First Year Results from the Fermi Gamma-ray Space Telescope

Elizabeth Hays
(NASA/GSFC)

The Fermi Observatory

Large Area Telescope (LAT)

- Large field of view >2.4 sr
- Entire sky every 3 hrs (every 2 orbits)
- Broad energy range (20 MeV - 300 GeV)

Gamma-ray Burst Monitor
(GBM)

- Views entire un occulted sky
- NaI: 8 keV - 1 MeV
- BGO: 150 keV - 40 MeV

Fermi LAT Collaboration

- France
 - IPNO, INFN, Saclay
- Italy
 - INFN, INAF, ROMA
- Japan
 - RIKEN, KEK
- Nationwide University
- NASA/GSFC
- Stanford
- Tsung-Dao Laboratories of High Energy Physics

Sweden
- Royal Institute of Technology (KTH)
- Stockholm University
- United States
 - Georgia State University (GSU) and INR, Phladelphia
 - University of California at Santa Cruz - Santa Cruz
 - University of Washington

October 19, 2009
E. Hays

Large Area Telescope (LAT)

ACD
- Large Field of View >2.4 sr
- Broad Energy Range 20 MeV - >300 GeV
- 89 tiles
- Y

Tracker
- Si strip detectors
- Tungsten foil
- pitch: 228 um
- 8.8x10^5 channels
- 18 planes

Calorimeter
- CsI crystals
- Hodoscopic array
- 8 layers

Candidate Gamma-ray Events

- Green tiles: - detected position of the charged particle
- Blue tiles: - reconstructed track extension
- Yellow tile: - estimated direction of candidate gamma-ray event

Tracker Performance and Calibration

- Hit Efficiency: >99% on average
- No significant change in alignment constants (inter-/inter-tower) after launch (1g acceleration)
- No evidence of increase in the overall noise level (>1 noise hit in Tracker per event)

October 19, 2009
E. Hays
ACD and Calorimeter Stability

- Continuous Monitoring of ACD
- Minimum ionizing particle peak
- Pedestals
- Veto threshold
- Continuous Monitoring of CAL
- Zero suppression thresholds
- Trigger thresholds

On-orbit Energy Calibration

- Occasional charge injection runs
- Low energy - protons
- High energy - "heavy ions" triggers that overlap low and high range readout
- Energy scale monitored heavy cosmic-ray nuclei
 - 500 MeV Carbon
 - 8 GeV Iron

On-orbit Rates

- Overall trigger rate: ~few KHz
- Huge variations due to orbital effects
- Downlink rate: ~400-500 Hz
 - ~90% from gamma filter
 - ~20-30 Hz from diagnostic filter
 - ~5 Hz from heavy ion filter
- Photon-selected event rate (passing standard background rejection cuts): ~1 Hz

Gamma ray... Cosmic ray... Both?

- On-orbit effect - reduced effective area at low energy due to signals from out-of-time particles in the readout
- Post-launch update - properly modeled in simulations
- Planned update - improve reconstruction to regain area

A GeV, Wide-field Instrument

- Energy Dependence
- Incidence Angle Dependence

LAT Sensitivity with Time

Transient Science: Flares, bursts, multiwavelength campaigns, unidentified transients

Accumulated Science: New source types, populations, long-term monitoring, spatially extended and diffuse studies

Deepest and most uniform survey of the sky at these energies

- All-sky coverage in ~3 hrs
- Minor asymmetry due to passages through South Atlantic Anomaly
Fermi Gamma-ray Bursts

GRB 080916C keV to GeV Lightcurve

Implications of High Redshift

Fermi LAT 3-month sky map

Fermi LAT 9-month sky map
Preliminary

LAT and EGRET measurements dominated by systematics

EGRET GeV excess not confirmed by LAT for intermediate latitudes

+ Model based on local cosmic-ray measurements (pre-Fermi) - in good agreement

LAT Resolves a Nearby Galaxy

Large Magellanic Cloud

+ D~50 kpc (~180 kly)
+ Active star forming regions, massive stars and supernova remnants

Adaptively smoothed LAT count map with dust map contours from infrared observations

** LAT as an Electron Detector**

- 100% efficient for E>20 GeV
- Good hadron rejection (up to 1.10^4 at 1 TeV)
- Detailed simulations and comparisons with data
- Systematics <20%
 - MC data, acceptance, proton spectrum, energy calibrator

