
Compositional Verification of a Communication
Protocol for a Remotely Operated Vehicle?

Alwyn E. Goodloe1 and César A. Muñoz2

1 Alwyn.Goodloe@nianet.org

National Institute of Aerospace
100 Exploration Way, Hampton, VA 23666, USA

2 Cesar.A.Munoz@nasa.gov

National Aeronautics and Space Administration
Langley Research Center, Hampton, VA 23681, USA

Abstract. This paper presents the specification and verification in the
Prototype Verification System (PVS) of a protocol intended to facili-
tate communication in an experimental remotely operated vehicle used
by NASA researchers. The protocol is defined as a stack-layered com-
position of simpler protocols. It can be seen as the vertical composition
of protocol layers, where each layer performs input and output message
processing, and the horizontal composition of different processes concur-
rently inhabiting the same layer, where each process satisfies a distinct
requirement. It is formally proven that the protocol components satisfy
certain delivery guarantees. Compositional techniques are used to prove
these guarantees also hold in the composed system. Although the pro-
tocol itself is not novel, the methodology employed in its verification
extends existing techniques by automating the tedious and usually cum-
bersome part of the proof, thereby making the iterative design process
of protocols feasible.

1 Introduction

A Remotely Operated Aircraft (ROA) is a distributed system where its crit-
ical components are dispersed between the airborne vehicle and the ground sta-
tion. When flying, commands from the ground-based pilot are broadcast to the
aircraft and telemetry data from the aircraft are broadcast to the ground sta-
tion. Hence, communication between the air and ground components is critical
for the safe operation of the vehicle. This paper presents the formal verification,
in the Prototype Verification System (PVS) [15], of a communications proto-
col designed for use in AirSTAR [2], a dynamically scaled experimental aircraft
designed and built by NASA’s Langley Research Center (LaRC) for use as a
? This work was supported by the National Aeronautics and Space Administration

under NASA Cooperative Agreement NNX08AE37A awarded to the National Insti-
tute of Aerospace. This work was done while the second author was resident at the
National Institute of Aerospace. Authors are in alphabetical order.

testbed for research on software health management and flight control. This
protocol is formed from the composition of several simpler protocols structured
as a protocol stack. This paper focuses on the formal verification of delivery
properties of the communication protocol.

The verification approach employs a compositional technique where the de-
livery property of the composed protocol is lifted from the delivery properties of
its components. Most the proofs are automated via PVS’s proof scripting lan-
guage. This promotes the iterative design of systems as laborious proofs need
not be repeated by hand at each design iteration.

The mathematical development presented in this paper has been formally ver-
ified in PVS. This development is electronically available from http://research.
nianet.org/fm-at-nia/IVHM.

2 Protocol Requirements

A ROA platform consists of an airborne vehicle and a ground station. Flight
commands are sent from the ground station to the vehicle and telemetry data
are sent from the aircraft to the ground station. Developments in both the de-
sign and application of ROAs have led to a number of innovations in wireless
communication in this domain. For instance, a flock of ROAs may employ ad-
hoc networking to imbue the collection with a routing capability allowing for
sophisticated communication. AirSTAR, on the other hand, has a simple orga-
nization with one vehicle in the air and a single ground station, where the pilots
are rarely out of visual sight of the aircraft and this is unlikely to change over
the life of the aircraft. The aircraft currently uses a very simple communication
scheme in which all broadcast messages are treated alike. Flight commands are
time sensitive in the sense that if a message is lost or corrupted in transit, then
it should not be resent because it would be considered stale by the time a new
copy arrives. This requirement is called the weak delivery requirement. On the
other hand, engineers and researchers on the ground need to receive all data pro-
duced by the aircraft in order to analyze aircraft performance as well as to plan
future aircraft flights. Hence, the protocol should guarantee that all telemetry
data broadcast is eventually delivered. This requirement is called the guaranteed
delivery requirement.

Since the requirements of weak and guaranteed delivery are in some sense
orthogonal to each other, the protocol has been structured as two different pro-
tocols: the weak delivery protocol (WDP) and the guaranteed delivery proto-
col (GDP). The differences between WDP and GDP are similar to the differ-
ences between the User Datagram Protocol (UDP) and the Transmission Control
Protocol (TCP) of the Internet protocol suite. However, WDP and GDP are con-
siderably smaller, simpler, and more verifiable than UDP and TCP, which are
considered to be too complex to be used in AirSTAR. In addition to these two
protocols, other protocols are needed to support the communication between the
aircraft and the ground station. In particular, a link layer is considered that per-

2

forms error detection and multiplexes WDP and GDP messages into the physical
communication medium.

This paper focuses on functional correctness of delivery properties. The cor-
rectness criteria for guaranteed delivery is that messages are received in the order
they are sent. A liveness property says that the messages will eventually arrive.
In the case of weak delivery, the correctness criteria states that every message
received was in the sequence of messages that were sent. The protocol underwent
several iterations and, for that reason, a methodology that accommodated such
evolution has been employed.

