Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment.

The present effort to develop polymer-based mercury-vapor sensors complements the work reported in NASA Tech Briefs “Detecting Airborne Mercury by Use of Palladium Chloride” (NPO-44955), Vol. 33, No. 7 (July 2009), page 48 and “Detecting Airborne Mercury by Use of Gold Nanowires” (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions — more specifically, at temperatures in extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).
closer to room temperature than to the elevated temperatures (>100°C) needed for regeneration of sensors based on noble-metal films.

The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40°C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

This work was done by Abhijit Shevade, Margaret Ryan, Margie Homer, Adam Kisor, April Jewell, Shiao-Pin Yen, Kenneth Manatt, Mario Blanco, and William Goddard of Caltech for NASA’s Jet Propulsion Laboratory.

In accordance with Public Law 96-517, the contractor has elected to retain title to this invention. Inquiries concerning rights for its commercial use should be addressed to:

Innovative Technology Assets Management
JPL
Mail Stop 202-233
4800 Oak Grove Drive
Pasadena, CA 91109-8099
E-mail: iaooffice@jpl.nasa.gov
Refer to NPO-45003, volume and number of this NASA Tech Briefs issue, and the page number.

Figure 2. Small Changes in Electrical Resistances of four polymer/carbon composite films to airborne mercury vapor were observed at concentrations as low as tens of parts per billion.

Lattice-Matched Semiconductor Layers on Single Crystalline Sapphire Substrate

Rhombohedrally grown lattice-matched semiconductor alloys can be used in photovoltaic solar cells and photon detectors.

Langley Research Center, Hampton, Virginia

SiGe is an important semiconductor alloy for high-speed field effect transistors (FETs), high-temperature thermoelectric devices, photovoltaic solar cells, and photon detectors. The growth of SiGe layer is difficult because SiGe alloys have different lattice constants from those of the common Si wafers, which leads to a high density of defects, including dislocations, micro-twins, cracks, and delaminations.

This innovation utilizes newly developed rhombohedral epitaxy of cubic semiconductors on trigonal substrates in order to solve the lattice mismatch problem of SiGe by using trigonal single crystals like sapphire (Al₂O₃) as substrate to give a unique growth-orientation to the SiGe layer, which is automatically controlled at the interface upon sapphire (0001). This technology is different from previous silicon on insulator (SOI) or SGOI (SiGe on insulator) technologies that use amorphous SiO₂ as the growth plane.

A cubic semiconductor crystal is a special case of a rhombohedron with the inter-planar angle, \(\alpha = 90° \). With a mathematical transformation, all rhombohedrons can be described by trigonal crystal lattice structures. Therefore, all cubic lattice constants and crystal planes (hkl)’s can be transformed into those of trigonal crystal parameters. These unique alignments enable a new opportunity of perfect lattice matching conditions, which can eliminate misfit dislocations. Previously, these atomic alignments were thought to be impossible or very difficult. With the invention of a new x-ray diffraction measurement method here, growth of cubic semiconductors on trigonal crystals became possible.

This epitaxy and lattice-matching condition can be applied not only to SiGe (111)/sapphire (0001) substrate relations, but also to other crystal structures and other materials, including similar crystal structures which have point-group rotational symmetries by 120° because the cubic (111) direction has 120° rotational symmetry. The use of slightly miscut (<±10°) sapphire (0001) substrate can be used to improve epitaxial relationships better by providing attractive atomic steps in the epitaxial process.

This work was done by Sang Choi and Glen King of Langley Research Center and Yeonjoon Park. Further information is contained in a TSP (see page 1). LAR-16868-1

NASA Tech Briefs, November 2009 21