and Cloud Ice from MLS and Comparisons with GEOS-5 analyses

Jonathan H. Jiang¹, Hui Su¹, Steven Pawson², Hui-Chun Liu², William Read¹,
Joe W. Waters¹, Michelle Santee¹, Dong L. Wu¹, Michael Schwartz¹, Alyn Lambert¹,
Ryan Fuller¹, Jae N. Lee¹, and Nathaniel Livesey¹

¹Jet propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
²Goddard Space Flight Center, Global Modeling and Assimilation Office, Greenbelt, Maryland, U.S.A.
Abstract

This paper gives an overview of August 2004 through July 2009 upper tropospheric (UT) water vapor (H$_2$O) and ice water content (IWC) from the Aura Microwave Limb Sounder (MLS) and comparisons with outputs from the NASA Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. Both MLS and GEOS-5 show that high values of H$_2$O and IWC at 215 to 147 hPa are associated with areas of deep convection. They exhibit good (within ~15%) agreement in IWC at these altitudes, but GEOS-5 H$_2$O is ~50% (215 hPa) to ~30% (147 hPa) larger than MLS, possibility due to its higher temperatures at these altitudes. GOES-5 produces a weaker intertropical convergence zone than MLS, while a seasonally-migrating band of tropical deep convection is clearly evident in both the MLS and GEOS-5 UT H$_2$O and IWC. MLS and GEOS-5 both show spatial anti-correlation between IWC and H$_2$O at 100 hPa, where less H$_2$O is associated with low temperatures in regions of tropical convection. At 100 hPa, GEOS-5 produces 50% less IWC and 15% less H$_2$O in the tropics, and ~20% more H$_2$O in the extra-tropics, than does MLS. Behavior of the 100 hPa H$_2$O, which exhibits a quasi-biennial oscillation, appears consistent with it being controlled by temperature. The seasonal cycle in the vertical transport of tropical mean H$_2$O from ~147 hPa to ~10 hPa appears much stronger in MLS than in GEOS-5. The UT IWC and H$_2$O interannual variations, from both MLS and GEOS-5, show clear imprints of the El Niño-Southern Oscillation.
1. Introduction

Upper-tropospheric (UT) water vapor (H\textsubscript{2}O) and clouds play important roles in regulating Earth’s climate, producing feedbacks to climate forcings by increasing greenhouse gases. H\textsubscript{2}O is the primary natural atmospheric greenhouse gas, trapping some of the outgoing longwave radiation (OLR) that would otherwise be emitted to space. The increase of UT H\textsubscript{2}O with sea surface temperature (SST) provides a strong positive feedback in response to surface temperature increases that can be caused by increasing anthropogenic greenhouse gases [e.g. Held and Soden, 2000; Su et al. 2006a]. Udelhofen and Hartmann [1995] showed that OLR is mostly sensitive to UT relative humidity changes above 400 hPa. Climate models indicate that UT H\textsubscript{2}O could increase ~200\% by the end of the 21st century, compared to a ~20\% increase in lower tropospheric H\textsubscript{2}O [Soden et al., 2005]. This UT amplification underscores the importance of monitoring and quantifying UT H\textsubscript{2}O variability.

Clouds in the UT tend to have a net warming effect, as their cold tops result in low OLR [Stephens, 1990; Su et al., 2008]. The occurrence of UT clouds is closely related to UT humidity [Udelhofen and Hartmann, 1995; Soden and Fu, 1995; Su et al., 2006a]. The variation of UT cloud amount with SST and the resulting potential climate feedback have been a subject of debate [Lindzen et al., 2001; Lin et al., 2002; Hartmann and Michelsen, 2002; Su et al., 2008]. The UT cloud radiative heating also influences transport from the troposphere to the stratosphere [e.g. Corti et al., 2006; Hartmann et al., 2001].

