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TFy. 3

41

Receive and (optionally) rectify, SASP sample values in a window;
perform threshold analysis to determine beginning and end of SASP;
repeat for each instance r (r = 1, ...,r) of a target word (q) in a database

42

Compute signal processing transform for each SASP window
and format as a matrix M for each instance r (=1,...,R)

43 -,L 
Tessellate matrix M into cells; select a representative

entry for each cell for each instance r (=1,...,R)

44
Normalize cell representative values for each instance r

(=1,...,R) (optional)

45
Format (normalized) cell representative values as a vector

V, with vector entries Vk(q, r) (k=1,..., K; r =1,..., R)

Eig. 4A	 TO STEP 46
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From Step 45

46
Receive vector entries V k (q;r); form first
sum S1(q;r) h , using weight coefficients

W1,k,h (q;r); form first activation function
A1(S1(q,r) h ); form second sum S2(q;r)g,

using weight coefficients W2 ,h, (q;r); form
second activation function A2(2(q;r)g)

Provide reference values (A(q;ref) )gaud
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51	 Receive input signal ("new" SASP) with unknown word; perform
threshold analysis to determine beginning of new SASP; (optionally)

rectify input signal

52^ I Compute signal processing transform for each time-shifted SASP

	

1	 window and format values as a matrix M for unknown SASP

	

531	 Tessellate matrix M into cells; select a representative
entry for each cell, using tessellation from training procedure

54,E Normalize cell representative values
(optional)

551 Format cell representative values as a vector V with vector entries
V k(k=1,...,K) for the new SASP

TO STEP 56

91 
Provide each TSCS of samples as a column (or row) of

entries in an mxn matrix M

921 Apply Hanning filter to each row (or column) of entries
in M (optional; applied to STFT only)

Form signal processing transform (SPT) for each row
(or column) of filtered entries in M

Form a selected combination of real and imaginary
components of filtered and transformed signal samples

in each row (or column) of M

Combine columns (or rows) end-to-end to
provide a spectrogram for each window

Ely. 8
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From Step 55

Use reference sets of weight coefficients,
{wl k h (q;ref))k and(w 2 h 9(q;ref)) h to compute
second activation function reference values

A2(S2(q';ref)g for the word number q'

Compute difference A2(q;q';j)9 for each word
q in database, for each time-shifted window (j )

and for each third layer index g

Form a "reduced" database RDB containing
only those words (q) in the original database

which o2(q;q';j) 9zE(thr;2) (optional)

For each time-shifted window (j ) and
word (q) combination in database (or

in- reduced database) that provides the
smallest value ofo2(q;q';j)g, this combination
is given a point (optionally, a weighted point)

Identify word (q) in the database (or in
reduced database) with largest (weighted)

point count, as candidate word for
new SASP

If two words (q1 and q2) have substantially
equal largest point accumulation, interpret
this condition as indicating that no clearly-

best match to the unknown word is available
(optional)
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Fig. 6
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74
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Decompose entries in M into non-overlapping, 101
rectangularly shaped cells of fixed or variable

size	 r

Compute first order statistical coefficient m 1	 102
and (optionally) second order statistical

coefficient m 2 for each cell

Fig. 9
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Receive and analyze SAWP(s) at a SAWP
	 121

signal processor that optionally transmits a
representative over a signalling channel

122
Is
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contained in a SAM

lexicon?

Recipient receives,
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(optional)
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APPLICATIONS OF SUB-AUDIBLE SPEECH
RECOGNITION BASED UPON

ELECTROMYOGRAPHIC SIGNALS

FIELD OF THE INVENTION

This invention relates to analysis and communications
applications of electromyographic signals produced in a
human body

BACKGROUND OF THE INVENTION

Communications between two or more humans, or
between a human and a machine, is traditionally dominated
by visual and verbal information and alphanumeric input.
Efforts to automate human-to-human or human-to-machine
communication, such as commercial speech recognition,
have emphasized the audible aspects. A totally auditory com-
munication strategy places a number of constraints on the
communication channels, including sensitivity to ambient
noise, a requirement for proper formation and enunciation of
words, and use of a shared language. The physical limitations
of sound production and recognition also become problem-
atic in unusual environments, such as those involving hazard-
ous materials (HAZMATs), extra vehicular activity (EVA)
space tasks, underwater operations and chemical/biological
warfare (CBW). Conventional auditory expression may be
undesirable for private communication needed in many situ-
ations encountered daily, such as discrete or confidential tele-
phone calls, offiine or sotto voce comments during a telecon-
ference call, certain military operations, and some human-to-
machine commands and queries. Communication
alternatives that are both private and not dependent upon
production of audible signals are valuable.

*Emergency response teams face dangerous and challeng-
ing communication difficulties from presence of heavy
smoke, hazardous substance gases, speech restrictions arising
from use of self-contained breathing apparati ("SCBAs"),
self-contained underwater breathing apparatus (SCUBA),
and high external noise levels, among other things. Where a
responder wears an SCBA, an in-mask microphone or exter-
nal voice-only communication gear can be overwhelmed or
masked by air hiss, heavy breathing, and signal degradation
from breath moisture and perspiration within the SCBA dur-
ing a response, and external ambient noise. New threats to
homeland security require use of even more protective gear,
where audio communication problems become more severe.
Issuance of stealth commands to a robot control system, or of
stealth communications on a cell phone (e.g., by a SWAT
team member or an Air Marshall aboard an aircraft), also
requires use of relatively silent audio input.

One proposed method for studying alternative means of
communication is direct understanding of brain signals,
which bypasses speech and its analysis altogether. J. R. Wol-
paw et al, `Brain-computer interface technology: a review of
the first international meeting," I.E.E.E. Trans. on Rehabili-
tation Engineering, vol. 8 (2000)164-171, recently published
a review of electroencephalograph (EEG) analysis. Several
practical difficulties are encountered for near term applica-
tion of pure EEG approaches, due to use in EEG of aggregated
surface measured brain potential and/or use of a large number
of EEG sensors. Additionally, one confronts the nonlinear
complexity and idiosyncratic nature of the signals. An alter-
native, invasive EEG measurement and analysis, is not con-
sidered practical for widespread use, except for extreme
medical conditions.

2
What is needed is a sub-audible communication system

that provides one or more tiers, in addition to conventional
audible communication, to exchange or transfer information
compactly, reliably and reasonably accurately. Preferably, the

5 amount of computation required should be modest and should
not be out of proportion to the information obtained through
the signal processing, should be resistant to the presence of
noise and should allow soundless communication in difficult
environments.

10
SUMMARY OF THE INVENTION

These needs are met by the invention, which provides and
applies a system for receipt and analysis of sub-audible sig-

15 nals to estimate and provide a characterization of speech that
is sotto voce or is not fully formed for purposes of normal
speech recognition. This system relies on surface measure-
ment of muscle signals (i.e., electromyographic "EMG" sig-
nals) to discriminate and recognize sub-audible speech sig-

20 nals produced with relatively little acoustic input. In one
alternative, EMG signals are measured on the side of a sub-
ject's throat, near the larynx, and under the chin near the
tongue, to pick up and analyze surface signals generated by a
tongue (so-called electropalatogram "EPG" signals)

25 *Sub-audible speech is a new form of human communica-
tion that uses tiny neural impulses (EMG signals) in the
human vocal tract rather than audible sounds. These EMG
signals arise from commands sent by the brain's speech cen-
ter to tongue and larynx muscles that enable production of

30 audible sounds. Sub-audible speech arises from EMG signals
intercepted before an audible sound is produced and, in many
instances, allows inference of the corresponding word or
sound. Where sub-audible speech is received and appropri-
ately processed, production of recognizable sounds is no

35 longer important. Further, the presence of noise and of intel-
ligibility barriers, such as accents associated with the audible
speech, no longer hinder communication. Neural signals are
consistent, arising from use of a similar communication
mechanism between (sub-audible) speaker and listener.

