Effect of Ceramic Ball and Hybrid Stainless Steel Bearing/Wheel Combinations on the Lifetime of a Precision Translation Stage for the SIM Flight Project

C. John Lo and Kerry Klein
Jet Propulsion Laboratory, Pasadena, California

William R. Jones, Jr.
Sest Inc., Middleburg Heights, Ohio

Mark J. Jansen
University of Toledo, Toledo, Ohio

Jens Wemhoner
Cerobear GmbH, Herzogenrath, Deutschland

October 2009
NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Reports Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include creating custom thesauri, building customized databases, organizing and publishing research results.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at 443–757–5803
- Telephone the NASA STI Help Desk at 443–757–5802
- Write to:
  NASA Center for AeroSpace Information (CASI)
  7115 Standard Drive
  Hanover, MD 21076–1320
Effect of Ceramic Ball and Hybrid Stainless Steel Bearing/Wheel Combinations on the Lifetime of a Precision Translation Stage for the SIM Flight Project

C. John Lo and Kerry Klein
Jet Propulsion Laboratory, Pasadena, California

William R. Jones, Jr.
Sest Inc., Middleburg Heights, Ohio

Mark J. Jansen
University of Toledo, Toledo, Ohio

Jens Wemhoner
Cerobear GmbH, Herzogenrath, Deutschland

Prepared under Contract NNC07JF14T
Acknowledgments

This research was carried out in part, at the Jet Propulsion Laboratory, California Institute of Technology in Pasadena, California, under Contract NAS7–03001 with the National Aeronautics and Space Administration.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

Level of Review: This material has been technically reviewed by NASA technical management.

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

Available electronically at http://gltrs.grc.nasa.gov
Effect of Ceramic Ball and Hybrid Stainless Steel Bearing/Wheel Combinations on the Lifetime of a Precision Translation Stage for the SIM Flight Project

C. John Lo and Kerry Klein, Jet Propulsion Laboratory, Pasadena, California 91109

William R. Jones, Jr., Sest Inc., Middleburg Heights, Ohio 44130

Mark J. Jansen, University of Toledo, Toledo, Ohio 43606

Jens Wemhoner, Cerobear GmbH, Herzogenrath, Deutschland

ABSTRACT

A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) [1]-[3] was initiated to investigate both lubricated (Pennzane® X2000 and Brayco® 815Z) and unlubricated Si₃N₄, 440C SS, Rex 20, Cronidor X30 and X40 plates with Cerbec SN-101-C (Si₃N₄) and 440 C balls. The hybrid wheel/bearing assembly (Figure 2) will be used on the Linear Optical Delay Line (LODL) stage (Figure 1) as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based system. This measurement will provide the data to “infer” the existence of any planets, undetectable by other methods, orbiting these known stars.

The LODL is a motor driven, band drive rail system carrying a Corner Cube Retro-Reflector Carriage system running on a 1.54 m guide rail system as conceptualized. Three Integrated Hybrid Duplex Angular Contact Bearing Wheel Assemblies (Figure 2), running on the precision rail system, are used to locate the carriage system on the rail, with preload wheel assemblies opposite to these assemblies. The requirement is a 5-year mission lifetime with a goal of 10 years total, using little or no lubricant in order to reduce contamination to the nearby optics. The SOT result indicates accelerated lubricant consumption rate between the ceramic ball and 440C SS and 52100 bearing steel, but promising trend with the newer Cronidor X30 and X40 bearing steel. The use of dry or no lubricant will require further investigation.