The Microwave Limb Sounder (MLS) on board the Aura satellite, launched on July 15, 2004, provides simultaneous global measurements of UT H\textsubscript{2}O, cloud ice water content (IWC), temperature (T), and several trace gases [Waters et al. 2006]. Li et al.
[2005; 2007] compared Aura MLS IWC measurements with European Centre for Medium-range Weather Forecast (ECMWF) analyses and forecasts, and with other state-of-the-art climate model simulations, and found differences as large as factor of 10 between models and observations. These helped promote modifications to the ECMWF model cloud microphysics that resulted in significant improvement [Waliser, et al., 2009]. Su et al. [2006] found differences between models and observations of up to a factor of 4 in the relationships among UT H$_2$O, IWC, and SST. Read et al. [2008], using MLS H$_2$O and CO measurements, estimated the relative influences of convection, “freeze-drying” and extra-tropical mixing on the amount of H$_2$O entering the stratosphere.

This paper presents an overview of the global distributions and temporal variations for UT IWC and H$_2$O as seen by MLS from August 2004 through July 2009 (the five-year period for which data are currently available), spatial correlations with deep convection and temperature, and comparisons with output from the Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. Section 2 describes the datasets, section 3 presents spatial distributions, and section 4 presents temporal variations. Section 5 focuses on the UT response to the El Niño-Southern Oscillation (ENSO). Section 6 gives conclusions and discussion.

2. Data

2.1. Aura MLS UT Water Vapor, Cloud, and Temperature Measurements

We use MLS Version 2.2 (V2.2) Level 2 [Livesey et al., 2007] H$_2$O, IWC and T datasets, whose validations are described by Read et al. [2007], Wu et al. [2008], and Schwartz et al. [2008], respectively. MLS measures ~3500 vertical profiles per day along a sun-synchronous suborbital track having equatorial crossings at 1:40 PM and 1:40 AM.
local solar times. The Level 2 data are produced on pressure surfaces (12 surfaces per
decade) from 316 to 0.1 hPa, with IWC having a limited useful range of 215 to 83 hPa.
These data have a vertical resolution of ~3-4 km, and horizontal resolutions of ~7 km
across-track and ~200-300 km along-track. Estimated measurement accuracies are 20%
for H$_2$O, 2 K for temperature (which, in cloudy regions, has a known low bias of ~2 K at
215 hPa and ~0.5 K at 147 hPa [Schwartz et al. 2008]), and a factor of two for IWC.

MLS measurements are generally not degraded by the presence of clouds and
aerosols, whose particle sizes are typically much smaller than the measurement
wavelengths. Very thick clouds (IWC > ~50 mg/m3) can degrade the temperature and
some species measurements [Wu et al. 2008], but the retrieval algorithms [Livesey et al.,
2006] flag such measurements and they are not used here. See Wu and Jiang [2004] for
details on the identification and quantification of cloud-affected radiances and the IWC
retrieval.

2.2. GEOS-5 Meteorological Products

Meteorological datasets produced by the GEOS Versions 5.1.0 and 5.2.0 data
assimilation systems are used in this study. Rienecker et al. [2008] describe the
meteorological analysis, which uses a three-dimensional variational (3D-Var) approach
[Sasaki, 1970]. GEOS-5.1.0 ran in near-real time between 17 October 2007 and 14
August 2008; it was also used to retroactively analyze the period from October 2003,
before the Aura launch, until October 2007. GEOS-5.1.0 was replaced by GEOS-5.2.0 on
14 August 2008. Both versions, collectively referred to as GEOS-5, produce analyses,
forecasts and assimilated fields on a 72-layer grid, extending from the surface to 0.01
hPa, with a 0.5° × 0.67° latitude-longitude resolution. Vertical resolution is ~1.5 km in
the UT. Differences between the two versions of GEOS-5 will be mentioned as necessary in the presentation of results.

The GEOS-5 analyses are “snapshots” of the atmospheric state produced four times daily (at 00Z, 06Z, 12Z, and 18Z) using optimal combinations of model forecasts and many observations [Rienecker et al., 2008] via the Grid-point Statistical Interpolation (GSI) technique of Wu et al. [2002]. The assimilated fields are a continuous time series produced using the GEOS-5 atmospheric general circulation model (AGCM), in which an additional forcing term is added to the momentum, thermodynamic, moisture and ozone equations, following Bloom et al. [1996]. This “incremental analysis update” (IAU) forcing is computed from the difference between analysis and AGCM forecast at the analysis times, then added as a forcing tendency that remains constant in six-hour segments that straddle the analysis times. The assimilated data are these AGCM fields that are constrained by the analyses and contain all information derived from the model, such as cloud and radiation fields, in addition to the analyzed variables [Rienecker et al., 2008].