3 Protocol Stack

A collection of protocols is structured in a protocol stack, where each layer
handles a different aspect of message processing. As a message moves down the
stack, each layer performs some processing and adds packet headers. As a mes-
sage moves up the stack, the corresponding packet headers are removed. Because
there is no network layer for routing, the layers of the protocol stack roughly cor-
respond to the application layer, transport layer, link layer, and physical layer.
Given that the physical layer is concerned with the details of the communication
hardware, it is not modeled in this analysis. Instead, its functional behaviour is
abstracted by a communication medium, which will be referred to as the ether.

At the top layer of the protocol stack is the application layer. All messages
sent and received from the application layer are presumed to be sent via WDP
or GDP depending on required message delivery guarantees. In other words, it
is assumed that the application chooses between the WDP and GDP protocol
when sending a message. The next layer down corresponds to the transport
layer and it is here that the core of the GDP and WDP protocols reside. WDP
simply sends a message, but provides no guarantee that the message ever arrived
at its destination. Hence messages may be lost or corrupted in transit and are
never resent. GDP is designed to provide its user with a guarantee that any
message sent is eventually received. The link layer is the next layer in the protocol
stack. Note that the GDP and WDP protocols directly interface with the link
layer as there is no network layer. The link layer performs error detection and
multiplexes the messages from the WDP and GDP layers. The ether models two
communication channels over which messages are sent and received.

The proposed protocol stack is illustrated in Figure 1. The protocol stack
can be viewed both vertically and horizontally. Vertically, each layer performs
a specific transformation on a message, adding headers as it traverses down
the stack and removing headers as it traverses up the stack. Horizontally, the
GDP and WDP lie at the same layer, but they behave differently as they satisfy
different requirements. These may be viewed as disjoint components occupying
the same layer in the stack, but possess no shared state. On the other hand,
the two layers interact with the same link layer. Consequently, the link layer
is shared between the WDP and GDP components. Each protocol in the stack

3

Fig. 1. Protocol stack

typically has a sender and receiver process. A message processed by the sender
at one node should be processed by the receiver at the destination node.

In the model of the protocol stack, the protocol layers are connected using
First In First Out (FIFO) queues. This structure is depicted in Figure 1, where
each queue is represented as a small rectangle with an arrow pointing in the di-
rection of the information flow with a label naming the queue attached. Ignoring
the details of the application layer, the messages to be sent by WDP and GDP
are modeled by a pair of sequences to-GDP and to-WDP. At the receiving process,
the messages are placed in the pair of sequences from-GDP and from-WDP. Note
that the ether is not a protocol layer, but a model of the transport medium.

4 Protocol Specification

A specification of the protocol stack described in the previous section has been
constructed using PVS, which provides a rich specification language and a power-
ful theorem prover. The use of a theorem prover, as opposed to a model checker,
allows for a specification that is more abstract than an implementation, but con-
crete enough to provide a detailed description of the design amenable to rapid
prototyping.

4.1 Ether

The ether is specified as a pair of multisets (bags) that represent, respectively,
input and output communication channels.

Ether = input : bag[LinkFrame] × output : bag[LinkFrame],

where LinkFrame is defined in Section 4.2. The specification of the ether con-
siders the fact that messages may be duplicated, corrupted, or dropped in the

4

physical layer or while in transit. The possible actions are defined by the type
EtherAction as follows:

DropIn(linkframe:LinkFrame) : DropIn? +
DupIn(linkframe:LinkFrame) : DupIn? +
NoiseIn(linkframe:LinkFrame) : NoiseIn?

where the constructor is defined left of the colon and a recognizer for the type
defined to the right of the colon. The ether state machine, in effect, perturbs
the ether by taking the current state and the action to perform and returns a
transformed ether with a frame either corrupted, dropped, or duplicated. The
PVS code for dropping a frame on the inbound was :

next(s:Ether,a:EtherAction) :Ether = CASES a OF

DropIn(linkframe) : s WITH [‘ether‘input :=
remove(linkframe,s ‘ether‘input)]

...

which returns a new ether state with the value linkframe removed from the
ether’s input channel. Note the back-quote symbol is the PVS field access oper-
ator. The state machines are functional models, but above this layer the model
is relational. In this case, the relation

ether?(s,n:Ether) : bool = ∃(a: EtherAction) : n = next(s,a),

non-deterministically selects a valid action for the state machine to execute.

4.2 Link Layer

The link layer is intended to serve as an interface between the protocol stack
and the communication medium, since the physical layer is abstracted away, as
well as to provide common services needed by the protocols that lay at the next
higher layer. The link layer also performs a check-sum error detection. Further-
more, the link layer multiplexes messages sent from the WDP and GDP layers
wrapping them in a common header, and demultiplexes them on the receiving
side removing this header and sending the unwrapped frame to the appropriate
protocol for processing.

