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Abstract:
Most LEO debris lies in a limited number of inclination "bands" associated with specific
useful orbits. Objects in such narrow inclination bands have all possible Right
Ascensions of Ascending Node (RAANs), creating a different orbit plane for nearly
every piece of debris. However, a low-orbiting satellite will always phase in RAAN
faster than debris objects in higher orbits at the same inclination, potentially solving the
problem. Such a low-orbiting base can serve as a "mother ship" that can tend and then
send small, disposable common individual catcher/deboost devices--one for each debris
object--as the facility drifts into the same RAAN as each higher object. The dV
necessary to catch highly-eccentric orbit debris in the center of the band alternatively
allows the capture of less-eccentric debris in a wider inclination range around the center.
It is demonstrated that most LEO hazardous debris can be removed from orbit in three
years, using a single LEO launch of one mother ship--with its onboard magazine of free-
flying low-tech catchers--into each of ten identified bands, with second or potentially
third launches into only the three highest-inclination bands.

The nearly 1000 objects near the geostationary orbit present special challenges in mass,
maneuverability, and ultimate disposal options, leading to a dramatically different
architecture and technology suite than the LEO solution. It is shown that the entire
population of near-GEO derelict objects can be gathered and tethered together within a 3
year period for future scrap-yard operations using achievable technologies and only two
earth launches.
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Outfine.Alr

• Characteristics of LEO Debris Inclination Bands
• Relative drift of orbital planes
• Rendezvous or Intercept?
• Reachable width of the debris band
• Post-capture flight plan and functions
• Mother-ship functions
• Special Case: GEO sizing
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Perigees of Objects in Band Centers Perigees of Objects Not Within 2 deg of Band Centers
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Sizing the Catcher
• Cost of catcher HW/Firmware is a mission cost

driver
♦ Cost of propellant is negligible as long as resulting mass budget

does not challenge required performance of HW/firmware.
^ Cheap and dumb HW is preferable to light and expensive, up to a point.
^ Prefer catcher net cost <$1000 USD each. (=$13.2M for catchers for all LEO tracked debris)

• Prefer one mother ship per inclination band
♦ second largest cost driver is the launcher.
♦ (Launcher capability)/(number of objects in band) is thus a major

sizing determinant.
• How many can we catch?

♦ Rocket equation for 3000 m/sec:
Mf/Mo=EXP(-3000/g*ISP) 22% for 200 ISP monopropellant_ -as sume monopropellant for design simpGcity/weight

A 10 kg initial mass catcher can have 2.2 kg of infrastructure & payload at capture in this scenario

A comprehensive satellite can be packaged in this sort of mass.

♦ After optimizing prop loading per object, 13200 objects can be caught* from 10
"mother ships" at this dry catcher mass.

cL- *Immediate propulsive de-orbit is possible for many (but not all) objects.
*Drag enhancement to accelerate natural decay is a solution for large debris objects

john.bacon-l@nasa.gov 281244- 7086
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Fast  Intercept or Slow Catch?
Precession Rates in Deg/Day

• High eccentricity dominates the long-duration population
♦ Small inclination differences within the band add quickly to required dV

• RAAN and Mean Anomaly precess at a fixed ratio for any inclination
tw

W

S^2, JZ = -2.06474 * 10 14 a -^^^ ^l - e^^ cos(i)[deg/ day

6J2 = +1.03237 * 10 14 a -' /2 (l - e2 
Y

2 [4 - 5 sin e (1)][deg/ day]*
* from Larson and Wertz, Space Mission Analysis and Design (9992) p141

,Y= Cannot simultaneously solve the mother ship solution for hundreds of target objects
d Particularly near 63.43 deg where mean anomaly is stationary

Therefore, must circularize the mother ship orbit, and launch catcher into co-elliptic elliptic orbit for
best use of dV budget and minimum time-of-mission
Generally, better for mass budget and mission duration to launch mother ship to as low as possible
circular orbit, and make up dV difference with catchers.