1. EXPERIMENTAL

A Spiral Orbit Tribometer (SOT) [1]-[3] (Figure 3) was used to study the lubricated lifetime of these material couples. In addition, friction coefficients and wear measurements (using profilometry) were studied for the unlubricated material combinations. The SOT measures lubricant consumption in the boundary lubrication regime. The tribometer simulates rolling and pivoting seen in angular contact bearings and other lubricated contacts. For unlubricated tests, because of the stick/slip action when the rolling ball strikes the guide plate, both force data and scrub lengths were used to calculate friction coefficients. In these tests, plates were either made of Si₃N₄, 440C SS, Rex 20, Cronidor X30 or X40. In all cases, a 12.7 mm (1/2") Si₃N₄ ceramic bearing ball was used. Tests were performed with no lubricant, or either Pennzane X-2000 (containing only an antioxidant) or Brayco 815Z.
dissolved in hexane or Freon and applied to the bearing balls, resulting in a deposition of approximately 50 µg of lubricant after solvent evaporation. Tests were run in ultrahigh vacuum (< 10⁻⁶ Pa), room temperature, and ball speeds from 20 to 100 RPM. A normalized lubricant lifetime was determined by dividing the number of ball orbits at failure (friction coefficient of 0.28) by the amount of lubricant deposited on the ball. This yields a lifetime in orbits/µg of lubricant. In addition, ball specimens were analyzed post-test by X-ray Photoelectron Spectroscopy (XPS).

2. RESULTS AND DISCUSSIONS

2.1 Unlubricated Ceramic Ball/Ceramic Plate

Initial testing with an unlubricated silicon nitride ball on a silicon nitride plate yielded erratic behavior with the friction coefficient rising quickly after 20 orbits at 1.5 GPa as shown in Figure 4.
2.2 Unlubricated Ceramic Ball/Metal Plates

Subsequent unlubricated tests with silicon nitride balls and other candidate metallic plates at 30 RPM resulted in a higher number of orbits, with friction coefficients as high as 2.5 after 15K to 45K orbits, as indicated in Table 1.

<table>
<thead>
<tr>
<th>Plate Material</th>
<th>Mean Hertzian Stress (GPa)</th>
<th>Number of Orbits</th>
<th>Friction Coefficient Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>440C</td>
<td>0.80</td>
<td>15K</td>
<td>1.0-2.5</td>
</tr>
<tr>
<td>440C</td>
<td>0.80</td>
<td>30K</td>
<td>0.2-2.2</td>
</tr>
<tr>
<td>REX20</td>
<td>0.85</td>
<td>15K</td>
<td>1.1-2.3</td>
</tr>
<tr>
<td>X40</td>
<td>0.80</td>
<td>45K</td>
<td>0.2-1.6</td>
</tr>
<tr>
<td>X40</td>
<td>1.5</td>
<td>45K</td>
<td>0.4-1.1</td>
</tr>
</tbody>
</table>

A typical friction trace from an unlubricated test is illustrated below in Figure 5.

![Friction Trace](image)

Figure 5 – Typical Unlubricated Ceramic/Metal Trace

2.3 Hybrid Wheel Design with Toroid Balls

With the higher than expected friction coefficients from the unlubricated SOT tests, it would be difficult to design a consistent wheel system with any of these unlubricated pairs. However, the SOT test is designed such that there is always a sliding action when the test ball contacts the vertical guide plate producing an area on the stationary plate called the scrub. This sliding action, between the extremely hard ceramic ball and the “softer” metallic plate will not be present in an actual bearing pair. Based on this, CeroBear designed the first generation of SIM LODL test wheel, illustrated on Figure 2, with the most promising combination, X40 and Si₃N₄ balls. In addition, for the full 16 ball complement without a ball separator, a toroid ball concept was used, with every other ball having a slightly smaller diameter to act as a separator. The delivered wheel assembly, 3 months after completion of the SOT tests, ran smoothly without any lubrication. However, at that time, SIM was directed by NASA to stand down and the planned drive wheel life test was cancelled.
2.4 Lubricated Ceramic Ball/Metal Plates

While the wheel was being manufactured at Cerobear, a set of lubricated SOT tests with ceramic balls and metallic plates was completed, with emphasis on Pennzane X2000 and some reference tests with Brayco 815Z. This is much less than the desired 4 tests minimum for each combination to bracket statistical variations. The limited tests do show some trends, with the reference 440C SS plates yielding an average normalized lifetime of 275 orbits/µg with Pennzane at 1.5 GPa. This is more than an order of magnitude less than lifetimes observed with 440C/440C. The lubricated data is illustrated in Table 2.