A link layer frame is composed of a check-sum and either a GDP or WDP
frame:

LinkFrame = cs: CheckSum × frame: Frame,

where the type Frame can be thought of as a disjoint sum of WDP and GDP
frames. The details of performing a check-sum are abstracted way. The type
LinkInterface is a 4-tuple formed from the four queues GDP-to-LL, WDP-to-LL,
LL-to-GDP, and LL-to-WDP. The type Link is a tuple formed from the Ether and
the LinkInterface. Hence, the type Link represents the state of all information
entering and leaving the link layer.

5

The link layer functionality is represented by a transition function that, given
the current Link and the action to perform, yields the next state, where the
possible actions are: send a WDP message, send GDP message, and receive a
message. If sending a WDP or GDP message, the sate machine removes a frame
from the corresponding GDP-to-LL or WDP-to-LL queue, forms a link layer frame
as the product of that frame and its check-sum, and places the result in the
ether’s input channel. If receiving a message, a LinkFrame is removed from the
ether’s output channel, the check-sum is verified and if invalid, the packet is
dropped. Otherwise, the protocol checks if the packet is a GDP or WDP frame,
strips off the check-sum, and places the message on the appropriate LL-to-GDP
or LL-to-WDP queue. The state machine receive actions are expressed in PVS as
follows:

Receive(linkframe) : IF member(linkframe,s ‘ether‘output) THEN

IF ¬checksum?(linkframe) THEN

s WITH [‘ether‘output := remove(linkframe,s ‘ether‘output]
ELSE CASES linkframe‘frame OF

GDP(gdpframe) : s WITH [
‘link‘ll_to_gdp := enqueue(gdpframe,s ‘link‘ll_to_gdp) ,
‘ether‘output := remove(linkframe,s ‘ether‘output)] ,

WDP(wdpframe) : s WITH [
‘link‘ll_to_wdp := enqueue(wdpframe,s ‘link‘ll_to_wdp) ,
‘ether‘output := remove(linkframe,s ‘ether‘output)]

ENDCASES

ENDIF

4.3 Weak Delivery Protocol

The Weak Delivery Protocol is extremely simple and so is its model. The type WDP
is a 5-tuple formed from the two sequences to-WDP and from-WDP, the two queues
App-to-WDP and WDP-to-App, and the LinkInterface. Sending a message is
modeled as removing a message from the App-to-WDP queue and adding it to
the WDP-to-LL queue. Receiving a message is modeled as removing a message
from LL-to-WDP queue and adding it to the WDP-to-App queue.

4.4 Guaranteed Delivery Protocol

The Guaranteed Delivery Protocol shall satisfy the guaranteed delivery require-
ment. Following the standard solution to this problem, GDP is designed as a
sliding-window protocol [19]. Discussions with the AirSTAR engineers revealed
a communication pattern that led to a sliding-window protocol with block ac-
knowledgment developed by Gouda [7, 8]. Although an informal proof may be
found in the literature, the one presented in this paper appears to be the first
attempt at a formal mechanical proof of the protocol.

6

Each GDP message has a sequence number that acts as an identifier. The
receiver replies with a message acknowledging the receipt of a contiguous block
of sequence of numbers. The sender and receiver maintain bounded windows,
also called windows. The sender window ackd contains the messages sent that
are waiting for a block acknowledgment. The receiver window, called rcvd, con-
tains the messages received but not yet delivered to the application layer. The
upper bounds of the sender’s and receiver’s windows are called, respectively, sw
and rw. Each window entry has two fields: a data field and a Boolean mask field.
The ackd mask field is set to false when that message is sent and true when an
acknowledgment is received. The rcvd mask field is set to true when a message
is received. The data in the buffers may be viewed as being indexed by the se-
quence numbers, although in the actual specification some amount of machinery
is needed to map an unbounded range of sequence numbers to a bounded buffer.

The sender maintains the following pointers. The variable ns is a pointer to
the sequence number of the next data item to be sent and the variable na is
a pointer to the first sequence number that has yet to be acknowledged. That
is, sequence numbers below na have all been acknowledged as received by the
sender, but sequence number na has not yet been acknowledged. An invariant
na ≤ ns ≤ na + sw is maintained by the sender indicating that the window of
sent but not acknowledged data is of size at most sw. The sender will not send
messages with a sequence number greater than na+ sw until data message na is
acknowledged. The sender may receive acknowledgments for sequence numbers k,
where na ≤ k < ns, in any possible order; yet, only when a block acknowledgment
for the contiguous sequence numbers (na,n), where n < ns, has been received is
the value of na slid forward to n+ 1. If a timeout action occurs before message
na is acknowledged, then it is resent.