• Delta-Vs associated with intercept from low-circular are many km/sec
• Safe capture is crucial: sizing/strengths of capture system and precise high-

speed targeting dominate the mass budget and complexity/risk in "intercept"
scenarios

• To simplify and lighten the catcher and to avoid export control issues, a low
relative velocity is necessary (==Slow Catch)
♦ May as well rendezvous
♦ Small prop reserve budget provides ballistic margin for timing, repeat attempts, and

often for immediate debris de-orbit.
john.bacon-l@nasa.gov281 244-7086
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Relative Drift Rate to Circular at Perigee

—*-Relative Drift

Phasing Rate
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* from Larson and Wertz, Space Mission Analysis and Design (9992) p141

• At any higher orbit a 1 >ao (especially with higher eccentricity)
an object's absolute phase rate compared to a lower
circularized-orbit object (ao) will be asymptotically	 1
closer to zero, and differential drift rate
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• Because of differential drift, the orbit planes of the debris object and of the lower mother
ship slowly move through periodic alignment

john.bacon-I@nasa.gov281 244-7086



1
0.9

W 
0.8

L 0.7
0.6
0.5a,
0.4
0.3
0.2
0.1

0
0	 1	 2	 3	 4	 5	 6	 7	 8

Apogee/Perigee

Differentia/ Phasing Rate

• Slow phase rates & small altitude differences at high inclinations may demand
additional missions to rotated orbit planes to shorten program duration

• Particularly useful move considering quantities of high-inclination objects

Relative Drift Rate to Circular at Perigee
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High d V A flo ws Wider Bands
(lower out-of-plane objects reachable, as well as

higher in-plane objects)

dV vs Inclination from Nearest-Band LEO Orbit
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Prop Budget for Common Catchers
• Can implement variable tank sizes for common engine and payload
• Typical sizing mix for common 2.2 kg payload shows that a common total

10Kg catcher works in launcher mass budget for SIX inclination bands.
• High debris quantities at other inclinations need variable prop loads, smaller

catcher payload, or more mother-ship missions
• 250 & 28.50 band pair may be clearable with a single launch.

2-Bucket Prop and Catcher Masses (k p ) for dV from 400 km Circular
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bris objects not Reachable in Initial Band Selection
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Summary in LEO,

• Low inclinations have:	 • High inclinations have:
♦ high eccentricity,	 ♦ low eccentricity,
♦ low counts	 ♦ high counts
♦ Larger radar cross section ♦ Smaller radar cross section
♦ Rapid differential phasing ♦ Slow phasing

• Single mission with single • Probable need for multiple
magazine of high dV missions to same band
catchers should work for • Potential need for multiple
most objects prop load variants on one

• Drag-assisted de-orbit is mission
probable removal • Propulsive de-orbit is
mechanism for half of practical for most captured
captured objects objects

• Propulsive de-orbit is
possible for remainder



Typical Catcher Reference Concept:
Kevlar® snag web

Retroreflector/solar cells/net containment
Avionics with MEMS thruster/antenna shell

Kapton® Drag Sail (post capture)
Tank with main thruster below

Typical
Mass

Item Comment
Tracking sensor 90 BW lipstick camera with case
Integrated circuitry: send-receive,
transponder, attitude control, system control,
video processing 133 IMass of an I- hone 3G with battery)

Ref mission: 90% open-mesh Kevlar 149
185 0.1 mm-strand snag netting, 4m diameter

Capture mechanism web
Cinching mechanism 50 Kevlar thread ands inner
Laser/Radar retroreflector 20 Mostly	 art of structure
Local short-duration power source 133 11-Phone batter	 again
Smal 60

Pt
	 integrate as structure

Sizing ref mission: 0.02mm Kapton (1.4
Drag enhancement 400 /cm3) 6m diameter film sail
of	 ude control 16 IMEMS Solid state engines
Main thruster 290 EADS/Astrium 1 N Thruster mass
Structure 100 Carbon fiber nanosat bus

Max titanium tank for 7.8kg monopropellant
Tankage 100 dV-dependent) (=0.256m dia sphere)

Margin-dependent grams of excess mass
available to reach 2200 grams: Could be
more available prop with excess in main

-	 - tank- Each 100 grams of monoprop yields
19.64 m/sec dV capability for a combined