40 *This approach relies on the fact that audible speech
muscle control signals must be highly repeatable, in order to
be understood by others. These audible and sub-audible sig-
nals are intercepted and analyzed before sound is generated
by air pressure using these signals. The recognized signals are

45 then fed into a neural network pattern classifier, and near-
silent or sub-audible speech that occurs when a person "talks
to himself or to herself' is processed. In this alternative, the
tongue and throat muscles still respond, at a lowered intensity
level, as if a word or phrase (referred to collectively herein as

5o a "word") is to be made audible, with little or no external
movement cues present. Where sufficiently precise sensing,
optimal feature selection and good signal processing are
available, it is possible to analyze these weak signals to per-
form useful tasks without conventional vocalization, thus

55 mimicking an idealized thought-based approach.
*This approach uses a training phase and a subsequent

word recognition phase. In the training phase, the beginning
and end of a sub-audible speech pattern ("SASP") is first
determined for each of R spoken instances of a word in a

6o database. This includes Q words in a window of temporal
length 1-4 sec each (preferably about 1.5 sec) that are pro-
vided and processed. A signal processing transform is applied
to obtain a sub-sequence of transform parameter values,
which become entries in a matrix M, where the two matrix

65 axes may represent scale factors and time intervals associated
with a window. The matrix M is tessellated into groups of
cells (e.g., of rectangular or other shape), each cell is repre-
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sented by a feature value for that cell, and the cell features are
rearranged as a vector. Weighted sums of the vector compo-
nents are formed and subsequently used as comparison indi-
ces. This completes the training phase and provides a lexicon
of words available for comparison.	 5

*In the word recognition phase, a SASP including an
unknown word is provided and sampled, as in the training
phase. The training phase procedures are applied to the SASP,
and error indices A2(q) (numerical differences between each
training phase index g and the corresponding SASP index) are 10

computed. If at least one word (q—q0) can be found for which
A2(g0) is no greater than an error threshold e(thr), at least one
word (q—q0) in the lexicon with minimum error is interpreted
as corresponding to the unknown word.

*The training phase is a learning procedure, whereby the 15

system learns to distinguish between different features of
known words in a database and provides reference sets of
neural net weight coefficients for this purpose. In a second
(word recognition) phase, the weight coefficients are applied
to one or more unknown words to determine if an unknown 20

word is sufficiently similar to a word in the database. This
technique provides several advantages, including minimiza-
tion of word variations through: (i) use of similar communi-
cation mechanisms (useful because muscle patterns for a
given person are stable and reproducible) and (ii) use of 25

reliable speech recognition techniques to locate vowels and
consonants and to identify a time interval corresponding to
generation of a particular vowel and/or consonant combina-
tion. This approach provides non-invasive sensing, reason-
ably robust response to physiological variations, and privacy. 30

*Separating speech from sound generation allows new
communication options. For example, words spoken sub-
audibly by a handicapped person with some consistent voice
muscle behavior may now be understood, even where the
corresponding audible words might not be understood. An 35

example is a laryngectomy patient where vocal cords are
removed. Another example is a deaf person who cannot hear
what his/her audible speech sounds like to others. Use of
sub-audible speech can overcome large speech generation
impediments associated with underwater diver mouthpieces, 40

with emergency responder breathing units and with the pres-
ence of extreme audible noise.

*Sub-audible speech can be used for reliable communica-
tion by medical service workers, emergency service workers
(firefighters, hazardous substance first responders, etc.), 45

homeland security investigators, SWAT team members, Air
Marshalls, special forces, physically disabled and speech-
disabled persons, and for interactive database searches, PDA
data access, robotic command/control, and silent cellular
phones.	 50

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 illustrates placement of signal recording electrodes 
55

in an initial experiment on sub-audible speech analysis.
FIGS. 2A-2F are graphical views of sub-audible signals

corresponding to the generic words "stop", "go", "left",
"right", "alpha" and "omega."

FIG. 3 illustrates a simplified neural network classifier, 60

with one hidden layer, that may be applied in practicing the
invention.

FIGS. 4 and 5 are high level flow charts of procedures for
practicing a training procedure and a word recognition pro-
cedure according to the invention.	 65

FIGS. 6-10 are flow charts of intermediate procedures
associated with the steps in the FIG. 4 or FIG. 5 flow chart.

4
*FIG. 11 is a flow chart of a procedure for practicing the

invention.
*FIG. 12 schematically illustrates an embodiment of the

invention.

DESCRIPTION OF BEST MODES OF THE
INVENTION

In some initial tests, sub-audible pronunciation of six
English words ("stop", "go", "left", "right", "alpha" and
"omega") and ten numerals ("1", "2", "3", "4", "5", "6", "7",
"S", 1191, "0") were recorded for each of three subjects,
ages 55, 35 and 24, to provide a control set of words for a
small graphic model that might be used to provide commands
on a Mars Rover system, for example. The words "alpha" and
"omega" may be used to enter a command to move faster or
slower, or up or down, or forward or backward, as appropriate
under the circumstances. EMG data were collected for each
subject, using two pairs of self-adhesive Ag/Ag Cl elec-
trodes, located near the left and right anterior external area of
the throat, about 0.25 cm back from the chin cleft and about
1.5 cm from the right and left sides of the larynx, as indicated
in FIG. 1. Initial results indicate that one pair, or more pairs if
desired, of electrodes, located diagonally between the cleft of
the chin and the larynx, preferably in non-symmetrical loca-
tions, will suffice for recognition in small word sets. Signal
grounding usually relies on attachment of an additional elec-
trode to the right or left wrist, jaw bone or another location on
the body. When data are acquired using wet electrodes, each
electrode pair is connected to a commercial signal amplifier
(Neuroscan or equivalent) and recorder that records the EMG
responses at a sampling rate of up to 20 kHz. A 60 Hz notch
filter is used to reduce ambient signal interference.

One hundred or more exemplars for each word were ini-
tially recorded for each subject over a six-day interval, in
morning and afternoon sessions. In a first group of experi-
ments, the signals were sectioned offline into two-second
time windows with variable window start times, and extrane-
ous signals (coughs, swallows, body noises, etc.) were
removed using SCAN 4 Neuroscan software. FIGS. 2A, 213,
2C, 2D, 2E and 2F graphically illustrate representative EMG
blocked signals for six windows, corresponding to the words
"stop", "go", "left', "right", "alpha" and "omega", respec-
tively. The blocked signals for these words are not wholly
reproducible and may be affected by the test subject's health
and the time (of day) the particular signal is recorded and
analyzed. The technique must also take into account the
changing signal-noise ratio and/or changing amplitudes of
the signals.

For signal feature processing, Matlab scripts were devel-
oped to provide a uniform signal processing system from
recording through network training. These routines were used
to receive and transform the raw signals into feature sets, to
dynamically apply a threshold to the transformed signals, to
adjust signal-to-noise ratios, and to implement neural net-
work algorithms for pattern recognition and training. EMG
artifacts, such as swallowing, muscle fatigue tremors and
coughs, were removed during preprocessing ofthe windowed
samples. In a real time application, artifact filters would be
incorporated to prevent such anomalies from being classified.

Sectioned signal data for each word were transformed into
usable classifier feature vectors using preprocessing trans-
forms, combined with a coefficient reduction technique. Sev-
eral transforms were tested, including: (i) a short time interval
Fourier Transform (STFT), requiring multiple overlapping
windows; (ii) discrete wavelets (DWTs) and continuous
wavelets (CWTs) using Daubechies 5 and 7 bases; (iii) dual
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tree wavelets (DTWTs) with a near sym_a 5,7 tap filter and a
Q-shift 14,14 tap filter; (iv) Hartley Transforms; (v) Linear
Predictive Coding (LPC) coefficients and (vi) uniformly and
nonuniformly weighted moving averages. Feature sets were
created differently for each of these transform approaches,
depending upon the unique signal processing approaches,
with different pattern discriminations.

The most effective real time SPTs were the windowed
STFTs and the DTWT coefficient matrices, each of which
was post-processed to provide associated feature vectors.

One suitable procedure is the following. Transform coeffi-
cient vectors are generated for each word, using, for example,
the STFT or the DTWT applied to the magnitude (absolute
value) of the raw signal amplitude. Where unipolar, rather
than bipolar, electrodes are used, positive and negative sign
signals are distinguishable, and STFTs and DTWTs could be
applied to the raw signal amplitudes without automatic for-
mation of an absolute value. Vectors were post processed
using a Matlab routine to create a matrix M of spectral coef-
ficients. This matrix is tessellated into a set of sub-matrices or
cells, depending upon the spectral information complexity.
Tessellation sizes were determined in part by average signal
energy in a given region of the spectral matrix. Uses of equal
and unequal segmentation sizes can be used. A representative
value was calculated for each candidate sub-matrix, to reduce
the number of features or variables presented to the pattern
recognition algorithm and to represent average coefficient
energy.