The importance of transport to the moisture budget and the fact that all clouds in the GEOS-5 assimilations depend strongly on the AGCM require that some details of the model be mentioned for understanding the products. The GEOS-5 AGCM is coded flexibly, but used in particular configurations (spatial resolution and physical parameter settings) in each version of the assimilation system. Adiabatic transport is computed using the “finite-volume dynamical core” [Lin, 2004] with a quasi-Lagrangian vertical coordinate, followed by remapping to the standard 72-layer hybrid grid on which physical tendencies are computed every 30 minutes. The model includes prognostic equations for large-scale gases, liquid (condensate) and ice (anvil-type) water, with
consideration of sub-grid convective contributions to the large-scale liquid and ice phases. Convection is computed using an adaptation of the Relaxed Arakawa-Schubert (RAS) convection code [Moorthi and Suarez, 1992], with modifications based on Sud and Walker [1999] as described in Bacmeister et al. [2006]. RAS considers a sequence of detraining convective plumes extending between cloud base (set as a fixed layer in GEOS-5, but inherently adaptable in RAS) and each layer below the tropopause region (close to 100hPa); each plume produces detraining mass and cloud condensate at each layer and also modifies the environmental meteorological (temperature, moisture, wind) profiles felt by the next plume. The large-scale cloud condensate scheme, based on probability distribution functions (PDFs) of the moisture field assumed inside a grid box, incorporates changes to condensate and anvil clouds obtained from RAS, then computes new sources for the anvil cloud (freezing of existing condensate) and new partitioning of condensate, before computing loss due to evaporation, auto-conversion of liquid or mixed-phase condensate, sedimentation of frozen condensate, and accretion of condensate by falling precipitation. Details of these processes are given in Rienecker et al. [2008].

Atmospheric moisture in GEOS-5 is analyzed in the form of relative humidity along with other analysis variables including the stream function, the unbalanced part of velocity potential, temperature, surface pressure, ozone, cloud liquid and ice water, and regression coefficients for radiance bias correction. The optimal analysis is obtained by finding the best fit to the six-hour forecast field and observations while minimizing the cost function. Various observation types such as radiosondes and radiances from the Microwave Humidity Sounder (MHS), the Special Sensor Microwave/Imager (SSM/I) and the Atmospheric Infrared Sounder (AIRS) provide information to constrain the
moisture fields. AIRS, in particular, gives information on vertical structure for atmospheric temperature and moisture due to its sounding capability. A total of 152 spectral channels from AIRS are currently assimilated in GEOS-5; these are selected from the 281-channel “NWP subset” of AIRS radiance measurements. While most of the AIRS channels are subject to water vapor absorption, it is most significant in the infrared portion of the spectrum from 6.20\(\mu\)m to 8.22\(\mu\)m. At present, 49 of the water vapor channels from this band are being assimilated. These water vapor absorption channels peak at different pressure levels in the troposphere, providing information on the vertical distribution of moisture for the analysis. The observation error covariance matrix for radiance data is assumed to be diagonal, i.e., possible inter-channel correlations are neglected. The error values assigned to the water vapor channels are larger than those assigned to temperature channels in order to account for the possibility of inter-channel error correlations, the effects of undetected residual cloud, and the non-linear nature of the moisture channels that is not accounted for in the formulation of Jacobians in the 3D-Var analysis.

For comparison with MLS, the GEOS-5 data are interpolated onto the MLS measurement locations in both space and time. Previous studies [e.g., Li et al. 2007; Su et al. 2006b] have shown that such interpolation is particularly important because of potential artifacts that arise from incomplete sampling of the diurnal cycle by polar-orbiting satellites. For horizontal sampling, GEOS-5 data are collocated with MLS data by averaging the data in boxes of 3° along the track and 1° across the track centered on the MLS measurement locations (approximately matching the MLS footprints). Vertically, the respective MLS averaging kernels [Read et al. 2007, Schwartz et al. 2008] are applied to the GEOS-5 \(\text{H}_2\text{O}\) mixing ratio and temperature products. The GEOS-5
IWC data are averaged in vertical boxes of ~3.5 km centered on MLS data points to mimic the MLS IWC vertical resolution [Wu et al. 2008].