Post-capture Propellant capability 439 Okg catcher/ca tured object

- - -	 -	 -	 -	 -	 - 2200 otal john.bacon-1@nasa.gov 281244- 7086



Useful Features;Mother Ship
-5,000-90,000kg

• 3-axis gyro-stable control
• Magazines of (varying) dV catchers
• Debris shields (to protect the many "eggs still in the nest")
• (strong) Laser to illuminate target
• Solar power
• Doppler Radar (to track catcher)
• Accurate on-board ephemerides for self and targets
• Very high ballistic number (for long duration low orbit)
• Potentially an electric spinner/lateral launcher

♦ to launch catchers symmetrically out-of plane
♦ Greatly expands inclination width of band for no additional prop

john.bacon-I@nasa.gov 281244- 7086



^y

SEC/AL CASEN
e/ict Object Capture



GEOS TA TIONA R Y Case

• Predominantly large (spent) objects
♦ 1000-2000kg, or often much more
♦ Specialized catchers are more useful for recovery

option

t Common altitude (35786 km)

♦ De-orbit not practical

• Common orbit inclination (0)
• Derelict objects using valuable space
• Retired objects within only afew m/sec of

GEO
♦ Use orbit period rather than plane precession to

accomplish phasing/rendezvous
john.bacon-I@nasa.gov 281244-7086
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WOTAN and Valkyries

• WOTAN==special variant of the Mother Ship
• Valkyries==special Catcher variants

• Both optimized for large objects near GEO
• Designed for rendezvous, stabilization, collection, and manipulation of

large uncooperative objects

• 4 Useful missions in one:
- Clean explosion hazards and derelicts from Clarke orbit region
- Demonstrate space mining/asteroid capture techniques
- Consolidate and transfer upwards a highly-valuable resource depot,

already very high in the gravity well
— (62% of Earth-escape dV)

- Develop worldwide cooperative space mission
— Military/Proprietary nature of many target objects requires special security attention

john.bacon-I@nasa.gov 281244- 7086



Valkyries

• Mythical riders who carried dead from battlefield to a useful
afterlife

• MUCH more massive and capable "catchers" than used in LEO

• Grapple-able free-flyers
- with interchangeable arms and robust effectors specialized to

snare/despin/retain each class of object
- Likely lon/Plasma Engine for fuel budget constraint
- Implies High Power/weight requirement:

— Probably receive beamed power from WOTAN and/or ground

- Refuelable at WOTAN berthing station
- Video link for tele-robotic control during rendezvous and capture
- Approximately large-trash-can sized.
- 10-20 of them aboard.

john.bacon-1@nasa.gov 281244- 7086



WOTAN

• Overlord of the Valkyries and of all others below
• _Worldwide Orbit _Transfer of Assets _Nexus*

— *nexus (nkss) n_ pl_ nexus or nex•us•es
1.A means of connection, a link or tie: "this nexus between New York's .. _ real-estate investors and its _ _ _ politicians" (Wall Street
Journal)_
2.A connected series or group_
3. The core or center. "The real nexus of the money culture [was] Wall Street" (Bill Barol).

—	 The American HeritageS Dictionary of the English Language, Fourth Edition

• Drifting 1 m/sec above GEO
- 24 km above functioning satellites
- Retrograde drift once around planet every 3 years

• Berthing/Refueling and communications relay base for Valkyries.

• Tele-robotic transfer and attachment of recovered satellites, clipped to a sturdy
spooled tether (-5 km for 5m/object, -1000 objects)

• KEVLARO' 149 3mm-diameter stranded cable weighs 53 kg, with 133 tonnes tensile strength.