The receiver maintains the following pointers. The variable nd points to the
lowest sequence number that has yet to be delivered to the application layer. The
variable lr points the highest sequence number that has yet to be received with
the constraint that lr ≤ nd + rw. The receiver accepts messages for sequence
numbers k, where lr ≤ k < nd+rw, in any order, and ignores messages out of this
range. When the receiver has received the contiguous block of sequence numbers
(nd,n) the pointer nd is slid forward to n+1 and the corresponding messages are
delivered to the application layer. The variable la points to the last acknowledged
sequence number, i.e., messages with a sequence number below la have all been
acknowledged. Note that messages with a sequence number n, where la ≤ n ≤
nd−1, have been received and delivered, but not yet acknowledged. Periodically,
GDP sends the block acknowledgment for sequence numbers (la, n− 1) and la
is reset to nd.

4.5 Application Layer

The sender and receiver processes at the application layer are each composed
of two state machines. At the sender, one machine maintains a pointer to the
next message in to-GDP to be sent, copies that message to App-to-GDP, and

7

increments the pointer. The other machine behaves similarly by copying mes-
sages from to-WDP to App-to-WDP. The receiver processes move messages from
GDP-to-App to from-GDP and from WDP-to-App to from-WDP.

4.6 Composing Models

For each one of the WDP and GDP protocols, it will be assumed that there
are two processes: a sender process and a receiver process. The WDP sender
and receiver processes are called WDPSender? and WDPReceiver?, respectively.
Similarly, the GDP sender and receiver processes are called GDPSender? and
GDPReceiver?, respectively. These processes behave in a non-deterministic way.
Hence, each one of them is defined as a relation between the current state and one
of the possible next states. For instance, GDPSender?, which relates the current
state of the GDP sender process and a possible next state, is defined as either
a GDPSenderNext transition, a LinkNext transition, or a EtherNext transition,
where the fields that are not modified by the transitions remain unchanged. The
transitions are a function from the current state and an action to perform to
the next state. In order to model the non-deterministic selection of actions, exis-
tential quantifiers are used to generate actions for each transition. The relation
GDPSender? is formally expressed as follows:

GDPSender?(s, n : GDPSender) =
(∃ a : GDPSenderAction. n = GPDSenderNext(s, a))∨
(∃ a : LinkAction. nl = LinkNext(sl, a)
∧ n‘App to GDP = s‘App to GDP ∧ s‘winsender = n‘winsender)∨

(∃ a : EtherAction. ne = EtherNext(se, a)
∧ n‘link = s‘link ∧ n‘App to GDP = s‘App to GDP

∧ s‘winsender = n‘winsender),

where s and n stand for the current and next GDPSender state, respectively, and
the back-quote symbol is the field access operator. The projections of states s, n
into Link and Ether states are denoted by sub-indices l and e, respectively. The
GDP receiver and WDP processes have a similar model.

5 Protocol Verification

This paper focuses on the functional correctness of WDP and GDP. The func-
tional correctness of a system is usually expressed by invariant safety and liveness
properties, i.e., predicates that hold in every reachable state of the system. For
the purpose of this verification, a system of two distributed nodes is considered,
one of which is the sender and the other is the receiver. The two nodes interact
only trough the ether.

8

There are many relationships that are local to either the sender or the re-
ceiver. For instance, the property that states that the index of the next message
to be sent is greater than or equal to the index of the next message waiting to
be acknowledged, i.e., na ≤ ns, only concerns the sender, and the property that
states that the index of the next message to be delivered to the application layer
is greater than or equal to the index of the last message to be acknowledged, i.e.,
la ≤ nd, only concerns the receiver. As these properties can be described solely
in terms of the states of the GDP sender or the GDP receiver processes, they can
be easily encoded using the PVS’s subtype and dependent type system. These
generate type correctness conditions, which most of the time can be automati-
cally proved by the PVS type checker. The remainder of this section will focus on
properties that relate the sender and receiver processes and consequently require
more complex reasoning.

Consider the case of a system of two nodes exclusively running the WDP
protocol. The state of this system, represented by the type WDPSystem, is a n-
tuple composed of the union of the fields in WDPSender and WDPReceiver such
that the input and output channels of the ether interface in the sender are
connected, respectively, to the output and input channels of the ether interface
in the receiver. The invariant predicate that expresses the correctness property
of WDP is defined as follows:

wdp sound(s : WDPSystem) ≡ from-WDPs ⊆ to-WDPs,

where s refers to a reachable state. Henceforth, variables are sub-indicated with
the state to which they belong, e.g., from-WDPs refers to state of the sequence
from-WDP in state s and to-WDPs refers to the state of the to-WDP sequence in
s. This invariant states that all WDP messages that the receiver node delivers
to the application layer were indeed sent by the sender’s application layer.