In one approach, simple mean or average signal energy
within a cell was used as a cell representative or "feature."
Other first order statistical values, such as medians, modes
and maximum sub-matrix values, can be used but appear to
provide no substantial improvement over use of a simple
mean of signal energy. The result of this approach is a fixed
length feature vector for each sub-audible word tested. Dual
tree wavelets are attractive here, as opposed to standard dis-
crete wavelets, to minimize the normal wavelet sensitivity to
phase shifts. Continuous wavelets (CWTs) are not presently
practical for real time computations. The Hartley Transform,
which provides additional information on signal behavior
along a non-real line in the transform plane, was also
explored, as was use of moving averages of various lengths.

*In another approach, a set S(M) of one or more local
maxima of magnitudes of the matrix entries M(i,j) is identi-
fied within the matrix M. Tessellation into (possibly non-
uniform) cells C (each containing one of the local maxima) is
determined by identifying an exhaustive, mutually exclusive
set SS(M) of subsets (not necessarily rectangular) of M for
which a weighted sum of variances of the subsets in SS(M) is
minimized. A beginning member of a given subset may be an
entry with the largest magnitude, among all entries not
belonging to any other subset. This approach offers the
advantage that the variances of matrix entry magnitudes
within each cell C in the resulting set of subsets SS(M) is
reduced, or even minimized so that these magnitudes are, in
some sense, closer to all other entries in the same subset. A
disadvantage of this approach is that it is computationally
intensive. However, the computations only need be done
once, in the training phase. A feature of each subset is deter-
mined as in the first approach.

Feature vectors for each instance of a word are used to train
a neural network (NN) word recognition engine. Accuracy of
recognition is evaluated using about 20 percent of the
untrained word exemplars and signals from only one elec- 65

trode pair, which is randomly drawn from the collection of
electrode pairs, in a data recording session.

	

uh = Al  
K	 (1)

wl,k,h ' vk + 1 - b^ (h = 1, ...	 H),

	

Y	 JJJ

where the quantities w,,k,h are weight coefficients connecting
the nodes in the first layer to the nodes in the second layer and

6
Five NN paradigms were considered for signal training

classification, using the entire feature set: (1) scaled conju-
gate gradient nets; (2) Leavenberg-Marquardt nets; (3) proba-
bilistic neural nets (PNNs); (4) modified dynamic cell struc-

5 ture (DCS) nets; and (5) linear classifiers. After comparison
of the results, a scaled conjugate gradient net was chosen, for
the following reasons. A Leavenberg-Marquardt net reaches
the lowest mean square error level but requires too much
system memory when dealing with large data sets, even

10 where reduced memory variations are used. A signal having a
low mean square error (MSE) does not necessarily corre-
spond to, or produce, an improved generalization for new
signals, where high sensor noise is present. PNN nets provide

15 reasonable classifications but require very large training
sample sizes to reach stable probabilities and do not appear to
be superior in ultimate pattern discrimination ability. A
dynamic cell structure (DCS) net provides fast net training,
which is attractive for real time adaptation, but is less compact

20 for the anticipated applications that are memory sensitive. A
scaled conjugate gradient network has fast convergence with
adequate error levels for the signal-noise ratios encountered
in the data; and the performance is comparable to the Leav-
enberg-Marquardt performance. The scaled conjugate gradi-

25 ent network uses a "trust' region gradient search criterion,
which may contribute to the superior overall results of this
approach. However, with improved computing ability, any of
the signal training approaches can be used here.

In other EMG tasks, we successfully applied Hidden

30 Markov Models (HMMs), but these appear to be most effec-
tive for non-multi-modal signal distributions, such as are
associated with single discrete gestures, rather than with the
temporally non-stationary, sub-audible signal patterns of
concern here. An HMM approach also requires sensitive pre-

35 training to accurately estimate transition probabilities. A
hybrid HMM/neural net approach, is an alternative.

In order to quickly explore many experimental situations
using different transform variations, we have operated in a
simulated real time environment that has been developed and

40 used at N.A. S.A. Ames, wherein EMG signals are recorded to
file and are later used to train and test the signal recognition
engines. Our initial three test subjects were not given imme-
diate feedback about how well their sub-audible signals were
recognized. However, some learning occurred as each test

45 subject was permitted to view his or her EMG signals.
FIG. 3 illustrates a simplified example of a neural network

classifier 31 with one hidden layer, configured to analyze a
vector of feature values provided according to the invention.
The NN configuration 31 includes a first (input) layer 32

50 having four input nodes, numbered k=1, ... , K (K=4 here), a
second (hidden) layer 33 having two intermediate nodes,
numbered h=1, ... , H (H=2 here), and a third (output) layer
34 having three output nodes, numbered g=1, ... , G (G=3
here). A practical neural net classifier may have tens or hun-

55 dreds of input nodes, hiddenlayer(s) nodes and output nodes.
The input values vk received at the first layer of nodes are
summed and a first activation function Al is applied to pro-
duce

60
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b is a bias number. The intermediate values received at the
second layer are summed and a second activation function A2
is applied to produce

rr e

	 I

(2)
tg- A2{^ W^h,B uh +1 . b (5=1,... ,G),

lh-1 

where the quantities wz,h,g are weight coefficients connecting
the nodes in the second layer to the nodes in the third layer.
Here, Al andA2 may be, but need not be, the same activation
function, and more than one activation function canbe used in
a given layer. More than one hidden layer can be included, by
obvious extensions of the notation. This formalism will be
used in the following development of the NN analysis, in
FIGS. 4 and 5.

Training Procedure.

The term "training procedure," according to one embodi-
ment of the invention, includes the following actions: (1)
receive R spoken instances, of a sub-audible EMG signal, for
at least one known word; (2) detect the beginning of each
SASP containing an instance, using a thresholding proce-
dure; (3) for each SASP, create a window, having a selected
length At(win), that includes the SASP; (4) apply a "signal
processing transform" (SPT) to each instance of one of the
SASPs; (5) form a matrix (which can be one-dimensional, a
vector) from the SPT values for each instance of the SASP;
(6) tessellate the matrix into cells, with each cell represented
by a cell "feature", for each instance; (7) (re)format the cell
features as entries or components of a vector; (8) (optionally)
normalize the vector entries; (9) receive the vector entries for
each instance of the SASP in a neural network classifier; (10)
for all instances of each word, identify sets of reference
weight coefficients for the vector entry values that provide a
best match to a reference pattern that corresponds to the
words considered; and (11) use the reference weight coeffi-
cients in a neural network analysis of an unknown word
received by the system.

FIG. 4 is a high level flow chart illustrating a procedure for
practicing a training procedure according to the invention. In
step 41, a sequence of length At(win)=1-4 sec (preferably,

At(win)=1.5 sec) of sampled signal values is received, and a
sample thresholding operation is performed to determine
where, in the sequence, a sub-audible speech pattern (SASP)
begins. SASPs representing samples of a known word at a
selected rate (e.g., about 2 kHz) are identified, recorded and
optionally rectified. Signal rectification replaces the signal at
each sampling point by the signal magnitude (optional). R
spoken instances, numbered r=1, ... , R(R?10), of a given
word (SASP) are preferably used for training the system to
recognize that SASP.

In step 42, a Signal Processing Transform operation is
performed on the pattern SASP over the window length
At(win) for each spoken instance r=1, ... , R, and for each
word, numbered q=1, ... , Q in a database, to provide a
spectrum for the received signal for each of the windowed
samples. As used herein, a "Signal Processing Transform"
(SPT) has a finite domain (compact support) in the time
variable, provides a transform dependent upon at least one
transform parameter (e.g., window length, number of
samples used in forming the transform, scale factor, fre-
quency, etc.), allows summation or integration over this
parameter, and a collection of these transforms for different
values of the transform parameter is mathematically com-
plete.

