Outline

• Background
• HS-to-BS interface seal development
 – Objective and approach
 – Design
 – Testing and modeling
 – Results
• Compression pad seal development
 – Objective and approach
 – Design
 – Testing
• Summary
Apollo seals: High temp RTV (very good for sealing, good ablative properties, not much stroke), Max leakage rate ~5 lb/day, stiffer support structure \rightarrow structural movements minimized

Orion seals: ~30% bigger in diameter, Because some missions may be up to 6-mo. or even longer, leakage requirements are much more stringent
Heat Shield-to-Back Shell Interface Seal System
Highlight seal design is recent
Seal is attached to Inconel diving board for easy of installation
Objective & Approach

Objective:
Develop required databases to support successful design and implementation of the CEV heat shield-to-back shell interface seal

Approach:
- Identify candidate seal designs
- Perform tests to screen and validate seal candidates
 - Coupon-level
 - Arc Jet
- Conduct thermal analyses to aid in design
- Provide recommendation to prime contractor
During reentry, heat distribution is non-uniform
Seal design has evolved continuously since project inception.
Phase I: Results Summary

- **Loads**
 - Goal: ≤ 20 psi
 - Gap filler: 8 - 12 psi (57% compression)
 - Thermal barrier: 3 - 4 psi (20% compression)
 - Pressure seals: 5 – 7 psi (43% compression)

- **Leakage rates**
 - Note: Leakage rates reported at 1.0 psid
 - Gap filler: 0.3 – 6.8 SCFM/in.
 - Thermal barrier: 0.4 – 1.3 SCFM/in.
 - Pressure seals: 5.8×10^{-5} – 1.1×10^{-3} SCFM/in.
 - Less than 3% of that for the thermal barrier / gap filler
 - Effective gaps: 0.0004 – 0.003 in.

- **Temperature**
 - Elastomer pressure seal exhibited most sensitivity to temperature extremes (next slide)
 - Gap filler showed limited load retention at 2600°F
 - Spring tube thermal barrier exhibited good load retention at 1100°F

Results are applicable to next generation (HTB) seals
Phase I Example Results:
Load vs. Mission Profile

- During all mission phases, seals maintained contact with opposing surfaces

www.nasa.gov
Phase II: Evaluations

Purpose: Testing of evolved seal design in representative interface configuration

Seal Configuration: Integrated hybrid thermal barrier, silicone foam gasket

Tests and Analyses:
- Exploratory compression tests
- Alt. TPS material flow tests
- Alt. TPS material seal compression tests
- QARE rig tests
- Seal attachment evaluations
- Installation verification tests
- Ongoing thermal analyses

Status: In process
Phase II Results:
Hybrid Thermal Barrier Flow Results

Flow per inch of seal (SCFM/in.)

Delta P (psid)

Notes:
1) R_s (roughness) values for each heat shield candidate shown in parentheses
2) R_s for AETB-8 = 185 μin. (all trials)

Seal Leakage Tests

Cover plate
CEV ablator sample (PICA, Densified PICA, Avcoat)
Test seal (AETB-8 panel underneath seal sample)
Spacer plate

www.nasa.gov
Thermal Modeling: Background

Goals of analysis:
- Develop model simulating flow and heat transfer through seal system
- Establish bounds on allowable leakage through seal system based on internal temperature limits

Parameters:
- Thermal model based on worst case (windward) geometry
- Pressure seal effective leakage varied
 - 0.001 in.
 - 0.005 in.
 - 0.020 in.
- Key Monitor Points

Orion seal thermal model geometry (PICA version)
Thermal Modeling: Representative Results

- Results shown for PICA heat shield configuration (0.375 in. gap height)
- Monitor point on shim (M6)
 - Examined temperature of edge of pressure seal
 - Temperatures below 550°F bond line limit for all cases
 - Lower temperatures realized with better pressure seals
- Monitor point on flange (M8)
 - Examined temperature of gas impinging upon hypothetical aluminum flange (e.g., helium or RCS tank)
 - Temperature limit defined by RCS tank requirements; may be 125-200°F range

Effective Gap

- Metallic shim temperature
 - Case 4 at M6: 9.920 in.
 - Case 5 at M6: 9.005 in.
 - Case 6 at M6: 9.001 in.

- Aluminum flange temperature
 - Case 4 at M8: 6.020 in.
 - Case 5 at M8: 6.005 in.
 - Case 6 at M8: 6.001 in.
Compression Pad Seals
Compression Pad Seal Development

Compression Pads (CP)
- Role: Main structural connection points between CEV and SM
- Need for seals
 - CP’s are different material than heat shield
 - CP’s are exposed to very high heating rates

Approach & Seal Evaluations
- Objective: Provide seal recommendation
- Seal attributes
 - Similar to HS-to-BS seal plus...
 - Ablation rate similar to HS and CP’s
- Candidates: Silicone foam (or other) materials
- Preliminary testing
 - Compression test (low and high temp.)
 - Flow tests
 - System level arc jet tests
Summary

- NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV
 - HS-to-BS interface
 - Compression pad
- HS-to-BS Interface Seal System
 - Design has evolved as a result of changes with the CEV TPS
 - Seal system is currently under development / evaluation
 - Coupon level tests
 - Loads
 - Thermal capabilities
 - Leakage resistance
 - Bond strength tests
 - Arc jet tests
 - Validation test development
- Compression Pad
 - Finalizing design options
 - Evaluating material candidates