAT

GRB 080916C keV to GeV Lightcurve

GRB 080916C keV to GeV Lightcurve

Implications of High Redshift

+ Eiso ~ 8.3 x 10^54 ergs
 - Largest energy release ever observed
+ High redshift and high fluence imply strongly collimated jet
+ No cutoff => bulk Lorentz factor > 890 ± 21
 - Also constrain Lorentz invariance violation
 - 13.2 GeV at T < 16.5 s
 - M_{10^8} > 1.3 x 10^{18} GeV\cdot cm^2

Fermi LAT 3-month sky map

Fermi LAT 9-month sky map
Preliminary LAT and EGRET measurements dominated by systematics

- EGRET GeV excess not confirmed by LAT for intermediate latitudes

Model based on local cosmic-ray measurements (pre-Fermi) - in good agreement

LAT Resolves a Nearby Galaxy

Large Magellanic Cloud

- D~50 kpc (~180 kly)
- Active star forming regions, massive stars and supernova remnants

Adaptively smoothed LAT count map with dust map contours from infrared observations

LAT as a Nearby Galaxy

Large Magellanic Cloud

- D~50 kpc (~180 kly)
- Active star forming regions, massive stars and supernova remnants

LAT resolves galaxy plus a source consistent with 30 Doradus (Tarantula nebula, HII region)

- 50% from 30 Doradus
- 50% from LMC

LAT as an Electron Detector

- ~100% efficient for E~20 GeV
- Good hadron rejection (up to 1.10^4 at 1 TeV)
- Detailed simulations and comparisons with data
- Systematics <20%
 - MC-data, acceptance, proton spectrum, energy calibrator

Residual hadronic contamination <20% over energy range

Cosmic-ray e^+e^- spectrum from 20 GeV to 1 TeV

- LAT error band includes systematics
- Model assumes standard CR injection and propagation

Abdo et al. 2009, Physical Review Letters, 102, 181101
Early Highlights

- First 3 Months
- 206 bright sources (>10 α)
- ~1/3 variable
- 106 spatially associated with active galactic nuclei (AGN)
- 2 radio galaxies from 3-month survey

New Gamma-ray Pulsars

Gamma-ray Pulsar Discoveries

- Pre-LAT: 1 radio-quiet gamma-ray-loud pulsar
- LAT data used in a blind search for periodicity at known locations of interest
 - Pulsar candidates and unidentified LAT sources
 - Time-differencing technique applies FFT to time differences of event times (Atwood et al. 2006, Ziegler et al. 2008)
- 13 of 16 radio-quiet LAT pulsars associated with unidentified EGRET sources

Gamma-ray Pulsar

Vela Pulsar

Galactic Binary Systems - Orbital Signatures

Look for modulation of gamma rays with orbital phase

Galactic Binary Systems - LS I +61 303

A massive star with compact companion in ~26 day orbit

Competing effects in local environment
 - Inverse Compton scattering
 - Pair production absorption of TeV photons
Supernova Remnants
Bright gamma-ray sources associated with several supernovae interacting with molecular clouds
Extension resolved in LAT data

Unidentified Gamma-ray Sources
+ Previous MeV-GeV energy gamma-ray missions left many unidentified sources
+ LAT bright source list (3 months) includes ~40
+ No identification can mean
 + Multiple possible candidates
 + No plausible candidates
+ One way to make a very firm identification
 + Correlated variability with other observations

Unidentified Gamma-ray Transients
GRO J1838-04
EGRET observed 3.5 day flare near the Galactic Plane in June 1995
No blazar candidates found

LAT Automated Science Processing
Automatic transient monitoring
All-sky search runs every 6 hours, 1 day, 1 week
LAT flare advocates monitor results and trigger multiwavelength follow-up.
Reports at http://fermisky.blogspot.com/

LAT Unidentified Transient Detections
🌟 Unidentified transients
〇 Low latitude blazars from the bright source list

Two Early Unidentified Transients
High confidence >10 sigma
Counts per day (E>200 MeV)
- 2 deg radius exposure corrected
 - scaled to average background rate
Average background rate
LAT 95% error circle contains Swift XRT source (Landi et al. ATEL #1822) coincident with flat-spectrum radio source from SUMMS and AT20G (Sadler ATEL #1843)

Fermi J1057-6027 - June 11, 2009, gamma-ray increase over 1 day - Coincident with a known LAT source - 95% confidence radius 0.07 deg - 10x above average gamma-ray flux - Swift XRT TOO within 1 day (ATEL #2082, #2083) - AG Carinae, luminous blue variable (LBV) star with X-ray and radio emission, 7.7' away

A New LAT Transient - J1057-6027

Summary

+ LAT is an excellent gamma-ray (and electron) detector
+ Catching long, short, and some very distant gamma-ray bursts
+ Detecting new pulsars and probing their emission zones and mechanisms
+ Studying gamma-ray binary systems
+ Measuring extended emission from supernova remnants
+ Explaining previously unidentified gamma-ray emitters and exploring new territory - more science to come!