In the case of a system of two nodes exclusively running the GDP protocol,
the state, represented by the type GDPSystem, is a n-tuple composed of the union
of the fields in GDPSender and GDPReceiver. The ether in the sender and receiver
sides are connected in a similar way as in the WDP. The invariant predicate that
expresses the correctness property of GDP is defined as follows:

gdp sound(s : GDPSystem) ≡ from-GDPs � to-GDPs,

where � is the prefix relation between sequences. This invariant states that GDP
messages are delivered by the receiver to the application layer in the same order
as they were sent by the sender’s application layer.

For GDP, a traditional fairness property [16] is considered, which states that
all messages in the to-GDPqueue are eventually sent. That is, for every message
in to-GDP, it is eventually the case that a state is recorded where each message
has been sent. Since it is an invariant that ns always points to the next item to
be sent, the fairness property can be stated as saying that given any run of the
protocol, for every sequence number m the run records a state where ns > m.
This is stated formally as follows:

fair[(run)] = λ(r : (run)) : ∀(m : Nat) : ∃(n : Nat) : rn‘ns > m.

9

The predicate live states that all data is eventually delivered. Formally, this is
expressed as a predicate on the runs of the protocol as follows:

live[(run)] = λ(r : (run)) : ∀(m : Nat) : ∃(n : Nat) : rn‘nd > m.

The liveness property is then given as:

liveness[(run)] = λ(r : (run)) : fair(r) ⇒ live(r).

The primary verification objective of this work is to formally prove that the
predicates, wdp sound, gdp sound, and liveness are indeed invariants when
both WDP and GDP run simultaneously in each node. This system is the asyn-
chronous composition of WDP and GDP and will be denoted by WDP ‖ GDP.
To verify wdp sound, gdp sound, and liveness in the composed system, a com-
positional approach is proposed where each invariant is independently proved
for its respective system, i.e., wdp sound is an invariant of WDP and gdp sound
is an invariant of GDP, and then a general framework is provided that enables
the lifting of an invariant property on one system, e.g., gdp sound on GDP, to
an invariant on a composition of systems, e.g., gdp sound on WDP ‖ GDP.

5.1 Proving Invariants on WDP and GDP, Independently

Proving invariants on transition systems, such as WDP or GDP, are routine
in the theorem proving community. It usually entails the transformation of the
initial invariant to a weaker form that can be proved by induction. A simple
set of theories developed by Rusu [16] is used for proving invariants on discrete
transition systems by natural induction on the length of the system traces. The
nontrivial task of finding auxiliary invariants that enable the inductive proof of
the original invariant is subject to the ingenuity of the human prover.

For WDP and GDP the problem is made harder by the fact the full protocol
stack and all possible interleavings between the sender and receiver processes
have to be considered. As seen in Section 4.6, the sender and receiver compo-
nents of each protocol are formed from the disjunction of a number of relations
representing the layers of the stack. This means that that an invariant must
be shown to hold under each transition in each layer. Consequently, each proof
requires the discharge of a large number of cases. For each one of these cases,
it has to be proven that if an invariant is satisfied at step n, it is also satisfied
at step n + 1. This is a considerable amount of work even though many of the
cases can be easily discharged by using general properties of bags, queues, and
buffers.

To automate the verification task, a set of proof strategies that are applied to
discrete transition systems defined using Rusu’s PVS theories has been defined.
The use of such strategies form the basis of a methodology that will allow Rusu’s
techniques to scale to industrial-size problems. The strategies basically unfold the
transition relations and discharge the easy cases of inductive proofs. For instance,
to prove an invariant on GDP, the strategy unroll-gdp is invoked. This strat-
egy, in turn, invokes strategies unroll-gdp-sender and unroll-gdp-receiver

10

as well as strategies to unroll the application layer sender and receiver pro-
cesses. The unroll-gdp-sender strategy, for example, expands the relational
definitions, instantiating and skolemizing quantifiers as needed, until it finally
expands the definitions of the state machines. In the case of the state machine
GDPSenderNext, the strategy “lifts” the conditionals so as to expose the guarded
cases, which, in turn, are discharged using PVS’s assert decision procedure. Ad-
ditional support strategies are employed that apply properties of structures such
as bags, FIFO queues, and bounded buffers to simplify expressions to the point
where basic decision procedures can be applied to complete the proof. Even in
the cases where the strategies do not succeed, they generate enough information
to assist a developer in finding weaker invariants.

To perform the proof of wdp sound, the first command is the strategy
discharge-inv, which automatically proves all but two inductive cases. The
first case is discharged by simply unfolding a definition. The second unproven
case suggests the need for an invariant saying that all frames in WDP-to-App are
in to-WDP:

WDP-to-Apps ⊆ to-WDPs.

To prove this an additional auxiliary invariant is needed that states that WDP
frames in the link layer and in the ether belong to to-WDP. Once this invariant
is added as a lemma to the theory, the proof is finished by using the strategy
use-inv. To prove the auxiliary invariant, the same approach is used, which
suggests the new invariant:

App-to-WDPs ⊆ to-WDPs.

