The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.
FOREIGN PATENT DOCUMENTS

JP 9025526 1/1997
JP 2003-251600 1/1999
WO 00/12600 3/2000

OTHER PUBLICATIONS

* cited by examiner
MIX A SELECTED QUANTITY OF A SURFACANT IN A SOLVENT TO OBTAIN A SURFACANT-CONTAINING SOLUTION

ADD REAGENTS CONTAINING GROUP IV AND VI ELEMENTS TO THE SOLUTION

ADD A REDUCING AGENT TO THE SOLUTION TO PRODUCE A SOURCE OF HYDROGEN

ADD A BASE TO THE SOLUTION

MAINTAIN THE SOLUTION AT A SELECTED TEMPERATURE AND FOR A SELECTED DURATION TO CAUSE FORMATION OF A REACTION PRODUCT CONTAINING IV-VI NANOSTRUCTURES

EXTRACT THE NANOSTRUCTURES FROM THE REACTION PRODUCT
FIG. 2

HIGH STRENGTH PISTON

HIGH STRENGTH CYLINDER

SAMPLE POWDER

FORCE FOR PRESSING

CURRENT FOR HEATING
FIG. 4A

5 nm
FIG. 5

(a) X-RAY FILE (PbTe)
(b) OBSERVED SPECTRA

RELATIVE INTENSITY (a.u.)

2-THETA (DEG.)

(100) (200) (220) (222) (400) (420) (422) (440)
FIG. 11

RELATIVE INTENSITY (a.u.)

2-THETA (DEG.)

A) d=16 nm
B) d=24 nm
C) d=30 nm
D) d=34 nm
FIG. 14A

FIG. 14B
FIG. 16

FIG. 17
FIG. 18

REACTION WITH Te$^{2-}$

FIG. 19
FIG. 20

1. DISSOLVE SELECTED QUANTITIES OF A SURFACANT AND A BASE IN A SOLVENT

2. ADD REAGENTS CONTAINING GROUP IV AND GROUP VI ELEMENTS TO THE SOLUTION

3. ADD A SELECTED QUANTITY OF A REAGENT CONTAINING A METALLIC ELEMENT OF INTEREST, AS WELL AS A REDUCING AGENT TO THE SOLUTION

4. MAINTAIN THE SOLUTION AT AN ELEVATED TEMPERATURE FOR A SELECTED DURATION TO CAUSE FORMATION OF DOPED IV-VI NANOPARTICLES
METAL-DOPED SEMICONDUCTOR NANO PARTICLES AND METHODS OF SYNTHESIS THEREOF

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

The U.S. Government has rights in this invention pursuant to contract Nos. 5000486 and NAS3-03108 awarded by the National Aeronautics and Space Administration (NASA), grant No. NIRT 0304506 awarded by the National Science Foundation (NSF), and grant No. DE-FG02-00ER45805 awarded by the Department of Energy (DOE).

BACKGROUND OF THE INVENTION

The present invention is generally directed to micro and nano-sized particles formed of semiconductor compounds, thermoelectric compositions formed of such particles, and methods for their synthesis.

Group IV-VI binary semiconductor materials are currently of interest for use in thermoelectric applications, such as power generation and cooling. For example, PbTe-based compounds can be used in solid-state thermoelectric (TE) cooling and electrical power generation devices. A frequently utilized thermo-electric figure-of-merit of a thermoelectric device is defined as

\[Z = \frac{\sigma T}{\kappa} \]

where \(S \) is the Seebeck coefficient, \(\sigma \) is the electrical conductivity, and \(\kappa \) is thermal conductivity. In some cases, a dimensionless figure-of-merit (ZT) is employed, where T can be an average temperature of the hot and cold sides of the device. It has also been suggested that nanostructured materials can provide improvements in a thermoelectric figure-of-merit of compositions incorporating them.

Accordingly, there is a need for methods of synthesizing nanostructured semiconductors from Group IV-VI materials. There is also a need for such synthetic methods that provide high yields and can be readily implemented. Moreover, there is a need for improved IV-VI micro and nanostructures that would exhibit enhanced thermoelectric properties.

SUMMARY OF THE INVENTION

The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and a Group VI element and a metallic dopant distributed within the matrix.

The terms “nanoparticles” and “nanostructures,” which are employed interchangeably herein, are known in the art. To the extent that any further explanation may be needed, they primarily refer to material structures having sizes, e.g., characterized by their largest dimension, in a range of a few nanometers (nm) to about a few microns. Preferably, such nanoparticles have sizes in a range of about 10 nm to about 200 nm (e.g., in a range of about 5 nm to about 100 nm). In applications where highly symmetric structures are generated, the sizes (largest dimensions) can be as large as tens of microns.

In a related aspect, the metallic dopant can have a relative atomic concentration less than about 20 percent, for example, in a range of about 1 percent to about 20 percent. The dopant can be any suitable metal, such as copper, silver, zinc, gold, indium, thallium, tin, antimony, or bismuth.