3. Global distribution of UT H\textsubscript{2}O and IWC

3.1. Annual mean maps

Figure 1 shows four-year mean (January 2005 to December 2008) annual IWC, H\textsubscript{2}O and T maps at three pressure levels (100, 147, and 215 hPa), from both MLS observations and GEOS-5 analyses. Contours enclosing GEOS-5 OLR of 240 Wm-2 or less (indicating regions of deep convection), and potential vorticity contours of 3.5 \times 10^{-6} Km^2kg^{-1}sec^{-1} (PV3.5, indicating the poleward edge of the dynamical tropopause), are superimposed. Both MLS and GEOS-5 data show that at 215 and 147 hPa, large IWC and H\textsubscript{2}O and low OLR are collocated in the tropical western Pacific, west central Africa and northern South America. The PV3.5 contour generally encloses the large IWC and H\textsubscript{2}O values, supporting the notion [e.g. Wirth 1999, Elbern et al. 1998] that it generally marks the boundary between tropospheric and stratospheric air. Poleward of the PV3.5 contours, there are relatively few clouds and H\textsubscript{2}O concentrations are much smaller. The PV3.5 contours also enclose warm regions at 215 hPa, related to latent heat release from tropical convection, and low T values at 147 and 100 hPa, where adiabatic cooling in upwelling dominates as convective influence extends up to the cold tropopause. Higher stratospheric T values are found poleward of the PV3.5 contour. At 100 hPa, both MLS and GEOS-5 have an H\textsubscript{2}O minimum over the Western Pacific, extending somewhat to the east of the lowest OLR and to the north of peak IWC, but coincident with minimum T. The convective regions over equatorial South America and Africa are warmer and moister at 100 hPa than that over the Western Pacific, consistent with the premise that T
controls humidity near the tropical tropopause [Holton and Gettelman 2001; Read et al. 2004], although convective dehydration may also play a role [Sherwood and Dessler 2001].

GEOS-5 IWC and H$_2$O at 215 hPa are quite similar to MLS fields both in morphology and in magnitude, although GEOS-5 is moister than MLS at this level. GEOS-5 has less 147 hPa IWC and more H$_2$O than MLS. This might be due to too much sublimation and/or too little condensation in the model’s microphysics. GEOS-5 at 100 hPa has smaller values of IWC and is drier in the tropics and wetter in the extra-tropics than MLS. The stronger latitudinal gradient of 100 hPa H$_2$O in GEOS-5 may indicate some deficiencies in its representation of mass transport from the troposphere to the stratosphere. GEOS-5 is on average warmer than MLS in the tropics by ~3 K at 215 hPa and ~1 K at 147 hPa, which is not unexpected due to the known MLS low biases in cloudy regions (~2 K at 215 hPa and ~0.5 K at 147 hPa, Schwartz et al. [2008]). MLS and GEOS-5 tropical 100 hPa temperatures agree to within ~0.5 K.

Figure 2 shows the 4-year (January 2005 to December 2008) tropical (15°S-15°N) mean profiles of IWC, H$_2$O and T from both MLS and GEOS-5, along with their daily standard deviations from the 5-year mean. The GEOS-5 IWC profile agrees within 12% with MLS at 215 hPa to 147 hPa but becomes 30%, 50% and 70% smaller than the MLS IWC at 121 hPa, 100 hPa and 83 hPa, respectively. Although these are all within the estimated (factor of 2) uncertainty of MLS measurements, the smaller GEOS-5 IWC amounts above 147 hPa suggest that convection in the model does not extend to sufficiently high altitudes.

The GEOS-5 and MLS differences in tropical H$_2$O and T appear to have a source other than that for the IWC differences. GEOS-5 H$_2$O is limited to values corresponding
to 100% or less relative humidity, and an overestimate of T could possibly lead to an
overestimate of H$_2$O. Figure 2 shows that, after accounting for the known MLS ~2 K cold
bias, GEOS-5 215 and 178 hPa tropical T is still larger than that of MLS by ~1 K, which
may contribute to the large H$_2$O in GEOS-5 at the two levels. However, the saturation
H$_2$O mixing ratio profile computed using GEOS-5 T suggests that this can not explain the
H$_2$O discrepancy between MLS and GEOS-5 at 147 hPa altitude and above. In summary,
GEOS-5 215 hPa tropical H$_2$O is larger than that of MLS by ~50% and 215 hPa T is
larger by ~3.5 K, both of which are significant compared to estimated MLS measurement
uncertainties. GEOS-5 and MLS tropical 147 hPa H$_2$O agree within ~30% (only slightly
larger than the estimated 20% MLS measurement uncertainty) and 147 hPa T agree to
~0.2 K (within the MLS measurement uncertainty). GEOS-5 and MLS tropical 100 hPa
H$_2$O agree to ~15% and T to 0.2 K (both within the MLS measurement uncertainty).