Residual hadronic contamination <20% over energy range

Cosmic-ray e^+e^- spectrum from 20 GeV to 1 TeV

+ LAT error band includes systematics
+ Model assumes standard CR injection and propagation

Abdo et al. 2009, Physical Review Letters, 102, 181101
Gamma-ray Pulsar Discoveries

- Pre-LAT: 1 radio-quiet gamma-ray-loud pulsar
- LAT data used in a blind search for periodicity at known locations of interest
- 13 of 16 radio-quiet LAT pulsars associated with unidentified EGRET sources

Early Highlights

- First 3 Months
- 206 bright sources (>10σ)
- ~1/3 variable
- 106 spatially associated with active galactic nuclei (AGN)
- 2 radio galaxies

New Gamma-ray Pulsars

- Pre-LAT: 1 radio-quiet gamma-ray-loud pulsar
- LAT data used in a blind search for periodicity at known locations of interest
- Pulsar candidates and unidentified LAT sources
- Time-differencing technique applies FFT to time differences not event times (Atwood et al. 2006, Ziegler et al. 2008)

Galactic Binary Systems - Orbital Signatures

Look for modulation of gamma rays with orbital phase

Gamma-ray flux from region containing LS I +61 303 in 1-day bins

Galactic Binary Systems - LS I +61 303

A massive star with compact companion in ~26 day orbit

Competing effects in local environment:
- Inverse Compton scattering
- Pair production absorption of TeV photons

Vela Pulsar

Accurate LAT timestamps plus accurate radio timing solutions

Science Express July 2

NABM/Fermi/Cruz deWilde

E.HideInInspector
Supernova Remnants

Bright gamma-ray sources associated with several supernovae interacting with molecular clouds
Extension resolved in LAT data

LAT counts map (0.8 GeV)
X-ray (0.1-2.4 keV, black) and radio (1.4 GHz, green) contours
October 19, 2009

LAT counts map (2-10 GeV)
Radio (1.4 GHz, green) contours

Unidentified Gamma-ray Sources

+ Previous MeV-GeV energy gamma-ray missions left many unidentified sources
+ LAT bright source list (3 months) includes ~40
+ No identification can mean
 + Multiple possible candidates
 + No plausible candidates
+ One way to make a very firm identification
 + Correlated variability with other observations

Unidentified Gamma-ray Transients

GRO J1838-04
EGRET observed 3.5 day flare near the Galactic Plane in June 1995
No blazar candidates found

LAT Automated Science Processing

Automatic transient monitoring
All-sky search runs every 6 hours, 1 day, 1 week

LAT flare advocates monitor results and trigger multiwavelength follow-up.
Reports at http://fermisky.blogspot.com/

LAT Unidentified Transient Detections

☆ Unidentified transients
O Low latitude blazars from the bright source list

Two Early Unidentified Transients

High confidence
>10 sigma

Counts per day
(E>200 MeV)
- 2 deg radius exposure corrected
- scaled to average background rate

Average background rate
Counterpart Search - Fermi J0910-5041

Fermi J0910-5041 (ATEL #1176)
- October 15, 2008, gamma-ray increase over 2 days
- 10x above average gamma-ray flux
- Swift XRT TOO within 1 day

LAT 95% error circle contains Swift XRT source (Landi et al. ATEL #1822) coincident with flat-spectrum radio source from SUMSS and AT20G (Sadler ATEL #1843)

October 19, 2009

Counterpart Search - 3EG J0903-3531

3EG J0903-3531 (ATEL #1177)
- October 5, 2008, gamma-ray increase over 3 days
- 5x above 3EG flux
- Swift XRT TOO within 2 days

Updated LAT 95% error circle (8 months) contains a flat-spectrum radio source and Swift/XRT source

October 19, 2009

A New LAT Transient - J1057-6027

Fermi J1057-6027
- June 11, 2009, gamma-ray increase over 1 day
- Coincident with a known LAT source
- 95% confidence radius 0.07 deg
- 10x above average gamma-ray flux
- Swift XRT TOO within 1 day (ATEL #2082, #2083)
- AG Carinae, luminous blue variable (LBV) star with X-ray and radio emission, 7.7' away

X-ray map: Swift XRT (0.3-10 keV)
Radio contours: MGPS

October 19, 2009

Summary

+ LAT is an excellent gamma-ray (and electron) detector
+ Catching long, short, and some very distant gamma-ray bursts
+ Detecting new pulsars and probing their emission zones and mechanisms
+ Studying gamma-ray binary systems
+ Measuring extended emission from supernova remnants
+ Explaining previously unidentified gamma-ray emitters and exploring new territory - more science to come!