In another aspect, the alloy matrix can be formed of PbTe or PbSe containing a uniform or a non-uniform distribution of the metallic dopant. For example, in one embodiment, the nanoparticle can be characterized by the following chemical formula: \(Cu_x (PbTe)_{1-x} \), wherein \(x \) can be in a range of about 0.01 to about 0.2. In another embodiment, the nanoparticle can be characterized by the following chemical formula: \(Ag_y (PbTe)_{1-y} \), wherein \(y \) can be in a range of about 0.01 to about 0.2. In other embodiments, the nanoparticle can be any of \(\text{Zn}_x (PbTe)_{1-x} \), \(\text{Au}_y (PbTe)_{1-y} \), \(\text{Ga}_x (PbTe)_{1-x} \), \(\text{In}_y (PbTe)_{1-y} \), \(\text{Tl}_z (PbTe)_{1-z} \), \(\text{Sn}_x (PbTe)_{1-x} \), \(\text{Sb}_y (PbTe)_{1-y} \), and \(\text{Bi}_x (PbTe)_{1-x} \), where \(x \) can be in a range of about 0.01 to about 0.2.

In another aspect, the present invention provides a thermoelectric composition having a plurality of nano-sized structures each of which includes a lattice composed of atoms of a Group IV element and atoms of a Group VI element forming chemical bonds with one another, and one or more metallic domains distributed uniformly or non-uniformly within the lattice. The metallic dopant can be formed, for example, of silver or copper or any other suitable metal, such as those recited above, and can comprise less than about 20 atomic percent of the structure, e.g., about 1 atom percent to about 20 atom percent of the nanostructure.

In another aspect, the invention provides a nanoparticle that includes a matrix formed as an alloy of a Group IV element, such as Pb, a Group VI element, such as Se, and a metal, and one or more domains formed of the metal and distributed, e.g., non-uniformly, within the alloy matrix. The nanoparticle can have a largest dimension in a range of about a few nanometers to about 1000 nanometers, e.g., in a range of about 5 nm to about 100 nm. Further, the metallic domains can have average sizes of a few nanometers (e.g., 1-50 nm).

In another aspect, the invention provides a nanoparticle comprising a metal and a reagent having a Group IV element, such as Pb, a Group VI element, such as Se, and a metal, and one or more domains formed of the metal and distributed, e.g., non-uniformly, within the alloy matrix. The nanoparticle can have a largest dimension in a range of about a few nanometers to about 1000 nanometers, e.g., in a range of about 5 nm to about 100 nm. Some examples of suitable metals include, e.g., silver, copper, zinc, gold, indium, thallium, tin, antimony and bismuth.

In another aspect, the invention provides a method of synthesizing nanoparticles having a metallic dopant by preparing a solution containing a surfactant (e.g., PEG), a reagent having a Group IV element (e.g., Pb) and a reagent having a Group VI element (e.g., Se). A quantity of a reagent containing a metal (e.g., silver or copper) and a reducing reagent can be added to the solution. The resultant solution can then be maintained at an elevated temperature in a range of about 20°C to about 360°C, for a duration in a range of about 1 hour to about 50 hours (e.g., in a range of about 3 hours to about 30 hours) to generate a reaction product including nanoparticles of the Group IV-VI elements doped with the metal. The above reagents can be substances, e.g., in the elemental form or as compounds, that can provide sources of Group IV and Group VI elements and a metal of interest. It should be understood that the above steps for generating the resultant solution to be maintained at an elevated temperature can be performed in any order, or simultaneously.
In a related aspect, a base (e.g., NaOH) can be added to the solution so as to facilitate formation of the nanoparticles. Further understanding of the invention can be obtained by reference to the following detailed description in conjunction with the drawings, which are described briefly below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart indicating various steps for synthesizing IV-VI nanostructures in accordance with one embodiment of the invention.

FIG. 2 is a schematic diagram of a plasma compaction apparatus to compact IV-VI nanostructures generated in accordance with the teachings of the invention.

FIGS. 3A and 3B present low magnification TEM images of prototype PbTe nanocrystals synthesized in accordance with one embodiment of the invention.

FIGS. 4A-4C show high resolution TEM images of prototype PbTe nanocrystals whose low resolution images are shown in FIGS. 3A and 3B.

FIG. 5 depicts an X-ray diffraction spectrum of the prototype PbTe nanocrystals whose images are shown in the above FIGS. 3A-3B and 4A-4C.

FIG. 6 is an SEM image of an exemplary thermoelectric composition generated via plasma compaction of prototype PbTe nanocrystals synthesized in accordance with one embodiment of the invention.

FIG. 7A-7B are low magnification TEM images of prototype PbSe nanoparticles synthesized in accordance with one embodiment of the invention.

FIGS. 8A-8D are high resolution TEM images of the prototype PbSe nanoparticles whose low magnification TEM images are shown in FIGS. 7A-7B.

FIG. 9 is an energy dispersive X-ray spectrum of prototype PbSe nanoparticles synthesized in accordance with one embodiment of the invention.