Table 2- Lubricated Ceramic/Metal SOT Test
(Si₃N₄ Ball, 10⁴ Turr, 30-100 RPM, Pennzane X2000).

<table>
<thead>
<tr>
<th>Plate Material</th>
<th>Mean Hertzian Stress (GPa)</th>
<th>Normalized Life (Orbits/µg)</th>
<th>Averaged Norm. Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>440C</td>
<td>0.80</td>
<td>867</td>
<td>562</td>
</tr>
<tr>
<td>440C</td>
<td>0.80</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>440C</td>
<td>1.5</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>440C</td>
<td>1.5</td>
<td>327</td>
<td>275</td>
</tr>
<tr>
<td>440C</td>
<td>1.5</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>REX20</td>
<td>0.85</td>
<td>478</td>
<td>537</td>
</tr>
<tr>
<td>REX20</td>
<td>0.85</td>
<td>596</td>
<td></td>
</tr>
<tr>
<td>X40</td>
<td>1.5</td>
<td>14,081</td>
<td>14,081</td>
</tr>
<tr>
<td>Cronidur X30</td>
<td>1.5</td>
<td>7,821</td>
<td>8318</td>
</tr>
<tr>
<td>Cronidur X30</td>
<td>1.5</td>
<td>8,814</td>
<td></td>
</tr>
<tr>
<td>440C*</td>
<td>1.5</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>440C*</td>
<td>1.5</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>

* Tests with Brayco 815Z.

The same data is presented in Figure 6 in normalized life (orbit/µg) form for easier comparison.

The SOT test data showed that the most promising combination with the ceramic ball is with the newer X40 material. Although only a single test, the 14,081 orbit/µg with Pennzane result is almost a factor of four times greater than a Pennzane/440C/440C combination. This yields the possibility of using minimal lubricant for this contamination sensitive project. However, this “speculation” needs to be life tested when future funds become available. Nevertheless, this is very promising since this combination can be applied in other “starved” mechanisms, such as NASA JWST observatory (with Northrop Grumman Space Technology as lead contractor) with mechanisms operating at near liquid helium temperature, or future rovers roaming on the “dark” side of the moon. A typical friction trace of the lubricated ceramic ball/X30 SOT test is presented below:

![Figure 6 – Lubricated Ceramic/Metal SOT Test](image)

![Figure 7 – Typical Lubricated Ceramic/X30 Trace](image)
2.5 Ceramic Ball/"Nano-Coated" Metal Plates

The SOT testing thus far has produced mixed results, with some combinations yielding an unexpected lower lifetime than the 440C SS/440C SS pair, while others (ceramic/X40 pair) yielded an extended lifetime. Cerobear then suggested coating some test plates with their proprietary fluorocarbon nano-coating process on the X30 and X40 test plates. The hypothesis is that if a source of lubricant is applied on the combination with the lowest lubricant consumption rate, then it is possible that only a very small amount of lubricant may be needed for this contamination sensitive project.

The single fluorocarbon “nano-coated” SOT test partially proved this theory is correct, with very low friction coefficient (0.1 to 0.25) for the first few orbits. However, the minute amount of lubricant is quickly consumed by the tribological action between the ceramic ball and the X40 test plate, and the friction coefficient rises quickly and stabilized at around 0.42, as illustrated in Figure 8.

![Figure 8 – Fluorocarbon “Nano-Coated” X40](image)

This steady state friction is lower than the unlubricated silicon nitride/X-40 combination. An alternate method of providing a source of additional fluorocarbon lubricant was in progress when the test program was terminated in June 2006. The plan was to use a fluorocarbon composite guide plate for the SOT tests to simulate a composite bearing cage.