First Fermi Symposium
Nov 2-5, Washington, D.C.
http://fermi.gsfc.nasa.gov

October 19, 2009

The Large Area Telescope

Tracker (TKR):
- 128-cell shower detector
- 90% detection efficiency
- 90% identification
- High-energy electrons
- High-rate, high-momentum tracking

Calorimeter (CAL):
- 1536 C lead crystals
- Low energy threshold
- High-resolution calorimeter
- Shower profile reconstruction

October 19, 2009

Extras
The Sun and the Moon

Detection of the quiet Sun in gamma rays!
Fluxes consistent with model expectations. Moon flux agrees with EGRET.

Size of Sun/Moon on the sky

RHESSI: observes to ~20 MeV

PSF at 1 GeV
PSF at 10 GeV

October 19, 2009

Galactic Highlights

Unidentifieds?

Pulsars (47+)

And nebulae

X-ray Binaries

Supernova Remnants

October 19, 2009

New Gamma-ray Pulsar in CTA 1

Science Express October 16
Ahlu et al., 2008, Science

1420 Hz radio map.

Peak 1 (P1) stronger at low energy.
Peak 2 (P2) stronger at higher energy.
(confirmed EGRET)
NEW: Peak 3 evolves with energy

Rotational Phase

LAT 95% error radius = 0.038 deg

October 19, 2009

Vela Pulsar Energy Dependence

Peak 1 (P1)
stronger at low energy.
Peak 2 (P2)
stronger at higher energy.
(confirms EGRET)
NEW: Peak 3 evolves with energy

Radio

P1
P2
110 GeV

0
2.5
1

October 19, 2009

Pulsars and Wind Nebulae

October 19, 2009

Crab Pulsar and Nebula

Pulsar 100 MeV to 20 GeV
Nebula from MeV to TeV

Hyper-exponential cutoff excluded at ~5 sigma
Consistent with emission well above the neutron star surface
Inverse Compton emission consistent with mean magnetic field in nebula 100 μG < B < 200 μG

October 19, 2009
A Puzzle for Models

LS I -61.303
- TeV peaks near aphelion
- GeV peaks near perihelion
- LS I +61 303 phase-averaged spectrum shows clear cutoff

VERITAS

LAT `:,,.^
MAGIC

TeV and Multi-TeV Connections

VERITAS excess map

LAT Detection of Perseus A
- 2nd GRB detected by LAT
- 1st since EGRET with imaged photons and E > 1 GeV!
- Brightest burst with a measured redshift
- GROND measurement of redshift, z = 4.3
- Prompt emission
- >3000 LAT events in first 100 seconds
- >140 LAT events for spectral analysis (>100 MeV)
- Time-resolved spectroscopy over 6 decades in energy (10 keV to 10 GeV)
- High-energy emission peaks at later times
- LAT photons up to 23 min after the trigger time

LAT photons up to 23 min after the trigger time

GRB 080916C - the long bright one

BLAZAR GALAXIES
- Looking down relativistic particle jets from galaxy cores
- Extremely variable
- Broadband emission from radio to gamma-ray wavelengths

3C 454.3
- Daily flux Aug-Oct 2008
GRB 080916C Spectral Evolution

Spectrum for (b) 3.6 - 7.7 s compatible with a single component

Rapid soft to hard evolution in (a) to (b)
Gradual decrease of Epeak from (b) to (d)

Abdo et al. 2009, Science, 323, 1688

Test of Quantum Gravity

+ Test for energy dispersion of photons (higher energy arrive later)
 + $\Delta T \propto \Delta E / M_{\text{QG}}$
+ Strong limit on Lorentz invariance violation
 + Highest E photon 13.2 GeV (1+z) \sim 70.6 GeV
 + Arrived 16.5 sec after TO
 + $\Rightarrow M_{\text{QG}} > 1.30 \times 10^{18} \text{ GeV/c}^2$
 + $\Rightarrow M_{\text{QG}} > 0.1 \text{ M}_{\text{Planck}}$

E_{peak}

Energy (MeV)

10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}

Energy (MeV)

10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}

Energy (MeV)

10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}

Energy (MeV)