FIG. 10 is an X-ray diffraction spectrum of the prototype PbSe nanoparticles formed in accordance with the teachings of one embodiment of the invention.

FIG. 11 presents a plurality of X-ray diffraction spectra of different sets of PbSe nanoparticles synthesized under varying conditions in accordance with the teachings of the invention.

FIGS. 12A and 12B present low magnification TEM images of PbSe nanoparticles prepared in accordance with one embodiment of the invention by utilizing a surfactant and having highly symmetric structures.

FIGS. 13A-13D show SEM images of prototype PbTe particles formed in accordance with one embodiment of the invention and having highly symmetric structures.

FIGS. 14A-14D show SEM images of prototype PbTe particles obtained by employing a hydrothermal synthesis method according to one embodiment of the invention performed at a reaction temperature of about 125°C.

FIGS. 15A and 15B show SEM images of PbTe hollow nanoboxes formed in accordance with the teachings of one embodiment of the invention.

FIG. 16 shows an SEM image of a PbTe microflower synthesized in accordance with one embodiment of the invention exhibiting secondary growth at its tips.

FIG. 17 shows a TEM image of PbTe nanocrystals prepared in accordance with one embodiment of the invention by employing a solvent comprising a high volume ratio of ethanol to water.

FIG. 18 schematically illustrates a possible mechanism for formation of PbTe nanoboxes in accordance with one embodiment of the invention.

FIG. 19 schematically illustrates a IV-VI nanoparticle according to one embodiment of the invention that includes metallic domains.

FIG. 20 is a flow chart depicting various steps in a method of synthesizing metal-doped IV-VI nanoparticles in accordance with one embodiment of the invention.

FIGS. 21A and 21B show, respectively, low and high resolution TEM images of prototype Ag₂(PbTe)₃, nanocrystals synthesized by employing the method depicted in the flow chart of FIG. 20.

FIG. 22 shows a high resolution TEM image of a silver-doped nanoparticle synthesized in accordance with the teachings of the invention.

FIG. 23A and 23B present, respectively, low and high resolution TEM images of Cu₃(PbTe)₃, nanocrystals uniformly doped with copper synthesized in accordance with the teachings of one embodiment of the invention, and FIGS. 24A and 24B present high resolution TEM images of some Cu₃(PbTe)₃, formed in accordance with the teachings of the invention that include small copper domains.

DETAILED DESCRIPTION

The present invention generally relates to micro and nanostuctures formed of Group IV-Group VI compounds and methods of their synthesis, and to thermoelectric compositions formed by employing these structures. In some embodiments, these IV-VI structures can include metallic dopants that can further enhance the thermoelectric properties of compositions formed of these structures.

With reference to a flow chart of FIG. 1, in an exemplary method for synthesizing nanoparticles in accordance with one embodiment of the invention, in a step 12, a selected quantity of a surfactant is mixed in a solvent to obtain a surfactant-containing solution. Surfactants generally refer to amphiphilic molecules in which part of the molecule is hydrophilic and another part is hydrophobic. Some examples of suitable surfactants include, without limitation, polyethylene glycol (PEG), hexadecyltrimethylammonium bromide (CTAB) and tergitol NP-9. The concentration of the surfactant can be selected based on factors such as the desired average sizes and the shapes of nanoparticles generated in the subsequent steps. For example, in many embodiments, the surfactant concentration can be in a range of about 0.001 to about 0.1 molar. The solvent can be polar or non-polar. While in embodiments described below water is employed as the solvent, in other embodiments, other solvents such as alcohol, a mixture of water and alcohol, or hexane can be also utilized.

In step 14, a reagent having a Group IV element and another reagent having a Group VI element are added to the solution. In some embodiments, these reagents can be salts containing either a Group IV element or a Group VI element. Alternatively, the reagents can be powders of such elements. Some examples of suitable reagents include, without limitation, lead acetate, lead chloride, lead sulfate, and NaSeO₃. Those having ordinary skill in the art will appreciate that other compounds having a desired Group IV or Group VI element can also be employed.

With continued reference to the flow chart of FIG. 1, in the step 16, a reducing agent is added to the solution to provide a source of hydrogen atoms. Some examples of suitable reducing agents include, without limitation, hydrazine hydrate, sodium borohydride (NaBH₄). In many embodiments, a base, such as sodium hydroxide (NaOH) is also added (step 18) to the solution to facilitate reaction of Group IV and Group VI elements to generate the desired nanoparticles. It should be understood that the above steps can be performed in any
sequence. In addition, two or more of the steps can be performed simultaneously. In general, the various compounds described are added and mixed within the solvent in quantities that allow their dissolution therein.