8
The SPT operation in step 42 may rely upon a short time

interval Fourier transforms (STFTs), discrete wavelets
(DWTs) and continuous wavelets (CWTs) using Daubechies
5 and 7 bases; dual tree wavelets (DTWTs) with a

5 near_sym_a 5,7 tap filter and a Q-shift 14,14 tap filter; Hart-
ley Transforms; Linear Predictive Coding (LPC) coefficients,
and uniformly and nonuniformly weighted moving averages,
or any other suitable transforms. The spectrum obtained by
this operation (expressed as a function of one or more trans-

10 form parameters) is a sequence of data transform samples,
formatted as an m-row-by-n-column matrix M (or as a vector,
with m=1 or n=1) having a first matrix axis (along a row) and
a second matrix axis (along a column), with each matrix entry

15 representing a concentration or intensity associated with a
scale factor and/or window time. In a preferred embodiment,
for a wavelet SPT, the n columns (e.g., n=30) represent an
increasing sequence of window times for constant scale fac-
tor, and the m rows (e.g., m=129) represent a dyadic sequence

20 of scale factors used to provide the spectrum for a given

window time. Alternatively, the m rows may represent win-
dow times and the n columns may represent scale factors. A
sequence of further operations is performed on the matrix, as
discussed in the following,

25 In step 43, the matrix entries (e.g., wavelet coefficients) are
tessellated or decomposed into "cells," with each cell repre-
senting a grouping of adjacent matrix entries (e.g., a rectan-
gular grouping of one or more sizes), where the entries in a

30 given cell resemble each other according to one or more
criteria and associated metric(s). A matrix may be divided
into uniform size cells or may be divided according to statis-
tical similarity of cell entries or according to another crite-
rion.

35	 As an example, consider the following 4x6 matrix

1 2 3	 4 5 6 (3)
1 3 5	 7 9 11

M—
40	 2 6 12 20 15 8

3 18 14	 7 9 6

The matrix M may be expressed as a vector or single stream
45 of data entries. If one decomposes this matrix M into four 2x3

non-overlapping rectangular groups of entries (cells), the cor-
responding arithmetic means of the four cells become

50	 2.5	 7
	

(4)

	

9.17	 10.83

55 which can represent each of the four cells, and the corre-
sponding standard deviations of the four cells become

	

42.75	 291	 (5)
<AM> —

60	
628.97	 117.36

Tessellation of the matrix entries into the four 2x3 non-over-
lapping groups of entries in this example may depend, for

65 example, upon the relative sizes of the entries in the matrix M.
More generally, each cell is represented by a "feature" asso-
ciated therewith, which may be one or more associated
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numerical coefficient values, such as the entries in the matrix
<M> shown in Eq. (4), or a maximum or minimum value from
the cell entries.

In step 44, each cell representative value or feature in the
tessellated matrix is optionally normalized by dividing this
value by (i) a sum of all values of the cell representatives, (ii)
a sum of the magnitudes of all values of the cell representa-
tives, (iii) the largest magnitude of the cell representative
values or (iv) another selected sum. Alternatively, a normal-
ized cell representative value is formed as a difference
between the cell representative value and a mean value for
that population, divided by a standard deviation value for that
population. Alternatively, a normalized cell representative
value is formed as a difference between the cell representative
value and a maximum or minimum cell representative value
for the tessellated matrix. One goal of normalization is to
reduce the dynamic range of the cell representative values for
each instance r=1, ... , R and each word q=1, ... , Q.

In step 45, the (normalized) cell representative values
determined in step 44 are arranged as a vector of length
K=number of cells) or other suitable entity for subsequent
processing.

In step 46, the vector entries vk(q;r) are received and pro-
cessed by a neural net (NN) classifier by multiplying each
vector entry vk(q;r) by a first set of weight coefficients
wi,k h(q;r) (O^wi,k,h^l; k 1, ... , K; h=1, ... , H) and
summing these weighted values to form

S1 (i; r)h = Y, w t,k,h(g ; r)' vk(i; r) (h = 1, ... , H)	 (6)

k

This process is repeated for each of the R spoken instances of
the known word. Each of the weighted sums SI(q;r)h
becomes an argument in a first activation function Al IS1(q;
r)h }, discussed in the following, also in step 46. Also in step
46, a second set of sums is formed

S2(i; r)g = Y. w2h,s(i; r)-Al{Sl(Q; r)hl, (S = 1, ... , G)	 (7)
h

which becomes an argument in a second activation function
A2{S2(q;r)g}.

In step 47, the system provides a set of reference values
{A(q;ref)g}g for the word number q and computes a set of
differences

Al(g)=(1 /R.G)Y, IA21S2(g;r)g l—A(g;ref) g l ,	g)

r,g

wherep is a selected positive number. The system determines,
in step 48, if Al(q)_e(thr;l), where e(thr; 1) is a selected
threshold error, preferably in a range 0.01 and below.

If the answer to the query in step 48 is "yes," the system
accepts this estimated reference set, in step 49, for use in the
word recognition procedure, illustrated in FIG. 5. If the
answer to the query in step 48 is "no," the first and second
weight coefficients, w l,k,h (q;r) and W2,h,g(q;r), are adjusted to
provide another set of estimated reference values A(q;ref) g, in
step 50, using a neural net analysis approach, and steps 46-48
are repeated. In the neural net analysis, a gradient method is

10
applied to a geometric space with coordinates w l,k,h (q;r) and
w2 h g(q;r), as discussed subsequently.

In the procedure illustrated in FIG. 4, two suitable activa-
tion functions are

5	 A[S]—tan h(S)={exp(a-S)—exp(—a-S)}/{exp(a-S)+exp

(—a-s)},	 (9A)

A{S}=v{1—exp(—a-S)}, 	 (9B)

to having the respective ranges of [-1,1] and [0,1] for— oe<S<oo,
where a is a selected positive number. Other monotonically
increasing, finite range functions can also be used as activa-
tion functions.

For each word q, each reference value A(q;ref) g (q=1, ... ,
15 Q) may be determined by different first reference sets of

weight coefficients, {wi,k,h(q;ref)}k and/or by different sec-
ond reference sets of weight coefficients {wz h g(q;ref) }h
which are now fixed for the word number q. The reference
values A(q;ref)g and the associated first and second reference

20 sets of weight coefficients will henceforth be used for com-
parison with not-yet-identified SASP words. Optionally, the
NN has F hidden layers and F+1 sets of weight coefficients
(F?1).

In an alternative embodiment, in steps 46-50, a first uni-
25 versal set of weight coefficients, {w i,k,h (ref)}k and a second

universal set of weight coefficients { w2 h g(-W h, not depen-
dent upon the particular word (q), replace the first and second
sets of weight coefficients {w i,k,h (q;ref)}k and
{wz h g(q;ref) }h . In this alternative embodiment, where the

30 database includes at least two words, the order of the
instances of different (transformed) words must be random-
ized, and the neural network classifier seeks to identify first
and second universal sets of weight coefficients,
{w 1,k,h(ref)}k and {wz h g(ref) }h, that are accurate for all

35 words in the database.

Word Recognition Procedure.
The word recognition procedure, according to one embodi-

ment of the invention, includes the following actions: (1)
receive a sub-audible EMG signal, representing an unknown

40 word; (2) detect the beginning of an SASP, using a threshold-
ing procedure; (3) create a window, having a selected length
At(win), that includes the SASP; (4) create a sequence of
time-shifted windowed versions of the received SASP, with
time shifts equal to a multiple of a time displacement value

45 At(displ); (5) apply a signal processing transform (SPT) to
each of the time-shifted versions of the SASP; (6) form a
matrix (which can be one-dimensional, a vector) from the
SPT values for each of the time-shifted versions of the SASP;
(7) tessellate the matrix into cells, with each cell represented

5o by a cell "feature"; (8) (re)fonnatthe cell features as entries or
components of a vector; (9) (optionally) normalize the vector
entries; (10) receive the vector entries, for each time-shifted
version of the SASP in a trained neural network classifier, and
identify a word from a database that provides a best match to

55 an activation function value corresponding to each time-
shifted version of the SASP, (11) accumulate a point for each
best match; and (12) identify a word, if any, with the highest
point count as the best match to a word corresponding to the
received SASP.

60	 FIG. 5 is a high level flow chart of a word recognition
procedure that uses the results of the training procedure

shown in FIG. 4. In step 51, a sub-audible speech pattern
(SASP) representing a sample of a "new" (unknown) word
(referred to as number q') is received and optionally rectified.