3.2. Seasonal maps

Figure 3 shows seasonal MLS IWC and H$_2$O maps at 100, 147 and 215 hPa. The
overlaid 240-Wm$^{-2}$ contour generally encloses the highest values of both IWC at all three
pressure levels and H$_2$O at 147 and 215 hPa. High IWC in December to February (DJF)
is concentrated south of the Equator in central-south Africa, the Western Pacific and
South America. In June-August (JJA), the maximum IWC is distributed over the South
Asian monsoon region, while South American convection has shifted northward to cover
Central America. Seasonal variations over the Western Pacific are relatively small. The
seasonal variation of the ITCZ (Inter-Tropical Convection Zone) and IPCZ (Inter-Pacific
Convection Zone) is also apparent in MLS IWC.

At 215 hPa, maxima in both IWC (Figure 3a) and H$_2$O (Figure 3b) are collocated
with low OLR, indicating convective moistening of the UT in all seasons. At 147 hPa, the
H$_2$O maxima are over the western Pacific in DJF, and over southern Asia in JJA, in both cases slightly north of the strongest convection. Studies using MLS data [e.g. Fu et al. 2006; Park et al. 2007] have shown convectively-lofted H$_2$O is trapped in the strong anticyclone over the Tibetan Plateau during the Asian summer monsoon, where IWC and H$_2$O are seen distributed across the tropopause (PV3.5 contour) into the lower stratosphere. At 100 hPa, the minimum H$_2$O values are found in the cold region over the tropical western Pacific in all four seasons.

Comparing MLS and GEOS-5 maps (shown in Supplemental Figure 1), there is overall similarity in both IWC and H$_2$O in terms of seasonal variations, with the differences shown in Figures 1 and 2 also evident in the seasonal maps. However, GEOS-5 shows a much less evident IWC ITCZ feature than MLS, especially in DJF and JJA. This is thought to be due to GEOS-5 underestimating the height of convective penetration, as has been mentioned earlier. We note, however, that GEOS-5 has less discrepancy with MLS than GEOS-4.

4. Time evolution of UT H$_2$O and IWC

4.1. Latitude-time evolution

Latitude-time sections of zonal-mean IWC and H$_2$O from MLS (Figure 4a) and GEOS-5 (Figure 4b) further illustrate the seasonal evolution from August 2004 to July 2009. The patterns of evolution of 215 and 147 hPa H$_2$O and IWC, as well as 100 hPa IWC are qualitatively similar, while the 100 hPa H$_2$O pattern is noticeably different in both MLS and GEOS-5. At 215 and 147 hPa in MLS and GEOS-5, the meridional movements of high IWC and H$_2$O are in phase and follow the Sun, with highest IWC and H$_2$O in the northern summer. While the GEOS-5 147 and 215 hPa IWC are in acceptable agreement (within ~15%) with MLS, the GEOS-5 147 and 215 hPa H$_2$O maxima are
larger than MLS by ~30% to 50% throughout the year, as is also evident in Figure 1. MLS 100 hPa IWC is confined to a narrow latitudinal band, which shifts seasonally in a similar way to 215 and 147 hPa IWC. The underestimate of 100 hPa IWC in GEOS-5 compared to MLS is clearly a year-round feature. The seasonal cycle in 100 hPa H\textsubscript{2}O is dramatically different from that at 147 and 215 hPa. The 100 hPa H\textsubscript{2}O is correlated with the annual cycle of temperature, with minima occurring over the Equator in boreal winter and spring. Annual maxima occur more or less simultaneously in both hemispheres (around August), with larger values of 100 hPa H\textsubscript{2}O in the northern hemisphere (NH) than in the southern hemisphere (SH). GEOS-5 NH (0°-60°N mean) 100 hPa H\textsubscript{2}O values are lower than MLS by ~20%. In the SH (0°-60°S), GEOS-5 shows larger H\textsubscript{2}O (~20% larger than MLS) which also persists longer throughout the year than in the NH. This is most likely due to problems in the model related to relaxation to a constant moisture mixing ratio in the stratosphere, which may not be related to the moist physical processes in the troposphere.