In step 20, the resultant solution can be maintained at a temperature and for a duration sufficient to allow formation of a reaction product containing IV-VI nanostructures. For example, in some embodiments, the solution can be maintained at an elevated temperature, e.g., a temperature in a range of about 20°C to about 300°C, for a sufficient duration to allow generation of nanoparticles containing the Group IV and Group VI elements. For example, the solution can be transferred into a pressure vessel and placed within a furnace to raise its temperature to a desired elevated value. The solution can be maintained at this elevated temperature for a time duration in a range of about one hour to about 30 hours, or in a range of about 10 hours to about 30 hours, to cause formation of the nanoparticles. In other embodiments, the solution can be kept at a lower temperature, e.g., in a range from room temperature to about 60°C, to allow chemical reactions for generating the nanoparticles to occur.

Subsequently, in step 22, the nanoparticles can be extracted from the resultant reaction product. For example, in some embodiments, the reaction product is centrifuged, washed, dried, and then the nanoparticle-containing precipitate is collected. In some embodiments, the powder precipitate containing the nanoparticles is collected. In some embodiments, the powder containing the nanoparticles can be dried under vacuum and packed in an inert atmosphere (e.g., in a Glove Box under an argon environment). The packing of the nanoparticles in an inert atmosphere can advantageously inhibit formation of oxide layers around the nanoparticles, which can adversely affect the thermoelectric properties of a thermoelectric composition generated from the nanoparticles in subsequent processing steps, as discussed further below.

In some embodiments, the synthesized nanoparticles can be compacted (densified) at an elevated temperature and under compressive pressure to generate a thermoelectric composition. By way of example, a plasma pressure compaction apparatus 24, shown schematically in FIG. 2, can be employed for this purpose. The exemplary apparatus 24 includes two high strength pistons 26 and 28 that can apply a high compressive pressure, e.g., a pressure in a range of about 100 to about 1000 MegaPascals (MPa), to a sample of nanoparticles, generated as described above, that is disposed within a high strength cylinder 30 while a current source 32 applies a current through the sample for heating thereof. In many embodiments, the current density is in a range of about 500 A/cm² to about 3000 A/cm². The temperature of the sample (or an estimate thereof) can be obtained by measuring the temperature of the cylinder via an optical pyrometer (not shown) or a thermocouple attached to the sample surface. The temporal duration of the applied pressure and current is preferably selected so as to compact the nanoparticles while inhibiting formation of larger particle sizes as a result of merger of two or more of the nanoparticles (herein also referred to as nanocrystals when in crystalline form).

The above synthesis methods for generating binary IV-VI nanostructures provide a number of advantages. For example, they can provide a high yield (e.g., kilograms per day) of the nanostructures. Further, various reaction parameters, such as temperature, surfactant concentration and the type of solvent, can be readily adjusted to vary the size and morphology of the synthesized nanostructures, as discussed further below.

To further elucidate the teachings of the invention and only for illustrative purposes, the synthesis of PbTe and PbSe nanoparticles in accordance with two embodiments of the invention are described below. It should, however, be understood that the teachings of the invention can be utilized to synthesize other Group IV-Group VI nanostructures.

By way of example, PbTe nanocrystals were prepared by mixing 50 milligrams (mg) of a surfactant (polyethylene glycol (PEG) with a molecular weight of 20,000) with 50 milliliters (mL) of water to obtain a surfactant-containing aqueous solution. 2.4 grams of NaOH (a base) pellets were added to the solution to obtain an NaOH molar concentration of 1.2 in the solution. Tellurium (Te) powder and lead acetate, each with a concentration of 1 mMol, were added to the solution while continuously stirring it. This was followed by adding about 5 mL of hydrazine hydrate (a reducing agent) to the solution and transferring the solution into a pressure vessel (125 mL capacity). The vessel was placed in a furnace to maintain the temperature of the solution at about 160°C for about 20 hours. Subsequently, the reaction product was washed with distilled water to strip off byproducts from the synthesized PbTe nanoparticles.

The generated PbTe nanocrystals (herein also referred to as PbTe nanopowder) were then examined by employing transmission electron microscopy (TEM), scanning electron microscopy (SEM) and x-ray diffractometry (XRD). By way of example, FIGS. 3A and 3B show low magnification TEM images of the PbTe nanocrystals, illustrating that the nanocrystals exhibit diameters in a range of about 5 nm to about 40 nm. Further, FIGS. 4A-4C show high resolution TEM images of the PbTe nanocrystals. These images show that the PbTe nanocrystals have a high degree of crystallinity and are free of amorphous oxide layers surrounding their outer surfaces. The lack of oxide layers is particularly advantageous because such layers could significantly degrade the electrical conductivity, and hence the figure-of-merit, of thermoelectric compositions fabricated by employing the nanoparticles.

A comparison of an X-ray diffraction (XRD) spectrum of the PbTe nanocrystals with a corresponding standard spectrum of PbTe, both of which are presented in FIG. 5, shows that all the peaks in the nanocrystals spectrum can be indexed to a PbTe alloy having face center cubic (FCC) structure with a lattice constant of 0.646 nm (± 0.646 nm). No peaks corresponding to other phases were detected, thus exhibiting the high purity of the synthesized PbTe nanoparticles. An average particle size of about 30 nm, calculated by employing the x-ray pattern and the well-known Debye-Scherrer formula is consistent with values discerned from the TEM images.