65 A sequence of sample values is received at the selected rate
used in FIG. 4. A sample thresholding operation is performed
to determine where, in the sequence, the sub-audible speech
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pattern (SASP) begins. A sequence of 7 time-shifted, partially
overlapping windows, numbered j=1, ... , 7 (J?2), is formed
from the signal representing the new word, with consecutive
start times displaced by multiples of a selected displacement
time such as At(displ)--O-At(win)/2. 	 5

In step 52, an SPT operation is performed on the new SASP
over the window length At(win), to provide a first spectrum
for the new word for each of the windowed samples. In step
53, the matrix entries are tessellated or decomposed into the
same cells that were used for each word in step 43 of FIG. 4. 10

In step 54, each cell representative value or feature in the
tessellated matrix is optionally normalized. In step 55, the cell
representative values are arranged as a vector V' having vector
entries v'k (k1, ... , K) or other suitable entity for subsequent
processing. In step 56, the first and second reference sets of 15

weight coefficients, {wl,k,h(q;ref)lk and {w2 h,g(q;ref)l h , (or
{w 1,k,h (ref)1k and {wz,h'(ref)1h) used to compute the activa-
tion function reference valueA2{S2(q;ref)1 g (orA{S(ref)1g)
for the word number q are used to compute an activation
function A2IS2'(q;ref}g, as in Eq. (6).	 20

In step 57, the system computes differences

o2(q;q;j)g IA2{s2'(q;j;ref)}g A(q;ref) g l	 (10)

for each word (q) in the database, for each time shifted win-
dow 0) and for each NN third layer index g. Optionally, in 25

step 58, only those words (q) in a "reduced" database RDB,
for which

A2(q; q'J)g`E(thr,2)	 (11)

30
is satisfied, are considered in accumulating points (in step
59), where e(thr;2) is a selected second threshold error, pref-
erably in a range 0.01 and below. Optionally e(thr;l)-E(thr;
2), but this is not required.

In step 59, for each time-shifted window (numbered 35
j=1, ... , 7), each word (q) in the database (or in the reduced
database RDB) that provides the smallest value A2(q;q',j)g
among the set of values computed in Eq. (11), is given one
point or vote. In step 60, the word (q) in the database with the
largest number of points is interpreted as the unknown word 40
(4) that was received. Optionally, the point(s) accumulated
according to the minimum value of A2(q;q';j)g can be
weighted, for example, by multiplying the number 1 by a
weight function WF{A2(q;q';j)g1 that is monotonically
decreasing as the argument A2(q;q';j)g increases. Two 45
examples of suitable weighting functions are

WF(s)=a+b -ex{-aas}, 	 (12A)

WF(s)={c-d-(s)1}e,	 (12B)

50
where a, b, c, a and R and the product d•e are non-negative
numbers, not all 0. If two or more words (e.g., ql and q2) in
the database have substantially the same largest point accu-
mulation, the system optionally interprets this condition as
indicating that no clearly-best match to the unknown word 55
(4) is available, in step 61.

FIG. 6 sets forth in more detail a first embodiment for a
thresholding operation for step 41 in FIG. 4. In step 71, two or
more moving averages of consecutive sequences of Hl
sampled values and H2 sampled values are formed (Hl <H2), 60

where, for example, H1=10 and H2=20 is a suitable choice.
Initially, the sample amplitudes and both moving averages are
substantially 0, except for the presence of noise. As the sys-
tem encounters the beginning of a sub-audible speech pattern
(SASP), the shorter Hl-sample will rise before the longer 65

H2-sample rises, when applied to consecutive sample runs
withthe same startingpoint. Instep 72, the system determines

12
if the moving average of the Hl-samples is at least a multiple
µ of the moving average of the H2-samples, where µ is a
selected ratio? 1. If the answer to the query in step 72 is "no,"
the system returns to step 71 and continues to receive samples
and to form the two moving averages. If the answer to the
query in step 72 is "yes," the system infers that an SASP is
present and that an "SASP threshold" has been crossed; and
the system begins to divide succeeding time intervals into
epochs, in step 73. Other methods of determining when an
SASP threshold has been crossed can also be used here.

In step 74 of FIG. 6, a set of signal samples is received,
preferably as a stream of data, and the magnitude or absolute
value of each SASP signal sample is formed (optional). In
step 75, a consecutive sequence CS of the signal samples is
formed within an event window, preferably of length
At(win)=1-4 sec. In step 76 the system creates a new sequence
TSCS of time shifted consecutive sequences, with the begin-
ning of each TSCS being shifted by a selected time delay
amount At(displ) relative to the immediately preceding
TSCS. Each TSCS will be processed and classified by a
neural network classifier. The number of (above-threshold,
consecutive) TSCSs may be used as a parameter in the com-
parisons in FIG. 4. The system then proceeds to step 42 of
FIG. 4 and continues.

FIG. 7 illustrates a dynamic threshold adjustment proce-
dure, relying in one implementation on a Bollinger band, that
may be used in step 41. In step 81, a sequence of T amplitudes
"a" of the signal are received and stored. In step 82, a mean (µ)
and standard deviation (a) are computed for the stored
sequence. In step 83, the system determines if the magnitude
of the difference lu-µl is at least equal to L•a for at least one
amplitude a in the stored sequence, where L is a selected
positive number (e.g., L=4-10). If the answer to the query in
step 83 is "no", the system replaces the stored sequence by a
new sequence (e.g., shifted by one sample value), in step 84,
and returns to step 82; no threshold has yet been crossed in
this situation. If the answer to the query in step 83 is "yes", a
threshold has been crossed within the stored sequence and a
position representing the beginning of the word can be iden-
tified, in step 85.

FIG. 8 is a flow chart providing more detail on step 42 in
FIG. 4, where a Fourier transform is used for the SPT opera-
tion In step 91, the data stream is optionally reformatted into
a sequence of columns (or into rows) of signal samples, with
each column (or row) corresponding to a TSCS, according to
the format required for computer analysis. In step 92, a Nan-
ning filter is optionally applied to each STFT window. In step
93, an SPT operation is performed for each row of (filtered)
signal samples. The particular SPT used may be a conven-
tional Fourier transform (applied to a window of finite width),
a dual wave tree wavelet transform, a Daubechie transform, a
Hartley transform, a moving average with uniform or non-
uniform weights, or similar transforms. The particular choice
will depend upon the known characteristics of the data
received for analysis. Preferably, the SPT of the signal sample
sequences will provide real and imaginary components that
can be combined and processed as appropriate. In step 94, the
system forms a selected combination of real and imaginary
components of the (filtered and transformed) signal samples
in each row. In step 85, the columns (or rows) are combined,
end-to-end, to provide a spectrogram for each (time-over-
lapped) window.

FIG. 9 is a flow chart providing more detail on step 43 in
FIG. 4, according to a first embodiment for tessellation of the
matrix M. In step 101, the entries within the matrix M are
decomposed into non-overlapping, rectangularly-shaped
cells of one or more selected sizes (e.g., 20 or 5x5 or 10x7)
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so that every entry belongs to precisely one cell. Cells adja-
cent to a boundary of the matrix M may have a different
(residual) size. In step 102, a first order statistical coefficient
m, (e.g., arithmetic mean, median, mode or largest value) is
computed for, and associated with, each cell, representing an
average magnitude or other feature for the entries within the
cell. A second order statistical coefficient mz (e.g., standard
deviation) is optionally computed for each cell. Here, the
individual values within each cell may be substantially dif-
ferent so that the first order coefficient m 1 associated with a
given cell may not be very representative of the individual
entries. However, the cells in this embodiment are of fixed
size, which is useful in some of the following computations.
At one extreme, each cell may be a single entry in the matrix
M.

14
for the surface or function is first identified; a line search is
performed to estimate the optimal distance to be moved along
the current search direction (p,)

X7+1 _Xk+akPk;	 (14)

and a conjugate direction

Px gk+PkP7, 1	 (15)

10 is determined for the new search direction. For the Fletcher-
Reeves update, the parameter Rk is chosen according to

Pk 9k'9 l9k-1'9k-1J'
	 (16)

For the Polak-Ribiere update, the parameter Rk is chosen
15 according to

FIG. 10 is a flow chart of an alternative embodiment for
tessellation of the matrix M (step 43 in FIG. 4). In step 111,
the matrix entries are tentatively aggregated into "pre-cells,"
with each pre-cell initially being a single entry and having a 20

second order statistical coefficient m z of 0. Consider a general
pre-cell, such as a rectangular set E of entries, having a
selected first order statistical coefficient m 1 (arithmetic mean
or median or mode) and having a second order statistical
coefficient mz no larger than a selected positive threshold 25

value a(thr). In step 112, an expanded pre-cell set E', having
one more row or one more column than E, is formed, and
statistical coefficients m 1 (E') and mz(E') are computed for
this pre-cell P. In step 113, mz(E') is compared with the
threshold value a(thr). If the coefficient m z(E') for the 30

expanded set E' is no larger than the threshold value a(thr),
the pre-cell is redefined, in step 114, to include the expanded
set E', and the system returns to step 112. The redefined set E'
is further expanded in step 115 by one row or one column to
form a new set E", and the system returns to step 112. If 35

mz (E') is larger than the threshold a(thr), the expanded set E'
is rejected, the pre-cell includes the set E but not this particu-
lar expanded set E', and the system returns to step 112. How-
ever, another expanded set can be formed from E, by adding
a different row or column, and the coefficient m z for this new 40

expanded set can be computed and compared with o(thr). At
some level, the system identifies a rectangular or other shape
set E^ of maximum size whose coefficient mz (E^) is no larger
than the threshold value a(thr), and this maximum size set
becomes a cell. This process is repeated until every entry in a 45

cell is "similar" to every other entry in that cell, as measured
by the threshold value a(thr). The number of matrix entries
has been reduced to a smaller number of cells. The cells may
be rectangular but do not necessarily have the same size. In
this approach, the entries in a cell are represented by the 50

coefficient m 1 for that cell, but the cell size is determined by
the adjacent entries for which m z(E')-a(thr) so that the
entries may be more "similar" to each other.

