OVERVIEW OF CEV THERMAL PROTECTION SYSTEM SEAL DEVELOPMENT

Jeff DeMange and Shawn Taylor
University of Toledo
Toledo, Ohio

Patrick Dunlap, Bruce Steinetz, Irebert Delgado, and Josh Finkbeiner
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio

John Mayer
Analex Corp.
Cleveland, Ohio

Overview of CEV Thermal Protection System Seal Development

University of Toledo
Toledo, OH
Jeff DeMange
Shawn Taylor

NASA GRC
Cleveland, OH
Pat Dunlap
Bruce Steinetz
Irebert Delgado
Josh Finkbeiner

Analex Corp.
Cleveland, OH
John Mayer

NASA Seal/Secondary Air System Workshop
November 18, 2008
Cleveland, OH
Outline

• Background
• HS-to-BS interface seal development
 – Objective and approach
 – Design
 – Testing and modeling
 – Results
• Compression pad seal development
 – Objective and approach
 – Design
 – Testing
• Summary
Apollo seals: High temp RTV (very good for sealing, good ablative properties, not much stroke), Max leakage rate ~5 lb/day, stiffer support structure → structural movements minimized

Orion seals: ~30% bigger in diameter, Because some missions may be up to 6-mo. or even longer, leakage requirements are much more stringent
Heat Shield-to-Back Shell Interface Seal System
Highlight seal design is recent
Seal is attached to Inconel diving board for easy of installation
Objective & Approach

Objective:
Develop required databases to support successful design and implementation of the CEV heat shield-to-back shell interface seal

Approach:
- Identify candidate seal designs
- Perform tests to screen and validate seal candidates
 - Coupon-level
 - Arc Jet
- Conduct thermal analyses to aid in design
- Provide recommendation to prime contractor
During reentry, heat distribution is non-uniform
Seal design has evolved continuously since project inception
Phase I: Results Summary

- **Loads**
 - Goal: ≤ 20 psi
 - Gap filler: 8 - 12 psi (57% compression)
 - Thermal barrier: 3 - 4 psi (20% compression)
 - Pressure seals: 5 – 7 psi (43% compression)

- **Leakage rates**
 - Note: Leakage rates reported at 1.0 psid
 - Gap filler: 0.3 – 6.8 SCFM/in.
 - Thermal barrier: 0.4 – 1.3 SCFM/in.
 - Pressure seals: 5.8x10⁻⁵ – 1.1x10⁻⁴ SCFM/in.
 - Less than 3% of that for the thermal barrier / gap filler
 - Effective gaps: 0.0004 – 0.003 in.

- **Temperature**
 - Elastomer pressure seal exhibited most sensitivity to temperature extremes (next slide)
 - Gap filler showed limited load retention at 2600°F
 - Spring tube thermal barrier exhibited good load retention at 1100°F

Results are applicable to next generation (HTB) seals
During all mission phases, seals maintained contact with opposing surfaces
Phase II: Evaluations

Purpose: Testing of evolved seal design in representative interface configuration

Seal Configuration: Integrated hybrid thermal barrier, silicone foam gasket

Tests and Analyses:
- Exploratory compression tests
- Alt. TPS material flow tests
- Alt. TPS material seal compression tests
- QARE rig tests
- Seal attachment evaluations
- Installation verification tests
- Ongoing thermal analyses

Status: In process
Phase II Results:
Hybrid Thermal Barrier Flow Results

Flow per inch of seal (SCFM/in.) vs. Delta P (psid)

Notes:
1) R_s (roughness) values for each heat shield candidate shown in parentheses
2) R_s for AETB-8 = 185 μin. (all trials)

Seal Leakage Tests

Cover plate
CEV ablator sample (PICA, Densified PICA, Avcoat)
Test seal (AETB-8 panel underneath seal sample)
Spacer plate
Thermal Modeling: Background

Goals of analysis:
- Develop model simulating flow and heat transfer through seal system
- Establish bounds on allowable leakage through seal system based on internal temperature limits

Parameters:
- Thermal model based on worst case (windward) geometry
- Pressure seal effective leakage varied
 - 0.001 in.
 - 0.005 in.
 - 0.020 in.
- Key Monitor Points

Orion seal thermal model geometry (PICA version)
Thermal Modeling: Representative Results

- Results shown for PICA heat shield configuration (0.375 in. gap height)
- Monitor point on shim (M6)
 - Examined temperature of edge of pressure seal
 - Temperatures below 550°F bond line limit for all cases
 - Lower temperatures realized with better pressure seals
- Monitor point on flange (M8)
 - Examined temperature of gas impinging upon hypothetical aluminum flange (e.g., helium or RCS tank)
 - Temperature limit defined by RCS tank requirements; may be 125-200°F range

Data plots showing temperature over time for different cases.
Compression Pad Seals
Compression Pad Seal Development

Compression Pads (CP)
- Role: Main structural connection points between CEV and SM
- Need for seals
 - CP's are different material than heat shield
 - CP's are exposed to very high heating rates

Approach & Seal Evaluations
- Objective: Provide seal recommendation
- Seal attributes
 - Similar to HS-to-BS seal plus ...
 - Ablation rate similar to HS and CP's
- Candidates: Silicone foam (or other) materials
- Preliminary testing
 - Compression test (low and high temp.)
 - Flow tests
 - System level arc jet tests

Heat shield
Seal/gasket
Compression Pad
Summary

• NASA GRC supporting design, development, and implementation of numerous seal systems for the Orion CEV
 – HS-to-BS interface
 – Compression pad
• HS-to-BS Interface Seal System
 – Design has evolved as a result of changes with the CEV TPS
 – Seal system is currently under development / evaluation
 • Coupon level tests
 – Loads
 – Thermal capabilities
 – Leakage resistance
 – Bond strength tests
 • Arc jet tests
 • Validation test development
• Compression Pad
 – Finalizing design options
 – Evaluating material candidates