As noted above, a surfactant (PEG) was employed in the synthesis of the PbTe nanoparticles. It was discovered that in the absence of the surfactant, the average particle size would increase and the crystalline quality of the nanoparticles would degrade. It was also discovered that the surfactant molecules advantageously inhibit the growth of circumferential oxide layers when the solution is exposed to air, presumably by acting as capping agents during nanocrystal growth.

Table 1 below presents measured thermoelectric properties of prototype samples prepared by compacting, via hot press, PbTe nanopowders synthesized by employing the above methods as well as the corresponding properties of compositions obtained by compacting PbTe micropowders (powder of micron-sized PbTe particles). The compaction of the powders was achieved by utilizing a plasma pressure compaction process performed at an elevated temperature in a range of about 700°C to about 900°C under moderate pressure (100-200 MPa).
pared by employing the following steps. A solution contain-

One gram of NaOH pellets, 1 mMol of lead acetate were dissolved in water, and 1 mMol of selenium surfacetant was utilized in the reaction, and an average diameter of about 16 nm. Increasing the reaction time to about 48 hours resulted in an increase of the average particle size to about 24 nm. The reaction temperature was also observed to have an impact on the particle morphology. For example, PbSe nanoparticles prepared at a reaction temperature of about 100°C with a lower amount of hydrazine hydrate (4 mL in 50 mL of water) exhibited an average diameter of about 30 nm when surfactant was not utilized in the reaction, and an average diameter of about 35 nm when surfactant was not utilized. FIG. 11 presents XRD spectra of the PbSe nanoparticles prepared under the above varying conditions. In addition, FIGS. 12A and 12B present low magnification TEM images of PbSe nanoparticles prepared in the presence of surfactant at a reaction temperature of about 100°C, showing larger particle sizes consistent with the corresponding XRD pattern of FIG. 11.

Similar to the previous example, the PbSe nanopowder was densified at a high temperature (700-900°C) by employing a plasma pressure compaction procedure to obtain a thermoelectric composition. Further, an X-ray diffraction (XRD) spectrum of the synthesized nanoparticles, presented in FIG. 10, shows that all of the observed peaks can be indexed to a PbSe FCC structure with a lattice constant of a = 0.612 nm. The absence of peaks in the XRD spectrum corresponding to other phases indicates the high purity of the nanoparticles.

An average particle size of about 20 nm was calculated for the PbSe nanoparticles by employing the Debye-Scherrer formula and the XRD spectrum, which is consistent with the average particle size that can be derived by utilizing the TEM images. It was discovered that various reaction parameters, such as temperature, reaction time and the base concentration, could be adjusted to vary the average particle size and the particle morphology. For example, reducing the reaction time from about 24 hours to about 6 hours in conjunction with doubling the concentration of NaOH (utilizing 2 grams of NaOH) while keeping the other parameters unchanged resulted in PbSe nanoparticles having an average diameter of about 16 nm. Increasing the reaction time to about 48 hours resulted in an increase of the average particle size to about 24 nm. The reaction temperature was also observed to have an impact on the particle morphology. For example, PbSe nanoparticles prepared at a reaction temperature of about 100°C with a lower amount of hydrazine hydrate (4 mL in 50 mL of water) exhibited an average diameter of about 30 nm when surfactant was not utilized in the reaction, and an average diameter of about 35 nm when surfactant was not utilized. FIG. 11 presents XRD spectra of the PbSe nanoparticles prepared under the above varying conditions. In addition, FIGS. 12A and 12B present low magnification TEM images of PbSe nanoparticles prepared in the presence of surfactant at a reaction temperature of about 100°C, showing larger particle sizes consistent with the corresponding XRD pattern of FIG. 11.

Table 2 below summarizes the thermoelectric properties of two PbSe samples, one obtained by compacting PbSe nanocrystals, synthesized in accordance with the teachings of the invention, and another obtained by compacting commercially obtained PbSe microcrystals.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hot Pressed Temp (°C)</th>
<th>Holding Pressure (MPa)</th>
<th>Particle Size</th>
<th>Density (g/cm³)</th>
<th>Thermal Cond. (W/mK)</th>
<th>Seebeck Coeff. (µV/K)</th>
<th>Electrical Cond. (S/m)</th>
<th>Power Factor</th>
<th>Temp (K)</th>
<th>ZT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbSe micro</td>
<td>850</td>
<td>127/2</td>
<td>325 mesh</td>
<td>8.2</td>
<td>1.63 ± 0.10</td>
<td>141</td>
<td>78790</td>
<td>0.001562</td>
<td>300</td>
<td>0.29</td>
</tr>
<tr>
<td>PbSe nano</td>
<td>750</td>
<td>100/5</td>
<td>about 20 nm</td>
<td>7.8</td>
<td>1.7</td>
<td>192</td>
<td>55100</td>
<td>0.002034</td>
<td>300</td>
<td>0.36</td>
</tr>
</tbody>
</table>