One practical approach for neural network training is back-
propagation of errors, together with conjugate gradient analy- 55

sis to identify global minima. This approach is discussed, for
example, by T. Masters in Practical Neural Network Recipes
in C++, Morgan Kaufman Publ., 1993, pp. 102-111.

With reference to step 50 in FIG. 4 in the preceding, a
conjugate gradient algorithm with trust region (to limit the 60

extension in any direction in coordinate space) is applied to
the error term sum, e(q) with q fixed, to determine an extre-
mum point (minimum) for the received cell representatives.
For example, the basic Fletcher-Reeves algorithm can be
utilized, wherein a direction of steepest descent 	 65

P0_-90	 (13)

Nk Ogk—l -gk1[97, 1.97,-11, 	 (17)

where Agx- 1—gx-1-gx-2 is the preceding change in the direc-
tion of steepest descent. In any conjugate gradient approach,
it is preferable to periodically reset the search direction to the
steepest descent gradient. In a particular approach developed
by Powell and Beale, resetting occurs when little orthogonal-
ity remains between the present gradient and the preceding
gradient; the corresponding test is whether the inequality

gk-1 -gk 1 ?0.2lgk lZ.	 (18)

is satisfied. Other variations on the corresponding algorithms
can also be used here.

Application to Communications in an Interfering Environ-
ment

*The sub-audible signal processing system disclosed
herein can be applied to communication in an interfering
environment, for example, an emergency service worker
(ESW) working in an extreme environment (e.g., filled with
smoke or toxic fumes) in which reliable and accurate com-
munication is more important than high throughput or use of
a lexicon having a large number of words. The system dis-
closed herein has been applied to the following group of 20
"words" (including individual words and short phrases) that
an ESW might use in responding to an emergency event.

*Table 1 sets forth the accuracies determined for one per-
son pronouncing each of 21 words and phrases many times,
including a sub-list of 6 words and phrases ("evacuate,"
"Mayday," "mantrap," fire safe," "fire clear," "zero" and
"one") that were pronounced 30 times each, while wearing a
self contained breathing apparatus ("SCBA") that is custom-
arily worn by a first responder ESW at an emergency event.
The accuracies associated with the six words in the sub-list
(e.g., "Mayday," "zero" and "one") are lower (63, 70 and 80
percent) than the remainder, but the range of accuracies for all
words in the original list is 53-100 percent. The accuracy of
word recognition for an ESW who is not wearing an SCBA
should be substantially higher in most situations

TABLE 1

Accuracies Associated With Particular EMG Signals.

evacuate (97%)
Mayday (80%)
fire safe (93%)
mantrap (97%)
stop (84%)
go (100%)
left (91%)
right (80%)
alpha (97%)
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TABLE 1-continued

Accuracies Associated With Particular EMG Signals.

omega (97%)
zero (63%)
one (70%)
two (53%)
three (78%)
four (85%)
five (75%)
six (78%)
seven (75%)
eight (80%)
nine (63 %)

The words "alpha" and "omega" can be used for other com-
mands, such as "up" and "down," for example. The particular
set of words and phrases used is not critical, although the
recognition accuracies may vary with the particular words
and phrases used.

*FIG. 11 is a flow chart of a procedure for practicing an
embodiment of the invention. In step 121, a sub-audible word
or phrase ("SAWP"), or a collection of SAWPs, is received
and analyzed at a SAWP signal processor that processes and
transmits a representation of a SAWP over a (wireless or
wired) signaling channel to at least one recipient. In step 122,
the system determines if the SAWP is a word or phrase in a
SAWP lexicon associated with the module. If the answer to
the query in step 122 is "no," the system optionally ignores the
SAWP and takes no further action, in step 123, and returns to
step 121. If the answer to the query in step 122 is "yes," the
system transmits a SAWP signal representing the received
SAWP over the transmission channel, in step 124, optionally
using encoded, encrypted or otherwise transformed signals.
In step 125, the recipient receives the SAWP signal and con-
verts and displays the received SAWP signal in at least one of
visually perceptible alphanumeric text, audibly perceptible
speech, and a coded signal representing the received SAWP,
and optionally returns to step 121.

*As a proof of feasibility, a wireless system 131 is illus-
trated in FIG. 12, including a receiver that functions as a
conventional cell phone, has been programmed to receive and
analyze sub-audible sounds representing a subset of the 21
words set forth above and to visually display and audibly
display each word from this list that is recognized, for a given
speaker 132. The system 131 includes: an initial receiver-
amplifier 133 that receives and amplifies EMG signals from
the speaker 132; an initial signal processor 134 that receives
the amplified EMG signal(s) from the amplifier 133, pro-
cesses this signal, and provides the processed signal for a real
time SAWP recognition processor("RTRP")135 (which may
be part of the initial signal processor 134. The RTRP 135
optionally transmits its output signals to a stealth communi-
cations module 136, to a robotic control module 137, to a VE
control module 138, to a Web server 139 and/or to a service
provider network 140 that optionally serves one or more cell
radio units 141, using general packet cell radio standards
(GPRS).

*For example, a Web server or other communication mod-
ule 139 that receives the processed sub-audible message (rep-
resenting a SAWP); an end receiver and network 140 (e.g., a
conventional or suitably modified cell phone) that a signal
representing the sub-audible message from the server 139. A
recipient (not explicitly shown) holds or controls the GPRS
unit 140 and receives the ultimate signal in visually percep-
tible and/or audibly perceptible format.

*If a sub-audible word or phrase (or its EMG equivalent) is
recognized from a lexicon maintained by the RTRP 135, this
word or phrase is optionally presented to the recipient in
visually and/or audibly perceptible format by the RTRP 135.

5 If the sub-audible word or phrase is not recognized by the
initial signal processor 134 from the lexicon, this word or
phrase is optionally presented to the recipient (not explicitly
shown) in visually perceptible alphanumeric text, or the word
orphrase is indicated to be non-understandable. The accuracy

io percentage varies from one word to another but generally lies
in a range 87-97 percent.

*In the system 131 illustrated in FIG. 12, a cell phone user
132 is connected to a Synamp amplifier 133 using Ag/Agl
electrodes. Sub-audible speech processing software, includ-

15 ing Java client software customized for sub-audible speech,
as discussed in the preceding, is activated on a portable PC or
other signal processor(s) 134, 135 connected to receive and
process amplified EMG signals for transmission through a
USB link and Web server 139 to the end receiver 141 (e.g., a

20 cell phone). Various background sounds are turned on,
including turn-on of a diesel fire engine with an operative
water pump, a high speed rescue saw and various sirens.

*The user may wear a self contained breathing apparatus
("SCBA") suit with turnout, and the suit may be closed and

25 pressurized. The cell phone within the suit is activated, and
the cell phone menu is transformed to reflect a sub-audible
menu of options (e.g., SAWN). The user forms a sequence of
sub-audible words and phrases {e.g., "fire safe," "mantrap,"
"evacuate," "Mayday," "stop," "go" }, for pickup by the PC,

30 which delivers the processed sub-audible signals to a cell
phone system. The cell phone system checks to determine if
the sub-audible word or phrase is recognized among the set of
previously trained words and phrases. If the word or phrase is
not recognized, this SAWP is ignored. If the SAWP is recog-

35 nized, the cell phone displays the word orphrase on the screen
and optionally pronounces this in a pre-recorded voice. The
percentage of correct recognition for this set of words and
phrases is presently estimated at about 80-97 percent. The
lower end of this percentage range is expected to rise with

40 increasing familiarity with use of the system. This exempli-
fies use of the invention over a wireless channel.