There may be evidence for a two-year cycle in the magnitude of the H\textsubscript{2}O minimum at 100 hPa in both MLS and GEOS-5, which could be a manifestation of the tropical biennial oscillation (TBO) [e.g. Li et al. 2001]. Longer-term data are needed to determine if this is really the case.

4.2. Height-time evolution

Figure 5a shows the height-time section of tropical (15°S-15°N) daily mean MLS H\textsubscript{2}O anomalies from the 5-year (August 2004 to July 2009) mean, illustrating the so-called “tape-recorder” signal [Mote et al. 1996]. There is a clear vertical transport of H\textsubscript{2}O from 121 hPa through the stratosphere. An apparent two-year cycle in the magnitude of the tape-recorder signal, particularly evident in the magnitude of the boreal-winter minimum
around 100 hPa, may be related to the quasi biennial oscillation (QBO) [e.g. Baldwin et al., 2001] or TBO [e.g. Li et al. 2001]. H$_2$O signals imprinted at the bottom of the stratosphere are maintained through the stratosphere for 12 to 18 months as the air rises. The tape recorder is less clear in the upper stratosphere, although the two intense dry phases are especially evident up to ~1 hPa. The seasonal cycle of tropical GEOS-5 H$_2$O (Figure 5b) near 100 hPa has a similar magnitude to that of MLS. The amplitude of the GEOS-5 annual cycle at pressures below 68 hPa drops more rapidly than that of MLS, although the ascent rates are quite similar. This attenuation of the signal in GEOS-5 arises because of its relaxation of stratospheric moisture to a constant value close to 6 ppmv. Such a tape recorder signal does not appear in the IWC field, since the warmer stratosphere quickly sublimes ice particles, and ice is subject to sedimentation.

4.3. Longitude-time evolution

Figure 6 shows the longitude-time section of tropical (15°S-15°N) mean MLS IWC and H$_2$O anomalies, relative to monthly mean data. On inter-annual time scales, El Niño-Southern Oscillation (ENSO) related signals dominate the variability. The El Niño (warm phase) patterns at 215 hPa (Figure 6b) are characterized by an enhancement of IWC and H$_2$O in the eastern Pacific accompanied by a reduction of IWC and H$_2$O in the western Pacific from late 2004 to early 2005 and late 2006 to early 2007. The opposite patterns are seen during the cold La Niña phase from late 2007 to early 2008 and late 2008 to early 2009. IWC anomalies at 100 hPa (Figure 6a) appear in phase with those at 215 hPa, but the H$_2$O anomalies at 100 hPa are out of phase with the 215 hPa IWC and H$_2$O. The H$_2$O anomalies at 100 hPa are less localized in longitude than the IWC anomalies, and are strongest over the Indian Ocean (also see Figure 8 later in section 5). GEOS-5 IWC and H$_2$O data (see Supplemental Figure 2) show a similar pattern.
5. The UT response to ENSO

The MLS simultaneous and collocated measurements of H$_2$O, IWC and T provide an unprecedented characterization of the UT response to ENSO variations. Figure 7 shows time series of monthly mean Niño 3.4 SST (defined by Trenberth [1997] as the SST averaged for longitudes 170°-240° and latitudes 5°S-5°N), and the tropical (15°S to 15°N) mean MLS IWC and H$_2$O at 100, 147, and 215 hPa. The time series of tropical mean IWC and H$_2$O anomalies have similar time evolution to that of the Niño 3.4 SST. We choose DJF 2005 and 2008 to represent, respectively, the warm and cold phases of ENSO. Figures 8a and b show the corresponding IWC, H$_2$O and T anomalies for the two phases. A typical dipole pattern [Semazzi and Indeje, 1999] is seen in IWC and H$_2$O at 215 and 147 hPa, with positive anomaly in the central-eastern Pacific and negative anomaly in the western Pacific during El Niño and the opposite pattern during La Niña. At 100 hPa in DJF 2005, a positive IWC anomaly and a negative H$_2$O anomaly in the central eastern Pacific are accompanied by anomalies of opposite sign in the western Pacific. The opposite signatures are evident in DJF 2008. The negative IWC anomaly over the western Pacific during El Niño is an indication of reduced convection in response to warmer SST in the central-eastern Pacific [Su et al., 2002]. This is possibly associated with anticyclones west of the localized SST heating, as suggested by Highwood and Hoskins [1998]. The 100 hPa H$_2$O anomalies are particularly strong in the Indian Ocean. Whether these particularly strong anomalies represent a teleconnection through “atmospheric bridge” [Alexander et al., 2002; Klein et al., 1999] or a response to local SST anomaly is not clear. The ENSO response in GEOS-5 (see Supplemental Figure 3 and Figure 4) is similar to that of MLS.
6. Summary and Conclusions