This new invariant is automatically discharged by discharge-inv.
The proof of gdp sound is considerably more complicated, but the general

method is the same. The strategy discharge-inv is used to eliminate the easy
cases and new invariants are added to discharge the unproven cases via use-inv.
This approach is iterated on the new invariants. In total, six auxiliary invariants
have been added to the GDP theory, including the following relations between
the sender’s and receiver’s windows:

– The counter of received messages is less than or equal to the counter of sent
messages: lrs ≤ nss

– The counter of delivered messages is less than or equal to the counter of sent
messages: nds ≤ nss

– The largest sequence number for which an acknowledgment has been received
is less than or equal to the counter of the sent acknowledgments

nas + last true(ackds) ≤ las,

where the function last true returns the difference between nas and the
largest sequence number for which an acknowledgment has been received.

The stack structure considerably affects the size of the proofs as invariants
have to be checked at different layers. Although most of the manual tasks are

11

routine, scale becomes a prohibitive factor that will get worse in larger models.
If heavy-weight formal methods are to be used in industrial practice, they must
accommodate an iterative design process. Manually proving the GDP process
after even a simple design change can take much of a day and the prospect
of repeatedly doing so for each design iteration is not practical. The strategies
are written in a lisp-like PVS scripting language and are composed of 937 lines
of code. To maintain a high degree of automation, changes to the model are
reflected in the strategy code, which is an integral part of the iterative design
methodology. All the strategies and proofs can be found at the aforementioned
web site.

5.2 Proving Invariants on the Asynchronous Composition of WDP
and GDP

In the previous section, it has been proven that wdp sound is an invariant of WDP
and that gdp sound is an invariant of GDP. However, the verification objective is
to show that both of them are also invariants of WDP ‖ GDP. This goal could be
trivially achieved if WDP and GDP were completely independent. They are not.
The GDP and WDP sender and receiver processes share the same link layer and
ether interfaces. It could be proven that wdp sound and gdp sound are invariants
of WDP ‖ GDP using the method explained in the previous section. However,
this approach does not profit from the invariants that have been already proven
for WDP and GDP independently, and therefore the have to be proven again
for all possible interleavings of WDP and GDP.

In this paper, a different approach is proposed. Instead of reproving all the
invariants, a general theory of asynchronous composition of transition systems is
developed in PVS, where invariants on one system can be lifted to the composed
system. To this end, it is considered that the state of a transition system consists
of a private state and a shared state. The state of the composed system has a
copy of the private states of each transition system but only one shared state
common to both of them. When the composed system performs a transition of
one system, the private state of the other system remains unchanged.

A transition system is defined as follows. Let V be a finite set of typed
variables and Θ an initial condition defined on the variables. Define state SV

as a type-consistent valuation of the variables. A transition is a relation → in
SV × SV . A transition system is defined as the tuple T = (SV , Θ,→). Given
two transition systems T1 = (SV1 , Θ1,→T1) and T2 = (SV2 , Θ2,→T2), , define
T1 ‖ T2 = (SV1∪V2 , ΘT1‖T2 ,→T1‖T2) as follows: the state space SV1∪V2 is a
valuation of the variables in V1 and V2. Let s ∈ SV1∪V2 ,, define the restriction
operators s↓Ti

and s↓[Ti], for i = {1, 2} such that the first operator projects the
composed state to the state of Ti, which only includes the private and shared
state of Ti and the second operator only projects the private part of Ti.

The composed initial state is defined as

ΘT1‖T2 = {s : SV1∪V2 | s↓T1 ∈ ΘT1 ∧ s↓T2 ∈ ΘT2},

12

and the composed transition relation is defined as

s→T1‖T2 s
′ = {(s, s′) : SV1∪V2 × SV1∪V2 | s↓T1 →T1 s

′↓T1 ∧ s↓[T2] = s′↓[T2]

∨ s↓T2 →T2 s
′↓T2 ∧ s↓[T1] = s′↓[T1]}.

An abstraction α of a transition system T is a simulation relation that maps
states into states such that

1. if s0 is an initial state in T , then α(s0) is also an initial state of T , and
2. if sn →T sn+1 then α(sn)→T α(sn+1).

The following theorem is sufficient to prove that an invariant on the left-hand
side of the parallel operator is also an invariant of the composed system.

Theorem 1 (Invariant Left-Lifting). Let P be an invariant of a transition
system T1. The predicate PT1‖T2 , where PT1‖T2(s : SV1∪V2) ≡ P (s↓T1), is an
invariant of the transition system T1 ‖ T2 if there is an abstraction α of T1 such
that the following conditions are met:

1. α is fixed under P , i.e., P (α(s↓T1)) implies P (s↓T1), and
2. under the abstraction α, T2 does not interfere with T1, i.e., given sn, sn+1 :

SV1∪V2 , if sn↓T2 →T2 sn+1↓T2 then α(sn↓T1)→T1 α(sn+1↓T1).