*In a first variation on the preceding approach, the USB
link between PC and cell phone is removed, and the processed
sub-audible signals are sent by wireless transmission to any

45 phone capable of downloading a Java applet.
*In a second variation, the word/phrase set is changed to

{"stop," "go," "left," "right," "forward" and "back"} and the
processed sub-audible signals are sent by wireless transmis-
sion to a PER robot. Communication of these six words is

50 used to issue command/control signals for robot operations
and/or motion.

*This approach can be used to facilitate communication
between: (1) two or more emergency service workers in a
noisy, toxic, smoky or other signal-interfering environment;

55 (2) two or more first responders in a hazardous substance
environment, where one or both are wearing a self contained
breathing apparatus (SCBA); (3) two or more workers in an
underwater environment who need to communicate directly
(visually and/or audibly), where one or more workers is wear-

60 ing a SCBA apparatus; (4) two or more workers in a continu-
ously or sporadically noisy environment, to avoid or mini-
mize the necessity of repeating a command or observation or
other information message; and (5) minimizing environmen-
tal damage to, or interference with, electronic communica-

65 tions mechanisms. Ina situation involving workers concerned
with a particular activity, the number of SAWPs used for
specialized communication can be relatively small (e.g.,
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20-40). Alternatively, a first subset of the words or phrases for
which SAWPs are provided and processed can be replaced by
a second subset of encoded, encrypted, transformed or other
symbolic or representational SAWPs ("R-SAWPs") than are
the SAWPs in the first subset.

*In certain self-contained systems, such as an SCBA or an
underwater diving suit, moisture from a worker's breath may
accumulate to levels that interfere with normal audible
speech, through creation of resonances or other distortion
mechanisms that mask or otherwise change the perceived
meaning of words and/or phrases. Issuance and transmission
of a SAWP does not depend, or depends only weakly upon,
voice-carrying characteristics that are associated with or
determined by standard speech. For example, issuance, trans-
mission, receipt and analysis of a SAWP is not affected by
presence of a low level "swish" sound associated with expul-
sion of moist air or oxygen-depleted air (e.g., with high COz
content) from a self-contained suit. Issuance, transmission,
receipt and analysis of a SAWP is also not affected by pres-
ence of environmentally hazardous substances, such as toxic,
reactive, ignitable, corrosive or poisonous gases that other-
wise might limit use of standard speech because of concern
for exposure of the speaker's organs or concern for degraded
performance of electronic components. Issuance, transmis-
sion, receipt and analysis of a SAWP is also not affected by
presence of high frequency or variable frequency noise or
electromagnetically varying signals, if at least one frequency
range can be found where the magnitude of the interfering
signal(s) can be minimized.

What is claimed is:
1. A method for communicating information in an environ-

ment that interferes with audible speech, the method com-
prising:

choosing at least a first sub-audible word or phrase
(SAWP) and a second SAWP to be first and second
representational SAWPs (Rep-SAWPs), respectively,
where each Rep-SAWP is chosen to provide optimal
likelihood of recognition of the transmitted SAWP sig-
nal in an ambient environment,

receiving at least one SAWP, from among the first SAWP
and the second SAWP, at a wireless signaling module
that processes and transmits sub-audible speech signals
over a signaling channel to at least one recipient module;

determining if the at least one SAWP is a word or phrase in
a SAWP lexicon associated with the module; and

when the at least one SAWP is recognized as belonging to
the SAWP lexicon:

(i) transmitting the least one SAWP representing the
received SAWP over the signaling channel; and

(ii) receiving the at least one SAWP from the signaling
channel at the recipient module and converting the
received at least one SAWP to at least one of visually
perceptible alphanumeric text, audibly perceptible
speech, and a coded signal representing the SAWP.

2. The method of claim 1, further comprising including in
said SAWP lexicon at least one of the following words and
phrases: "evacuate," "Mayday," "mantrap," "fire safe,"
"stop," "go," "left," "right," "alpha," "omega," "zero," "one,"
"two," "three," "four," "five," "six," "seven," "eight," and
"nine."

3. The method of claim 1, further comprising choosing at
least one of said first and second Rep-SAWPs to be at least
one of an encoded SAWP, an encrypted SAWP and a SAWP
that is transformed to a format that resists signal degradation
when transmitted in said ambient environment.
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4. The method of claim 1, wherein said process of deter-

mining if said at least one SAWP is a word or phrase in a
SAWP lexicon associated with said module comprises:

receiving R signal sequences associated with said at least
5 one SAWP, with each sequence including an instance of

a sub-audible speech pattern (SASP), numbered
r A, ... , R with R?2, and each SASP including at least
one word drawn from a selected database of Q words,
numbered q=1, ... , Q with Q?2;

10 estimating where each of the R SASPs begins in the
sequences;

for each of the signal sequences, numbered r-1, ... , R:
providing signal values of the received signal, number r,

within a temporal window having a selected window
15	 width At(win);

transforming each of the R SASPs, using an Signal
Processing Transform (SPT) operation that is
expressed in terms of at least one transform parameter
having a selected sequence of parameter values;

20 providing a matrix M with entries equal to the SPTs for
the R SASPs, ordered according to the at least one
transform parameter along a first matrix axis;

tessellating the matrix M into a sequence of exhaustive
and mutually exclusive cells, with each cell contain-

25 ing a collection of contiguous matrix entries, where
each cell is characterized according to at least one
selected cell criterion;

providing, for each cell, a cell representative value ("fea-
ture"), depending upon at least one of the matrix

30	 entries within the cell;
organizing the features into a vector V with entry values

vk (k=1, ... , K), where K is the number of features for
the tessellated matrix M; and

analyzing the entry values v k, using a neural net classi-
35 fier, a selected neural net architecture, and a sequence

of estimated weight coefficient values associated with
at least one of the neural net classifier layers, where
the neural net classifier provides a sequence of output
values dependent upon the weight coefficient values

40	 and upon at least one of the entry values vk;

providing a sequence of target output values A(q;ref) g, one
for each word number q, for the neural net classifier
output values; and

adjusting the weight coefficient values to provide a refer-
45 ence set of weight coefficient values forwhich the neural

net classifier output values for the R SASPs and for each
of the Q words agree with the target output values within
a selected threshold error number e(thr;1).

5. The method of claim 4, further comprising replacing at
50 least one of said features by a normalized feature for at least

one of said cells corresponding to said matrix M.
6. The method of claim 4, wherein said process of adjusting

said weight coefficient values comprises:
providing a first sequence of estimated weight coefficients

55 {wi,k,h} and a second sequence of estimated weight
coefficients {wi h g} (k=1, . . . , K; h=1, . . . , H;
g=1, ... , G), for first and second layers, respectively, of
said neural net classifier;

forming a first sum S 1(q;r) h ofproducts of said entry values
60	 vk and corresponding weight coefficients w, k,h;

computing a first activation function Al IS I (q;r)h } applied
to the sum S I (q;r)h as argument;

forming a second sum S2(q;r)g of products of the first
activation function values Al{S1(q;r) h} and corre-

65	 sponding weight coefficients w2,h g;
computing a second activation function A2{S2(q;r)g}

applied to the sum S2(q;r)9 as argument;
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adjusting the first and second weight coefficient sequences

to obtain a first reference set {w, x ,(q;ref)}k and a sec-
ond reference set {wz,h,g(q;ref)}h of the weight coeffi-
cients, associated with said at least one word number q,
for which, for each of said instances R, a difference 5

between the activation function value A2IS2(q;r)g} for
said instance r and said target output values A(q;ref)g,
computed using the reference set of weight coefficients,
has a magnitude that is no greater than said selected
positive error threshold number e(thr; 1). 	 10

7. The method of claim 6, further comprising:
receiving a new SASP containing an unknown word,

referred to as a "new" word, number 4;
estimating where the new SASP begins;
providing signal values of the received signal for the new 15

SASP within each of said J temporal windows, num-
bered j=1, ... , J with J>2, that are shifted in time relative
to each other by multiples of a selected displacement
time At(displ);

for the signal values within each of the time-shifted win- 20

dows, numbered j=1, ... , J:
transforming each of the signal values of the new SASP,

using said Signal Processing Transform operation;
providing a matrix M' with entries equal to said SPTs,

ordered according to said at least one transform 25

parameter along a first matrix axis;
tessellating the matrix M into said sequence of exhaus-

tive and mutually exclusive cells that correspond to
said cells for said tessellated matrix M;

providing, for each cell in the matrix M', a cell represen- 30

tative value or "feature", depending upon at least one
of the matrix entries within the cell; and

organizing the features into a vector V with entry values
V, (k-1, .. K);

applying said neural net classifier and said reference set of 35

said weight coefficients to compute said neural net clas-
sifier output values for each of the time-shifted
sequences of the new SASP;

forming comparison differences between said neural net
classifier target output values and said neural net classi- 40

fier output values for each of the time-shifted sequences
of the new SASP;

for each of said time shifted sequences of the new SASP,
choosing at least one word, number q", in said database
for which the magnitude of the comparison difference is 45

no greater than a magnitude of the comparison differ-
ence for any other word in said database, and accumu-
lating a weighted point each time the at least one word
number q" is chosen; and

when the at least one word number q" has a higher number 50

of weighted points than the number of weighted points
for any other word in said database, interpreting this
condition as indicating that the new SASP includes the
word number q".