We have presented Aura MLS UT H$_2$O and IWC measurements made from August 2004 through July 2009, with comparisons to GEOS-5 analyses of these quantities for the same period. The global distributions of four-year-mean annual and seasonal averages, and tropical temporal evolution and response to ENSO, are given. Some comparisons with MLS and GEOS-5 UT temperatures are also discussed.

Agreement between MLS and GEOS-5 H$_2$O at 100 and 147 hPa is generally within the estimated MLS measurement accuracy of ~20% (albeit slightly, but probably not significantly, worse, ~30%, at 147 hPa). GEOS-5 has (during all seasons) smaller minimum tropical 100 hPa H$_2$O values, and moister extratropics, than MLS, thought to be caused by the model’s relaxation to fixed stratospheric H$_2$O concentrations. GEOS-5 215 hPa H$_2$O is larger than MLS by ~50%, probably because the GEOS-5 deep convection does not extend sufficiently high. IWC agreement is within the factor of 2 estimated accuracy of MLS, but comparisons of IWC vertical distributions also suggest that GEOS-5 deep convection does not extend sufficiently high. There appears to be a significant difference in 215 hPa temperature, with GEOS-5 being ~1 K warmer after accounting for the known ~2 K cold bias in MLS. MLS and GEOS-5 147 and 100 hPa temperatures agree on average to within ~0.2 K, well within the MLS uncertainty.

The tropical distributions of 215 hPa H$_2$O and IWC are positively correlated; large values of both are associated with regions of deep convection, as previously found [e.g. Su et al. 2006a]. The distributions of 100 hPa H$_2$O and IWC are negatively correlated, with less H$_2$O and more IWC in regions of deep convection, as expected from “freeze-drying” of uplifted air. The transition from positive to negative correlation occurs
between 147 and 100 hPa. The tropical 215 hPa H$_2$O and IWC seasonal variations track regions of deep convection, while the 100 hPa H$_2$O seasonal variations track 100 hPa cold regions. The largest values of tropical H$_2$O occur in the northern summer over the South Asia monsoon region; the smallest values of H$_2$O occur in the northern winter over the western Pacific.

Tropical zonal mean H$_2$O and IWC exhibit strong seasonal and interannual variations. There is an indication of a two-year cycle in the tropical UT boreal winter H$_2$O minimum, possibly related to the roughly two-year oscillation (TBO) in tropical SST [Li et al. 2001]. The stratospheric H$_2$O tape-recorder signal displays a two-year cycle, which may be related to the QBO [Baldwin et al., 2001]. GEOS-5 H$_2$O appears to ascend faster through the upper tropical tropopause (121 hPa – 83 hPa,) than does MLS H$_2$O, and has a smaller amplitude seasonal cycle in the stratosphere (where moisture is relaxed to a constant value). A future GEOS objective is to implement a more realistic stratospheric moisture module having methane oxidation chemistry.