Proof (Sketch of PVS Proof). Consider an arbitrary trace s0, . . . , sn in T1 ‖ T2.
It is shown that P holds in sn. First, it is shown that α(s0↓T1), . . . , α(sn↓T1) is
a trace in T1. There are two cases:

1. The transition (si, si+1) is transition in T1. In this case, α(si↓T1) →T1

α(si+1↓T1) since α is an abstraction of T1.
2. The transition (si, si+1) is a transition in T2. In this case, α(si↓T1) →T1

α(si+1↓T1) since T2 does not interfere with T1.

Therefore, α(s0↓T1), . . . , α(sn↓T1) is a trace in T1. Since P is an invariant on T1,
P holds in α(si↓T1), for i ≤ n. Since α is fixed under P , P holds in si↓T1 as well.
The result then follows from the fact that PT1‖T2(si) is defined as P (si↓T1). ut

A symmetric theorem for the right transition system can be proved in a
similar way. Both theorems have been mechanically proven in PVS and both the
formalization and proof can be found online.

For the case of the distributed system WDP ‖ GDP, the queues App-to-WDP and
WDP-to-App are private to WDP. Although the sequences to-WDP and from-WDP
reside in the application layer, for analytical purposes they can be seen as be-
longing to WDP since they are not shared in any way with the GDP processes.
The queues App-to-GDP and GDP-to-App as well as the fields winsender and
winreceiver are private to GDP. All the other fields. i.e., the link and the ether
interfaces, are shared. It should be noted that although these structures are
shared, it is not like classical shared variable concurrency in the sense that the
WDP and GDP processes do not share variables to which they both read and

13

write. Instead, the shared structures provide a service to the WDP and GDP lay-
ers, but by design, the frames written by one higher-layer protocol will never be
transformed into frames from a different layer protocol and frames written by a
higher-layer protocol will never be delivered to a different higher-layer protocol.

The fact that wdp sound is an invariant of WDP ‖ GDP is a consequence of
the invariant lifting theorems.

Theorem 2 (WDP Soundness). WDP sound is an invariant on WDP ‖ GDP.

For the proof of WDP, the abstractions that are needed are filters that re-
move, respectively, GDP packets from the link layer and the ether interface.

Proof (Sketch of PVS Proof). The abstraction αw(s : WDP) is defined such that
αw(s) = s in all fields but:

αw(s‘link‘GDP to Link) = empty,

αw(s‘link‘Link to GDP) = empty,

αw(s‘ether‘input) = remove gdp(s‘ether‘input),
αw(s‘ether‘output) = remove gdp(s‘ether‘output),

where empty is the empty queue and remove gdp removes all GDP frames from
a multiset. Then, it is proven that αw is an abstraction of WDP, that WDP sound is
fixed to αw, and that, under αw, GDP does not interfere with WDP. Therefore, by
the fact that the invariant WDP sound holds on WDP and theorem 1, WDP sound
is an invariant on WDP ‖ GDP. ut

The hypotheses to the theorem are automatically discharged by strategies
that have been developed to prove that a given function is an abstraction, that
an abstraction is fixed to an invariant, and that the noninterference condition
holds. The statement and proof that gdp sound is an invariant of WDP ‖ GDP
is similar.

6 Related Work and Conclusion

Numerous variations of the basic sliding window protocol have been subjected
to hand verification techniques. Stenning [18] is likely to have been the first to
discuss the correctness of such protocols. Snepscheut [6] and Hoogerwoord [10]
are representative of this work. Process algebras have also been used to manually
verify one-bit sliding window protocols [3, 20]. Badban et al [1] considers a pro-
tocol with arbitrary, but finite window size while others assume an unbounded
window size. Model checking has been applied to verifying a number of sliding
window protocols e.g. [9, 12, 17], but to prevent state explosion the window size
has to be kept to a relatively small size.

Others have applied automated theorem provers to verify sliding window
protocols. Cardell-Oliver used HOL to verify safety properties [4]. A timed model

14

was given in [5] and a safety property is verified using PVS. Rusu [16] proved
safety and liveness of a protocol with unbounded window size in PVS.

Concurrently executing programs are complex artifacts making it difficult
to reason about their correctness. For parallel programs with shared variables,
the classical theory of Owicki and Gries [14] was the first breakthrough for
reasoning about the correctness of parallel programs having shared variables, but
the theory is not compositional. Assume-Guarantee methods modify the theory
to be compositional [11,21]. Nieto [13] formalized rely-guarantee in Isabelle. The
approach proposed here is not as general as these techniques, but was targeted
toward the system under analysis, yet is largely mechanizable as has been shown
here.