8. The method of claim 7, further comprising replacing at 55

least one of said features for said matrix M' by a normalized
feature for at least one of said cells for said matrix M'.

9. The method of claim 7, further comprising:
when at least two distinct words, number ql and q2, in said

database have substantially equal numbers of said 60

weighted points and the substantially equal numbers of
said weighted points of the at least two words, number
ql and q2, are substantially greater than said number of
said weighted points of any other word in said database,
interpreting this condition as indicating that said new 65

word included in said new SASP cannot be unambigu-
ously identified.

20
10. The method of claim 7, further comprising choosing

said weighting for said weighted points from the group of
weighting formats consisting of (1) substantially uniform
weighting and (ii) a weighting that decreases monotonically
as said magnitude of said comparison difference increases.

11. The method of claim 7, wherein said steps of applying
said neural net classifier and forming said comparison differ-
ences comprise:

forming a sum S1'(q';j;ref)h over said index k of a product
of said first reference set of weight coefficient wl,x,h(q';
j;ref) and said vector entries v Vk, and computing an acti-
vation function value Al{S1'(4-,j;ref)h I dependingupon
the sum Sl'(q',j;ref)h};

forming a sum S2'(q',j;ref)g over said index h of a product
of said second reference set of weight coefficient w2,h,g
(q';j;ref) and the activation function values Al {S1'(q';j;
ref)h} and computing an activation function value
A2{S2'(q;j;ref)g} depending upon the sum
S2'(q';j;ref)g}; and

forming a comparison difference between the activation
function valueA2{S2'(q';j;ref)g} for the new SASP and
said target output valueA(q;ref)g for at least one of said
words, number q, in said database.

12. The method of claim 4, further comprising determining
said reference set of said weight coefficients to be indepen-
dent of said word number q in said database.

13. The method of claim 4, further comprising determining
said reference set of said weight coefficients so that at least
one reference set weight coefficient for a first selected word
number ql in said database differs from a corresponding
reference set weight coefficient for a second selected word
number q2 in said database.

14. The method of claim 4, further comprising selecting
said window width At(win) in a range 1-4 sec.

15. The method of claim 4, further comprising selecting
each of said matrix cells to be rectangularly shaped.

16. The method of claim 15, further comprising selecting at
least two of said matrix cells to have different sizes.

17. The method of claim 4, further comprising determining
said matrix cells by at least one of a first order statistical
coefficient and a second order statistical coefficient for said
entries in that cell.

18. The method of claim 17, further comprising:
selecting said first order and said second order statistical

coefficients to be a statistical mean µ and a standard
deviation a, respectively for a cell; and

including in at least one of said cells a collection of con-
tiguous entry values a of said matrix for which a nor-
malized difference lu—µl/o is no greater than a selected
positive number.

19. The method of claim 4, further comprising choosing
said SPT operations from the group of SPT operations con-
sisting of (i) a windowed short time interval Fourier Trans-
form (STFT); (ii) discrete wavelets (DWTs) and continuous
wavelets (CWTs) using Daubechies 5 and 7 bases; (iii) dual
tree wavelets (DTWTs) with a near_sym_a 5,7 tap filter and a
Q-shift 14,14 tap filter; (iv) Hartley Transform; (v) Linear
Predictive Coding (LPC) coefficients; (vi) a moving average
of a selected number of said sample values with uniform
weighting; and (vii) a moving average of a selected number of
said sample values with non-uniform weighting.

20. The method of claim 4, further comprising selecting
said database to include at least one of the words "stop", "go",
"left", "right", "alpha", "omega", "one", "two", "three",
"four", "five", "six", "seven", "eight", "nine" and "ten."

21. The method of claim 4, further comprising selecting
said error threshold number to lie in a range e(thr;l)-_:0.0L
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22. The method of claim 4, further comprising applying a
back propagation of error method in said neural net classifier
analysis of said features of said cells of said matrix M.

23. The method of claim 4, further comprising:
receiving anew SASP signal containing an unknown word,

referred to as a "new" word, number 4;
estimating where a new SASP begins in the new SASP

signal;
providing signal values of the received new signal for the

new SASP within each of said J temporal windows,
numbered j=1, ... , J with J?2, that are shifted in time
relative to each other by selected multiples of a selected
displacement time At(displ);

for the signal values within each of the time-shifted win-
dows, numbered j=1, ... , J:
transforming each of the signal values of the new SASP,

using said Signal Processing Transform operation;
providing a matrix M' with entries equal to said SPTs,

ordered according to said at least one transform
parameter along a first matrix axis;

tessellating the matrix M' into said sequence of exhaus-
tive and mutually exclusive cells that correspond to
said cells for said tessellated matrix M;

providing, for each cell in the matrix M', a cell represen-
tative value or "feature", depending upon at least one
of the matrix entries within the cell; and

organizing the features into a vector V with entry values
v'k (k=1, .. , K);

applying said neural net classifier and said reference set of
said weight coefficients to compute said neural net clas-
sifier output values for each of the time-shifted
sequences of the new SASP;

forming said comparison differences between said neural
net classifier target output values and said neural net
classifier output values for each of the time-shifted
sequences of the new SASP;

for each of said time shifted sequences of the new SASP,
choosing at least one word, number q", in said database
for which (i) the magnitude of the comparison difference
is no greater than the comparison difference for any
other word in said database and (ii) the magnitude of the
comparison difference is no greater than a second

22
selected positive error threshold e(thr;2), and accumu-
lating a weighted point each time the at least one word
number q" is chosen; and

when the at least one word number q" has a higher number
5 of weighted points than the number of weighted points

for any other word in said database, interpreting this
condition as indicating that the new SASP includes the
word number q".

24. A system for communicating information in an envi-
10 ronment that interferes with audible speech, the system com-

prising:
• receiver-evaluator for receiving at least one of a first

sub-audible word or phrase (SAWP) and a second
SAWP and for determining if the SAWP is a word or

15	 phrase in a SAWP lexicon associated with the evaluator;
and

• transmitter for transmitting a SAWP representing at least
one of the first and second received SAWPs over a sig-
naling channel to at least one recipient, when the

20	 received SAWP is determined to be contained in the
SAWP lexicon,

wherein the SAWPs associated with first and second
received SAWPs are respective first and second repre-
sentational SAWPs (Rep-SAWPs) that are chosen to

25	 provide optimal likelihood of recognition of the trans-
mitted SAWPs in an ambient environment.

25. The system of claim 24, further comprising a SAWP
receiver, associated with said at least onerecipient, forreceiv-
ing and converting said SAWP to at least one of visually

30 perceptible alphanumeric text, audibly perceptible speech,
and a coded signal representing said received SAWP.

26. The system of claim 24, wherein said SAWP lexicon
includes at least one of the following words and phrases:
"evacuate," "Mayday," "mantrap," "fire safe," "stop," "go,"

35 "left," "right," "alpha," "omega," "zero," "one," "two,"
"three," "four," "five," "six," "seven," "eight," and "nine."

27. The system of claim 24, wherein at least one of said first
and second Rep-SAWPs is chosen to be at least one of an
encoded SAWP, an encrypted SAWP and a SAWP that is

40 transformed to a format that resists signal degradation when
transmitted in said ambient environment.
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