Fluctuations in tropical UT H$_2$O and IWC are associated with moderate El Niño and La Niña events that occurred during the 5-year period analyzed here. H$_2$O and IWC zonal mean fractional anomalies were ~10%. The IWC and H$_2$O deseasonalized 215 hPa anomalies exhibit a dipole pattern during El Niño (La Niña), with positive (negative) anomalies in the eastern Pacific and negative (positive) anomalies in the western Pacific. A strong positive (negative) 100 hPa H$_2$O anomaly occurs over the Indian Ocean during El Niño (La Niña).
Acknowledgements
The authors acknowledge the support from the Aura MLS project, Jet Propulsion Laboratory (JPL), California Institute of Technology, conducted under contract with NASA. We also acknowledge the support by NASA’s Modeling and Analysis Program (MAP) for the Global Modeling and Assimilation Office at NASA Goddard Space Flight Center. The GEOS-5 data assimilation system is run on NASA’s High-Performance Computing (HEC) resources at NASA’s Goddard and Ames Research Centers.
Figure Caption

Figure 1: Annual mean IWC, H$_2$O and temperature maps at 100, 147 and 215 hPa pressure levels from MLS observations (upper panels) and GEOS-5 analyses (lower panels). The black contour is the GEOS-5 OLR at 240 Wm$^{-2}$. The grey contour is the GEOS-5 PV3.5. The GEOS-5 data are averaged onto 3°×1° boxes centered on MLS measurement locations. MLS averaging kernels are applied to GEOS-5 H$_2$O and temperature data, and GEOS-5 IWC data are also vertically averaged in 3.5 km boxes centered on MLS data points. Four years of data from January 2005 to December 2008 are used to compute the averages shown in this Figure. Thus this is a four-year average of “annual mean”.

Figure 2: Tropical (15°S-15°N) mean IWC, H$_2$O and T profiles from both MLS (black) and GEOS-5 (blue). The profiles are averages of daily mean tropical profiles from January 2005 to December 2008. The standard deviations of daily profiles for MLS (gray-shade) and GEOS-5 (blue-dashed) are also shown, as well as the saturation specific humidity profile (red) computed using the GEOS-5 Temperature.

Figure 3: Seasonal mean MLS IWC (a) and H$_2$O (b) maps at 100, 147 and 215 hPa pressure levels. The black contour is the GEOS-5 OLR at 240 Wm$^{-2}$. The grey contour is the GEOS-5 PV3.5. Data from December 2004 to October 2008 are used to compute the seasonal averages shown here. Each season includes 3-month from four different years. For example, JJA seasonal map is the average of June-August 2005, June-August 2006, June-August 2007, and June-August 2008; DJF seasonal map is the average of December 2004-February 2005, December 2005-February 2006, December 2006-February 2007, and December 2007-February 2008.
Figure 4: Latitude-time sections of zonal-mean IWC and H₂O at 100, 147 and 215 hPa from (a) MLS observations and (b) GEOS-5 analyses, computed from daily zonal mean data.

Figure 5: Height-time section of tropical (15°S-15°N) mean H₂O anomalies from MLS (a) and GEOS-5 (b), computed from daily tropical mean data. MLS H₂O vertical averaging kernels are not applied to GEOS-5 H₂O in this plot.

Figure 6: Longitude-time section of tropical (15°S-15°N) mean MLS IWC and H₂O anomalies at 100 hPa (a) and 215 hPa (b), computed from monthly mean data.

Figure 7: Time series of monthly mean SST (top panels) in the Niño 3.4 region (longitude 170°-240° and latitude 5°S-5°N), and (lower panels) monthly tropical (15°S-15°N) mean MLS IWC and H₂O.

Figure 8: Maps of 2005 DJF and 2008 DJF anomalies of IWC, H₂O and T from MLS measurements. The anomalies are computed as the difference between 2005 or 2008 DJF averages and the four-year (2005-2008) average. Note that the 2005 DJF covers three months from December 2004 to February 2005, while the 2008 DJF refers to December 2007 to February 2008 period.
References:

1 **Supplementary Figure 1:** Similar to Figure 3 but with GEOS-5 data.

2 **Supplementary Figure 2:** Similar to Figure 6 but with GEOS-5 data.

3 **Supplementary Figure 3:** Similar to Figure 7 but with GEOS-5 data.

4 **Supplementary Figure 4:** Similar to Figure 8 but with GEOS-5 data.
Figure 1
Figure 2
Figure 3
Figure 4

(a) MLS

Figure 4

(b) GEOS-5
(a) Aura MLS H$_2$O, 15°S to 15°N Latitude

(b) GEOS-5 H$_2$O, 15°S to 15°N Latitude

Figure 5
Figure 6
Figure 7
Figure 8
Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 3
Supplementary Figure 4