It should be understood that the above data is provided for illustrative purposes only and is not intended to indicate the optimal thermoelectric properties of compositions that can be prepared from PbTe nanoparticles synthesized in accordance with the teachings of the invention. For example, the above data does not show enhancement of the thermoelectric figure-of-merit of the sample formed of PbTe nanoparticles relative to the samples formed of PbTe microparticles. This is likely due to grain growth in the nanopowder sample during the reaction. In fact, a scanning electron microscope (SEM) image (shown in FIG. 6) of the sample formed from PbTe nanocrystals by the above hot press process shows grains comparable in size to those observed in a sample formed from PbTe microcrystals by hot press. This observed grain growth is likely due to the high temperature utilized for the hot press. Performing the hot press at lower temperatures (e.g., in a range of about 300°C to about 700°C) but at a much higher pressure (e.g., in a range of about 200 to about 1000 MPa) can significantly improve the figure-of-merit of the resultant compositions, e.g., a ZT of about 2 can be achieved.

In another synthesis example in accordance with the embodiment of the invention, PbSe nanoparticles were prepared by employing the following steps. A solution containing 50 mg of a surfactant (PEG) in 50 mL of water was prepared. One gram of NaOH pellets, 1 mMol of selenium (Se) powder, and 1 mMol of lead acetate were dissolved in the solution. This was followed by adding 13 mL of hydrazine hydrate to the solution and sealing it in a plastic bottle. After about 24 hours of reaction at room temperature (about 25°C), the reaction product was centrifuged, washed several times with distilled water and a black precipitate containing PbSe nanoparticles was collected. The precipitate was dried under vacuum at a temperature of about 60°C for a few hours and the resultant product was packed inside a glove box under an argon environment.

FIGS. 7A and 7B show low magnification TEM images of the PbSe nanoparticles, indicating an average particle size of about 20 nm. FIGS. 8A-8D are high resolution TEM images of the PbSe nanoparticles, illustrating that the nanoparticles exhibit highly crystallized structures and various morphologies. An energy dispersed X-ray (EDX) spectrum of the synthesized nanoparticles, illustrated in FIG. 9, shows that the atomic percentage of Pb relative to Se is close to 1:1, thus verifying that the nanoparticles in fact have a PbSe composition.
The data shows that the figure-of-merit of the sample prepared by utilizing PbSe nanocrystals shows a slight enhancement relative to that of the sample prepared from PbSe microcrystals. It should be understood, however, that this data is only for illustrative purposes and is not intended to indicate an optimal thermoelectric figure-of-merit of a composition formed from PbSe nanocrystals synthesized in accordance with the teachings of the invention. For example, further optimization of the capping process, e.g., performing it at a lower temperature but at a much higher pressure (e.g., 1000 MPa), can result in additional enhancement of the composition’s figure-of-merit.

It was also discovered that PbTe and PbSe microstructures and nanostructures having a variety of morphologies, including those with a high degree of symmetry, can be synthesized by employing the above methods through adjustment of various factors such as reaction temperature, time and relative concentrations of various reactants. By way of example, FIGS. 13A-13D show SEM images of PbTe highly symmetric nanostructures, herein referred to as microflowers, synthesized in accordance with an embodiment of the invention. FIG. 13B is an SEM image of the same microflower as that shown in FIG. 13A but tilted at 45 degrees and FIG. 13C is an SEM image of another microflower viewed along a corner thereof, demonstrating 8 corners and 4-fold in-plane symmetry. In a typical synthesis of PbTe microflowers, 50 mg of PEG and 2.4 g of NaOH were added to 50 mL of de-ionized water. After a few minutes of stirring, 1 mMol of NaTeO3, and 1 mMol of PbAc (lead acetate trihydrate) were added to the solution and stirred until the reactants were dissolved. Finally, about 10 mL of hydrazine hydrate was added to the solution and the solution was transferred to a Teflon-lined autoclave. The autoclave was sealed and kept in a furnace at a temperature of about 160°C for about 10 hours, and subsequently cooled down to room temperature. The resultant reaction product was washed several times with water to remove unwanted byproducts from the synthesized PbTe nanostructures.

A similar synthetic method, in which NaTeO3 was replaced with NaSeO3, was followed—albeit at a lower temperature of about 100°C—to prepare PbSe microflowers. FIGS. 14A-14C present SEM images of prototype PbTe nanoparticles obtained by utilizing the above hydrothermal synthesis approach but at a lower reaction temperature of about 125°C, illustrating a morphology at an earlier stage of development than the microflower morphology discussed above. Further reducing the reaction temperature to about 100°C can result in formation of PbTe hollow nanoboxes, as the SEM images of FIGS. 15A and 15B show, having sizes in a range of about 100 nm to about 1000 nm. With further decrease of the reaction temperature to about 85°C, PbTe nanoparticles having substantially cubic morphologies and having sizes in range of about 10 to about 50 nm (an average dimension of about 30 nm) were obtained.