A small communication protocol stack intended to be used by remotely op-
erated vehicles has been presented. The soundness and liveness properties of the
protocol stack components have been formulated and proven.

All the mathematical development presented here, including the framework
to compose transition systems, was formally carried out in the PVS verification
system and is publicly available. In order to facilitate an iterative design pro-
cess,novel proof strategies have been developed to automate tedious and complex
tasks in the verification process, such as finding inductive invariants and proving
safety properties of composed systems. As an added feature, the strategies are
robust to changes in the protocol specification. Therefore, protocol modifications
usually require only minor changes in the soundness proofs rather than having to
redo all the proofs by hand. The techniques presented in this paper complements
the techniques in [16] by allowing them to be applied to larger systems where
the designs evolve over time.

Finally, since the protocol is specified in the declarative specification language
of PVS, it is amenable to rapid prototyping. Indeed, using recently added PVS
features, Java code that implements the functional and deterministic aspects of
the protocol was automatically generated. An actual implementation will likely
be structured somewhat differently for efficiency. However, it is expected that
the semantics will be preserved allowing this prototype to serve as a semantic
benchmark for the implementation.

Acknowledgements

The author would like to thank the AirSTAR team and in particular David Cox
for their technical support, and Eric Cooper, Paul Miner and the anonymous
referees for their comments that help to improve the presentation of this work.

References

1. B. Badban, W. Fokkink, J Groote, J. Pang, and J. van de Pol. Verification of a
sliding window protocol in µCRL and PVS. Formal Aspects of Computing, 17:342–
388, 2005.

15

2. R. Bailey, R. Hostetler, K. Barnes, C. Belcastro, and C. Belcastro. Experimental
validation subscale aircraft ground facilities and integrated test capability. In Pro-
ceedings of the AIAA Guidance Navigation, and Control Conference and Exhibit
2005, San Francisco, California, 2005.

3. J. Brunekreff. Sliding window protocols. In Algebraic Specification of Protocols,
number 36 in Cambridge Tracts in Theoretical Computer Science, pages 71–112.
1993.

4. Rachel Mary Cardell-Oliver. The Formal Verification of Hard Real-Time Systems.
PhD thesis, University of Cambridge, 1992.

5. D. Chkliaev, J. Hooman, and E. de Vink. Verification and improvement of the
sliding windonw protocol. In Proceedings of the 9th Conference on Tools and Al-
gorithms for the Construction of Analysis of Systems (TACAS’03), Lecture Notes
in Computer Science 2619, pages 113–127. Springer-Verlag, 2003.

6. J.L.A. Van de Snepscheut. The sliding-window protocol revisited. Formal Aspects
of Computing, 7:3–17, 1995.

7. M. Gouda. Elements of Network Protocols. Wiley-Interscience, 1998.
8. M. Gouda and N. Multari. Stabilizing communication protocols. IEEE Transac-

tions on Computers, 40(4):448–458, 1991.
9. G. Holzmann. The model checker Spin. IEEE Transactionsactions of Software

Engineerng, 23(4):279–295, 1997.
10. R. Hoogerwoord. A formal derviation of a sliding window protocol. Technical

University of Eindhoven, 2006.
11. C. Jones. Tentative steps toward a method for interfering programs. ACM Trans-

actions of Programming Languages and Systems (TOPLAS), 5(4):596–619, 1983.
12. R. Kaivola. Using compositional preorders in the verification of a sliding window

protocol. In Proceedings of the 9th Conference on Computer Aided Verification,
Lecture Notes in Computer Science 1254, pages 48–59. Springer-Verlag, 1997.

13. L. Nieto. The rely-guarantee method in Isabelle/HOL. In Programming Languages
and Systems, Lecture Notes in Computer Science 2618, pages 348–362. Springer-
Verlag, 2003.

14. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6:319–340, 1976.

15. S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system. In
Deepak Kapur, editor, Proc. 11th Int. Conf. on Automated Deduction, volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752. Springer-Verlag, June
1992.

16. V. Rusu. Verifying a Sliding-Window Using PVS. In Formal Techniques for Net-
worked and Distributed Systems (FORTE01), pages 251–266. Kluwer Academic,
2001.

17. K. Stahl, K. Baukus, K Lakhnech, and Y Steffen. Divide, abstract, and model
check. In Proceedings of the 6th International SPIN Workshop, Lecture Notes in
Computer Science 1680, pages 57–76, 1999.

18. N. Stenning. A data transfer protocol. Computer Networks, 1(2):99–110, 1976.
19. A. Tannenbaum. Computer Networks. Prentice Hall, third edition, 1996.
20. F. Vaandrager. Verification of two communication protocol by means of process

algebra. Technical report, CWI, 1986.
21. Q. Xu, W. de Roever, and J. He. The rely-guarantee method for verifying shared

variable concurrent programs. Formal Aspects of Computing, 9(2):149–174, 1997.

16