• Large power capability for high ISP arc jet propulsion
• Beamed up or self-generated (solar or nuclear).
• Valkyries supply the plasma engines on ride upwards
• Convert power to energy beam towards free-flying Valkyries in harvest mode

• Strong shielding for spiral transit up to GEO+

• Gyro stabilization

john.bacon-I@nasa.gov281` 244-7086



Mission Scenario;PremHarvest

• 20,000+kg WOTAN Mother-ship with Valkyries to near-
equatorial LEO (includes 8000 kg prop)

• 20,000+kg ""dumb".' propellant tank to coplanar orbit
• Valkyrie dispatched to capture and retrieve prop tank
• Robotic mechanical- and fluid-attachment of prop tank to

WOTAN
• Slow spiral transfer to GEO with 3000+sec ISP solar-

powered arc-jet
- Valkyries supply the engines
- Valkyries (and catchers) dispatched to debris targets of

opportunity during journey.
- -8000 kg propellant used @ 3000 ISP for LEO-GEO transfer
- -20,000kg prop available at GEO for recapture ops

— also @ 3000 ISP

john.bacon-I@nasa.gov 281244- 7086



Mission Scenafio;Harvest

• Valkyrie outfitted with object-specific capture effector
and fueled at berthing station on WOTAN

• Valkyrie dispatched to tele-robotically capture, de-spin,
and retrieve GEO object

• WOTAN tele-robotic capture of free-flying Valkyrie with
attached retrieved object

• Tele-robotic attachment of tethering clips to retrieved
object

• Tele-robotic object transfer to WOTAN with subsequent
object attachment to tether

• Robotic berthing of Valkyrie to refueling/sustenance port
• (TBR: Beginning of scrap-rendering depot operations)

• Especially jumpering of retrieved power systems to common
supplemental power bus

• Probably wait until post-departure from Clarke orbit region for any
disassembly/consolidation ops.

john.bacon-I@nasa.gov 281244- 7086



Near-GEO Objects
938 published objects
♦ Large RCS
♦ estimated average mass 1000 kg each

Half within 400 m/sec of
Geostationary
♦ - All of the dV is related to inclination

change.

dV from GEO vs. Launch Date
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Mass Budget;

• 20,000kg prop at 3000 ISP provides maximum 6*10 8 kg*m/sec
• At - 1000kg/object, -400 m/sec average delta V, and -1000 objects,

this is enough d V to capture most objects, with a -150-kg Valkyrie

• -10 Valkyries =1500 kg (results in -20-day retrieval cycle per
object, 1 object/day for 3 years)

• WOTAN =20,000kg LEO insertion
- 8, 000kg Prop to spiral up
- 1.500 kg for 10 Valkyries
= 10, 500 kg for WOTAN

john.bacon-I@nasa.gov 281244- 7086



Mission Scenafio;Pdst-Harvest

• Valkyries dispatched back to LEO to capture and
retrieve prop tanks (with power)

• Valkyries bring staged prop and increasing power farm
to GEO+ rendezvous with WOTAN

• Robotic attachment of fresh prop tank to WOTAN
• Used tanks to the tether

• Slow spiral Earth departure and Lunar or Mars transfer
with 3000+sec ISP solar-powered arc-jet

• Depot/scrap recovery operations begin.

john.bacon-I@nasa.gov 281244- 7086



Conclusion

• ^13200 objects in LEO can be removed in 3 years
with approximately 12 heavy-lift launchers
♦ Most of the cost is expected to be in the operations,

launchers, and integration of the "mother ships"
♦ Mass produced mono-prop low-ISP "catchers" (2.2kg

dry, 10 kg wet) are the cheap part.
($26M @ $2000 USD Each)

• All debris near GEO can be removed in a 3-year
mission using 2 heavy-lift launches
♦ Scrap yard would weigh 3x mass of ISS and can be

easily propelled further out to alleviate raw materials
needs in future exploration.

♦ Reusable 150 kg ion-drive "Valkyrie' catchers are the
key

john.bacon-I@nasa.gov 281244- 7086



Backup
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Net siz
AV AW

ing

• Kevlae 149:
♦ 1.47 g/cm3
♦ Assume 4 m diameter web, of 0.1 mm fiber

90% open mesh
0, 23N per fiber tensile strength (3 GPa tensile

strength)
4 Vol= 7r*(200cm) 2 *(0.01 cm) *(0.1 solid fraction)

= 785 cm3

♦ 186 GPa tensile Modulus
♦ 2% elongation

john.bacon-I@nasa.gov 281244- 7086