The above examples indicate that the morphologies of the nano and microstructured can be controlled by adjusting the reaction temperature. It was observed that increasing the reaction temperature to about 185°C resulted in secondary growths on the tips of microflowers, as shown by the SEM image of FIG. 16, while substantially preserving the microflower morphology and size. Similar morphologies can be produced by utilizing other sources of Te, such as TeCl4.

Moreover, similar morphologies of PbSe micro and nanostructures can be obtained by adjusting the reaction temperature, albeit at temperatures lower than those employed for synthesizing the PbTe structures. For example, PbSe microflowers were obtained at a reaction temperature of about 100°C and PbSe nanocubes having average dimensions of about 30 nm were obtained at reaction temperatures close to room temperature (e.g., 300 K).

The concentration of the surfactant can also play a role in determining the morphology of the synthesized micro and nanostructures. For example, in the absence of the PEG surfactant in the above exemplary synthesis, no hollow box morphology was observed. Rather, micro-sized solid cubic particles were produced. Without being limited to any particular theory, at sufficiently low temperatures (e.g., in a range of about 20°C to about 200°C), nanocubes are typically produced due to the stabilization effects of the surfactant. At higher temperatures of about 80°C, generally cubic nanoparticles can first grow to a critical size determined by specific energy and Gibbs free energy, which are dependent on the reaction conditions. Due to the steric stabilization effect of the surfactant, the cubic nanoparticles can then act as nucleation particles to allow the growth of secondary layers from their corners at which the surfactant concentration is lower.

In some embodiments, a mixture of ethanol and water can be utilized as the solvent, together with a surfactant, in the above synthetic methods to generate Group IV-VI nanocrystals having regular cubic shapes and hollow interiors. For example, FIG. 17 shows a TEM image of PbTe nanocrystals prepared by employing a high volume ratio of ethanol to water (e.g., a volume ratio of 8 to 1). These nanocrystals show a regular cubic shape with an edge length of about 30 to about 180 nm. A strong contrast observed between the dark edges and the bright center indicates a hollow interior and a wall thickness of about 40 nm. Reducing the volume ratio of ethanol to water (e.g., down to 1 to 1) resulted in obtaining a mixture of solid and hollow nanocrystals with irregular shapes.

The above illustrative examples show that both the surfactant and the volume ratio of ethanol to water can play a role in formation of nanoboxes. Without being limited to any particular theory, a possible mechanism for formation of the above PbTe nanoboxes, shown schematically in FIG. 18, can be understood as follows. Upon dissolution in water, the PEG surfactant molecules aggregate into structures called micelles in which the polar hydrophilic heads of the chain-like surfactant molecules are exposed to water and their hydrophobic hydrocarbon chains are substantially protected from contact with water. In addition, the presence of a large amount of activated oxygen in PEG molecular chains can result in strong interactions between PEG and metal ions. For example, Pb2+—PEG chain structures can be formed when PEG and Pb2+ are mixed together in a solvent. Upon gradual dissolution of Te particles in the solvent, they form TeO2 ions that can react with Pb2+ to form hollow cubic PbTe nanoboxes with micelles acting as templates and the surfactant PEG and their respective counter-ions being selectively adsorbed on the PbTe crystal faces.

In another aspect, the invention provides thermoelectric compositions, and methods for their synthesis, that include nanoparticles formed as a Group IV-Group VI alloy, such as PbTe or PbSe, and having a metallic dopant, such as copper or silver, dispersed through the alloy portion. The metallic dopant atoms can be uniformly distributed within the IV-VI alloy. Alternatively or in addition, in some embodiments, the dopant atoms can form metallic domains distributed, e.g., non-uniformly, through the nanoparticle. By way of example, FIG. 19 schematically illustrates an irregularly-shaped nanoparticle 34 having a portion 34a formed of a Group IV-Group VI alloy (e.g., PbTe or PbSe) and a plurality of metallic domains 34b (e.g., silver or copper domains) surrounded by the alloy portion 34. The metallic domains are typically non-uniformly distributed within the nanoparticle. In some embodiment, the portion 34 can also include the metallic dopant atoms forming chemical bonds with one or more of the alloy’s atomic constituents. The particle 34 can have a size (e.g., characterized by its largest dimension) in a range of
about a few nanometers to about 1000 nanometers, e.g., in a range of about 10 nm to about 200 nm or in a range of about 5 nm to about 100 nm.

In some embodiments, the metallic dopant has an atomic concentration of less than about 30 percent relative to the alloy portion of the nanoparticle. For example, the dopant’s relative atomic concentration can be in a range of about 1 percent to about 20 percent.

Without being limited to any particular theory, the interface boundaries between the metallic domains and the alloy portions of the nanoparticles can result in an increase in phonon scattering. However, the incorporation of metallic domains within the alloy portions of the nanoparticles does not substantially degrade their electron transport properties, and in some cases enhances these properties. The enhanced phonon scattering, together with substantially unchanged (or enhanced) electron transport properties, can result in improved thermoelectric properties of compositions formed of the doped nanoparticles.