First Fermi Symposium
Nov 2-5, Washington, D.C.
http://fermi.gsfc.nasa.gov

Counterpart Search - 3EG J0903-3531

Updated LAT 95% error circle (6 months) contains a flat-spectrum radio source and Swift/XRT source

Counterpart Search - Fermi J0910-5041

LAT 95% error circle contains Swift XRT source (Landi et al. ATEL #1822) coincident with flat-spectrum radio source from SUMMS and AT20G (Sadler ATEL #1843)

Fermi J0910-5041 (ATEL #1788) - October 15, 2008, gamma-ray increase over 2 days - 10x above average gamma-ray flux - Swift XRT TOO within 1 day

The Large Area Telescope

-1- Counterpart Search - 3EG J0903-3531

-1- Counterpart Search - Fermi J0910-5041

-1- A New LAT Transient - J1057-6027

-1- Summary

-1- The Large Area Telescope
The Sun and the Moon

Detection of the quiet Sun in gamma rays!
Fluxes consistent with model expectations. Moon flux agrees with EGRET.

Size of Sun/Moon on the sky

RHESSI observes to ~20 MeV

PSF at 1 GeV
PSF at 10 GeV

October 19, 2009
E. Hays

Galactic Highlights

Unidentifieds (?) Pulsars (47+) X-ray Binaries Supernova Remnants

Vela Pulsar Energy Dependence

Peak 1 (P1) stronger at low energy.
Peak 2 (P2) stronger at higher energy.
(Confirms EGRET)
NEW: Peak 3 evolves with energy

Radio

P1
P2

Rotational Phase

October 19, 2009
E. Hays

New Gamma-ray Pulsar in CTA 1

Science Express October 16
Ahab et al., 2008, Science

1420 Hz radio map.
P = 316 ms
PM = 3.6 x 10^-12
Characteristic age = 10 kyr
Flux (>100 MeV) = 3.8 x 0.2 x 10^-14 ph cm^-2 s^-1
Pulse undetected in radio/X-ray

LAT 95% error radius = 0.038 deg

October 19, 2009
E. Hays

Pulsars and Wind Nebulae

October 19, 2009
E. Hays

Crab Pulsar and Nebula

Pulsar 100 MeV to 20 GeV Nebula from MeV to TeV

Inverse Compton emission consistent with mean magnetic field in nebula 100 μG < B < 200 μG

Hyper-exponential cutoff excluded at ~5 sigma

Consistent with emission well above the neutron star surface

October 19, 2009
E. Hays
A Puzzle for Models

Veblen counts E > 800 MeV

Data compared with a simulated point source at position of Vela Pulsar

October 18, 2009
E. S. Hayes

TeV and Multi-TeV Connections

VERITAS excess map

October 18, 2009
E. S. Hayes

BLAZAR GALAXIES

• Extremely variable
• Broadband emission from radio to gamma-ray wavelengths

3C 454.3 daily flux Aug-Oct 2008

LAT Detection of Perseus A

COS B

LAT

First new LAT radio galaxy

+ NGC 1275 = Perseus A = 3C84
+ In galaxy cluster at redshift z = 0.037
+ No previous detection with EGRET
+ Consistent with a point source
+ Long-term variability

GRB 080916C - the long bright one

+ 2nd GRB detected by LAT
+ 1st since EGRET with imaged photons and E > 1 GeV!
+ Brightest burst with a measured redshift
+ GROND measurement of redshift, z = 4.3
+ Prompt emission
+ >3000 LAT events in first 100 seconds
+ >140 LAT events for spectral analysis (>100 MeV)
+ Time-resolved spectroscopy over 6 decades in energy
+ High-energy emission peaks at later times
+ LAT photons up to 23 min after the trigger time
+ Abdo et al. 2009, Science, 323, 1688

October 18, 2009
E. S. Hayes
GRB 080916C Spectral Evolution

Spectrum for (b) 3.6 - 7.7 s compatible with a single component

- Rapid soft to hard evolution in (a) to (b)
- Gradual decrease of E_{peak} from (b) to (d)

Test of Quantum Gravity

- Test for energy dispersion of photons (higher energy arrive later)
- $\Delta T \times \Delta E/M_{\text{QG}}$
- Strong limit on Lorentz invariance violation
 - Highest E photon 13.2 GeV ($1+z$) = 70.6 GeV
 - Arrived 16.5 sec after TO
 - $\implies M_{\text{QG}} > 1.30 \times 10^{18}$ GeV/c²
 - $(-0.1 M_{\text{Planck}})$

Abdo et al. 2009, Science, 323, 1688