ULTRA-HIGH TEMPERATURE METALLIC SEAL/ENERGIZER DEVELOPMENT FOR AERO PROPULSION AND GAS TURBINE APPLICATIONS

Ken Cornett and Jesse Newman
Parker Hannifin
North Haven, Connecticut

Amit Datta
Advanced Components & Materials
Greenwich, Rhode Island
Ultra-High Temperature Metallic Seal Program
Development Team

Ken Cornett – Engineering Team Leader
Advanced Products Business Unit, Parker Hannifin
North Haven, CT

Jesse Newman – Design Engineer
Advanced Products Business Unit, Parker Hannifin
North Haven, CT

Dr. Amit Datta – Consultant
Advanced Components & Materials
Greenwich, RI
Ultra-High Temperature Metallic Seal Program

Program Overview

- Industry is requiring seals to operate at higher and higher temperatures.
 - Greater efficiency
 - Reduced cooling air requirements
 - Reduced emissions
- Traditional static seal designs and materials experience stress relaxation, losing their ability to maintain contact with moving flanges.
- Ultra High Temperature seal development program – Multiphase program with incremental increases in seal operating temperatures

Background of Problem
Ultra-High Temperature Metallic Seal Program
Program Review

High Temperature Seal Development Program

Phase I: Improved traditional sheet metal seal design and analysis

Phase II: Higher temperature sheet metal materials and improved thermal processing

Phase III: Thermally insulated seals

Phase IV: High temperature polycrystalline spring element development

Phase V: High temperature single crystal DFM and design optimization
Ultra-High Temperature Metallic Seal Program

Material Comparison

Cast Blade Alloys Have Excellent High-Temperature Strength

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Temperature, °F</th>
<th>Yield Strength, ksi</th>
<th>Elongation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mar-M-247, Single Crystal</td>
<td>1600</td>
<td>110</td>
<td>8.0</td>
</tr>
<tr>
<td>CMSX-4™, Single Crystal</td>
<td>1600</td>
<td>114</td>
<td>18.0</td>
</tr>
<tr>
<td>Waspaloy™, Polycrystalline</td>
<td>1600</td>
<td>60</td>
<td>12.0</td>
</tr>
<tr>
<td>René41™, Polycrystalline</td>
<td>1600</td>
<td>84</td>
<td>11.3</td>
</tr>
</tbody>
</table>

- Blade alloys also have superior creep and stress rupture strength compared to cold formable superalloys. Hence, blade alloys have higher resistance to stress relaxation.
- Manufacturing Challenge - Blade alloys are only available in the cast condition (poly or single crystal)
Ultra-High Temperature Metallic Seal Program
Single Crystal Spring Evolution – Phase IV

- Prototype I
 - Solid ring machined from a polycrystalline Mar-M-247 casting
 - Basic finger design, not optimized with FEA
 - Opportunities for Design for Manufacturability (DFM) enhancements

- Prototype II
 - Independent finger and support ring configuration
 - Improved DFM and lower manufacturing cost
 - Ability to fine tune spring load and total seal load
 - FEA optimized finger configuration
 - Improved dimensional relaxation characteristics
Stress relaxation testing on Phase IV prototypes showed very positive results compared to polycrystalline Waspaloy and Rene41. Follow-on leakage testing showed a strong correlation between improved stress relaxation and improved leakage results.
Ultra-High Temperature Metallic Seal Program

Single Crystal Spring Evolution – Phase V

- **Prototype I – “Wishbone”**
 - Linear “V” shape machined from a single-crystal rod of CMSX-4™
 - Secondary machining operation required to allow parts to interlock
 - Positive stress relaxation results
 - Opportunities for design and manufacturability enhancements

- **Prototype II – “Chevron”**
 - Radial “V” shapes cast in both Mar-M-247 and CMSX-4™ using a prototype SLA mold
 - Cast part thickness held to .020”
 - Optimized profile for reduced stress and simplified assembly (eliminated need for secondary machining operation)
Ultra-High Temperature Metallic Seal Program
Single Crystal Spring Evolution – Phase V

- V-Spring is cast with $<0,0,1>$ crystal orientation approximately along the circumference of the part.
- This orientation improves the stress relaxation properties of the part, and maximizes the range of elastic compression.
Ultra-High Temperature Metallic Seal Program
Single Crystal Spring Evolution – Phase V Test Results

CMSX-4™ exhibits approximately 34% better dimensional relaxation than Mar-M-247, and 76% better than Rene41™ @ 1600°F.
Ultra-High Temperature Metallic Seal Program
Single Crystal Spring Evolution – Phase V Test Results

Rene41™ 100% relaxed after 4 hours at 1700°F. CMSX-4™ retains approx. 54% of its starting free height after 100 hours at 1700°F

Phase V P8 Spring
Ultra-High Temperature Metallic Seal Program
Single Crystal Spring Evolution – Phase V Summary

- DFM has been the primary program goal since 2006
 - Convert the fundamental concept into a commercially / economically viable design while retaining stress relaxation gains
 - Through FEA analysis and DOE an improved design configuration was developed
- Modular manufacturing approach was developed
 - Standard V-Spring configuration nests within a relatively thin, oxidization resistant sheet metal jacket (Haynes® 214®, Haynes® 230®, PM2000, etc.)
 - Jacket serves as primary pressure barrier and structural support
 - V-Springs are brazed into position using standard techniques
- Standard V-Spring configuration allows for cost effective linear seals and hoop seals
 - V-Springs are cast near net shape to keep manufacturing costs low
 - Cast as a single crystal material with [0,0,1] crystal orientation along the part circumference
 - By joining multiple V-Springs, any diameter seal can be cost effectively produced
Ultra-High Temperature Metallic Seal Program
Conclusions & Future Work

• Single-crystal blade alloys can be cast in thin sections (.020") for use as high-temperature energizers for static metal seals

• Single-crystal CMSX-4™ V-Springs have significantly better stress relaxation resistance than single-crystal Mar-M-247 and polycrystalline Rene41™

• The Ultra-High Temperature seal program has successfully progressed and developed a commercially viable, high temperature static seal solution.

• Moving forward
 • Continue long-term stress relaxation testing (up to 200 hrs)
 • Perform comparative leak testing of latest prototypes
 • Perform testing at 1800°F and above

• Future activities
 • Finalize details of manufacturing process
 • Develop a product-specific, technical performance data sheet
 • Identify a launch customer / application and build first production pieces for on-engine testing
Ultra-High Temperature Metallic Seal Program
Questions?

Ken Cornett – Engineering Team Leader
Advanced Products Business Unit, Parker Hannifin – North Haven, CT
kwcornett@parker.com 203-985-3177

Jesse Newman – Design Engineer
Advanced Products Business Unit, Parker Hannifin – North Haven, CT
jesse.newman@parker.com 203-985-3120

Greg More – Engineering/Sales Manager
Advanced Products Business Unit, Parker Hannifin – North Haven, CT
dgmore@parker.com 203-985-3141