With reference to a flow chart 36 of FIG. 20, in an exemplary method for synthesizing the doped nanoparticles described above, in a step 38, selected quantities of a surfactant (e.g., PEG) and a base (e.g., NaOH) are dissolved in a solvent, such as water. This can be followed by adding reagents containing Group IV and Group VI elements to the solution (step 40). A selected quantity of a reagent containing a metallic element of interest (e.g., silver or copper), as well as a reducing agent can then be added to the solution (step 42). In step 44, the solution can be kept at an elevated temperature, e.g., a temperature in a range of about 20°C to about 360°C, for a duration in a range of about 1 hour to about 50 hours (e.g., in a range of about 5 hours and about 20 hours) to cause formation of nanoparticles doped with the metallic element. After the reaction, the resulting product can be washed, e.g., with distilled water and ethanol, to remove impurities, dried, e.g., in vacuum at a temperature of about 60°C, and packed under an inert atmosphere.

Similar to the previous embodiments, the synthesized doped nanoparticles can be densified by employing a plasma pressure compaction technique, such as that described above. To further elucidate the efficacy of the above method for synthesizing metallically doped nanoparticles and only for illustrative purposes, prototype nanoparticles doped with silver or copper were synthesized, as discussed in more detail below. For example, Ag, (PbTe),, nanocrystals were synthesized by dissolving about 50 mg of PEG and 2.4 grams of NaOH in about 50 mL of water. Subsequently, about 1 mMol of Te powder and about 350 mg of lead acetate were added to the solution and stirred for about 10 minutes. This was followed by adding about 9 mg of silver acetate and 5 mL of hydrazine hydrate to the solution. The resultant solution was then transferred into a Teflon-lined autoclave and sealed. The solution was kept in a furnace at a temperature of about 205°C for about 20 hours. Subsequently, the reaction product was washed with water and absolute ethanol several times to remove any impurities, dried in a furnace at 60°C under vacuum for a few hours, and packed in a Glove Box under an inert atmosphere.

FIGS. 21A and 21B show, respectively, low and high resolution TEM images of prototype Ag,(PbTe),, nanocrystals synthesized by utilizing the above synthesis method. An energy dispersed X-ray (EDX) study showed that the atomic composition of the nanocrystals can be characterized by Ag, (PbTe),,.. In some of the nanocrystals, the silver dopants form domains having sizes of a few nanometers, as a high resolution TEM image of one such silver-doped nanocrystal presented in FIG. 22 shows. As noted above, such domains can advantageously improve the figure-of-merit of thermoelectric compositions formed from such nanocrystals, for example, by enhancing phonon scattering and providing a high electrical conductivity.

The metallic dopants suitable for use in the practice of the invention are not limited to silver. By way of another example, nanocrystals doped with copper were synthesized in a manner similar to that employed for preparation of silver-doped nanocrystals. More specifically, the same synthetic steps as those described above were followed but rather than employing silver acetate, 11 mg of copper acetate monohydrate was used as a source of copper and a reaction temperature of about 200°C was utilized.

FIGS. 23A and 23B present, respectively, low and high resolution TEM images of Cu,(PbTe),, nanocrystals uniformly doped with copper. FIGS. 24A and 24B present high resolution TEM images of some of these nanocrystals, indicating that some copper-doped nanocrystals include small copper domains dispersed within the Cu,(PbTe),, matrix. Similar to the silver-doped nanocrystals, these copper nanodomains also improve the figure-of-merit of thermoelectric compositions formed of the copper-doped nanocrystals.

Those having ordinary skill in the art will appreciate that various modifications can be made to the above embodiments without departing from the scope of the invention. For example, suitable reagents other than those utilized in the above exemplary embodiments can be employed in synthesizing IV-VI nanostructures in accordance with the teachings of the invention.

What is claimed is:

1. A method of synthesizing nanoparticles having a metallic dopant, comprising:

preparing a solution containing a surfactant, a reagent containing a Group IV element, and a reagent containing a Group VI element, adding a selected quantity of another reagent containing a dopant metal to said solution, adding a reducing agent to said solution, and pressure compaction technique, such as that described above.

2. The method of claim 1, further comprising adding a selected quantity of a base to said solution so as to facilitate formation of the nanoparticles.

3. The method of claim 1, further comprising selecting said Group IV element to be Pb, Sn, and Ge.

4. The method of claim 1, further comprising selecting said Group VI element to be Se, Te, and S.

5. The method of claim 1, further comprising selecting said metal to be any of silver, copper, zinc, gold, gallium, indium, thallium, tin, antimony or bismuth.

6. The method of claim 1, further comprising selecting said surfactant to be any of PEG, CTAB or cetyl-6 NP-9.

7. The method of claim 2, further comprising selecting said base to be NaOH.

8. The method of claim 1 wherein the preparing step includes introducing a first reagent containing the Group IV element into a solution, and introducing a second reagent containing the Group VI element in said solution.

9. The method of claim 1 wherein the preparing step includes introducing a first reagent containing the Group IV element into a solution, and introducing a second reagent containing the Group VI element in said solution.