3. TEST SUMMARY

3.1 Unlubricated Tests

The Silicon nitride on silicon nitride couple yielded erratic friction coefficients during the scrub region of the SOT tests. Regardless of stress level, a material buildup in the wear track region is observed on the fixed (lower) plate. Regardless of stress level, some wear, with a buildup on the inside of the wear track, is observed on the upper (rotating) plate. Most wear occurs in the scrub (sliding) region. Severe stick/slip between the ball and the plate is observed around the scrub region. This effect yields an average friction coefficient value, which is lower than the ‘real’ value seen in the rolling part of the track. Since scrub length is directly related to the friction throughout the ball orbit, the average friction coefficient can be calculated using the scrub length. For the 0.8 GPa tests, the scrub length equates to an average friction coefficient of 1.6. Regardless of stress level, a steady state friction eventually occurs. Limited data at 1.5 GPa indicates that Cronidur X-40 has slightly less wear than 440C or Rex 20 in the unlubricated SOT tests.
3.2 Lubricated Tests

Silicon nitride balls lubricated with Pennzane X-2000 or Brayco 815Z on either 440C or Rex 20 plates yield shorter lifetimes compared to a 440C/440C couple. **Silicon nitride balls lubricated with Pennzane X-2000 on Cronidur X-30 and X-40 yield longer lifetimes than 440C/440C.** Fluorocarbon “nano-coated” Cronidur X-40 and a silicon nitride ball yields high friction after only 60 ball orbits. However, the steady state friction for the coated plate/ceramic ball couple is lower than for un lubricated silicon nitride on untreated X-40 plates.

4. CONCLUSIONS

All steels showed some wear when coupled with ceramic ball in this limited series of SOT tests. Preliminary data at 1.5 GPa indicates X40 yields slightly lower wear than 440C or REX20 in an un lubricated couple. Si$_3$N$_4$ balls lubricated with Pennzane on REX20 and 440C yield shorter lifetimes than 440C on 440C. Si$_3$N$_4$ balls lubricated with Pennzane on X40 yield longer lifetimes than 440C on 440C. Fluorocarbon “Nano-Coated” X40 yielded high friction at 1.5 GPa after only 60 orbits.

5. FUTURE WORK

More SOT tests should be performed to expand the data base at 0.8, 1.0 and 1.5 GPa for the Si$_3$N$_4$ ball/X40 plate combination. A minimum of four SOT tests for each material combination and conditions should be run to bracket statistical variations. The Fluorocarbon “Nano-coated” technique, when coupled with a “donor” lubricant source, could be an acceptable substitute for un lubricated option. This can be demonstrated by using a fluorocarbon composite for the guide plate to simulate the cage in SOT.

6. CONCLUDING REMARKS

The Spiral Orbit Tribometer can provide a rapid assessment of various ceramic/metal and metal/metal combinations both lubricated and un lubricated.

7. ACKNOWLEDGMENTS

This research was carried out, in part, at the Jet Propulsion Laboratory, California Institute of Technology, under contract NAS7-03001 with the National Aeronautics and Space Administration.

8. REFERENCES


**ABSTRACT**

A study of hybrid material couples using the Spiral Orbit Tribometer (SOT) was initiated to investigate both lubricated (Pennzane X2000 and Brayco 815Z) and unlubricated Si$_3$N$_4$, 440C SS, Rex 20, Cronidur X30 and X40 plates with Cerbec SN-101-C (Si$_3$N$_4$) and 440C balls. The hybrid wheel/bearing assembly will be used on the Linear Optical Delay Line (LODL) stage as an element of the NASA Space Interferometry Mission (SIM). SIM is an orbiting interferometer linking a pair of telescopes within the spacecraft and, by using an interferometry technique and several precision optical stages, is able to measure the motions of known stars much better than current ground or space based systems. This measurement will provide the data to "infer" the existence of any planets, undetectable by other methods, orbiting these known stars.

**SUBJECT TERMS**

Space tribology