Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.
U.S. PATENT DOCUMENTS

6,785,863 B2 8/2004 Blankenship et al.
6,842,872 B2 1/2005 Yedida et al.
6,848,069 B1 1/2005 Levy et al.
6,888,897 B1 5/2005 Nazari et al.
7,093,179 B2 8/2006 Sheu
7,095,792 B2 8/2006 Doetsch et al.
7,158,589 B2 1/2007 Cameron et al.

OTHER PUBLICATIONS

* cited by examiner
FIG. 3

FIG. 4
16 shift registers, reloaded with circulant patterns once per row

input message

One conditional addition per message bit

Sytematic output codeword

FIG. 9
(Prior Art)
ENCODERS FOR BLOCK-CIRCULANT LDPC CODES

GOVERNMENT INTEREST

The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is filed on the same day of U.S. Pat. App. Ser. No. 11,166,040, now U.S. Pat. No. 7,343,539, for "ARA Type Protograph Codes", incorporated herein by reference in its entirety.

BACKGROUND

1. Field

The present disclosure relates to encoders and encoding methods for block-circulant low-density parity-check (LDPC) codes. In particular, a first encoder and iterative encoding method are based on the erasure decoding algorithm. The computations required are well organized due to the block-circulant structure of the parity check matrix. A second encoder and method use block-circulant generator matrices. Some encoders of the second type have been implemented in a small Field Programmable Gate Array (FPGA) and can operate at 100 Msymbols/second.

2. Related Art

Recently, block-circulant LDPC codes have been found that provide both excellent error correction performance and well structured decoder architectures. Constructions have been presented in the following papers:

S. Lin, "Quasi-Cyclic LDPC Codes," CCSDS working group white paper, Oct. 2003;

All of the above papers are incorporated herein by reference in their entirety.

Error correcting codes are used to transmit information reliably over an unreliable channel, such as a radio communications link or a magnetic recording system. One class of error correcting codes are binary block codes, where K information bits are encoded into a codeword of N symbols (N>K), the codeword is transmitted over the channel, and a decoder then attempts to decode the received (and potentially corrupted) symbols into the original K information bits. If the channel symbols are also binary, an encoder that uses the K information bits as K of the N channel symbols is known as a systematic encoder. These K channel symbols are called the systematic symbols, and the remaining N-K symbols are called parity symbols. Sometimes one uses an encoder that generates N+P symbols, and then P of them are discarded while the remaining N are transmitted over the channel. The discarded symbols are known as punctured symbols.

Many different mathematical models are used to describe physical communications channels. One model is the Binary Erasure Channel (BEC). The input alphabet is binary (either 0 or 1), and the output alphabet is ternary (0, 1, or e for erasure). When a 0 is transmitted over the BEC, the received symbol may be either 0 or e; similarly, a transmitted 1 is received either as a 1 or e. An erasure correcting decoder is used with a BEC, and its task is to reconstruct the binary values that were transmitted and corrupted to the value e by the channel. In particular, puncturing a codeword is equivalent to transmitting it over a BEC, where each punctured symbol is corrupted to the value e.

Erasure correcting decoders for LDPC codes have been studied at length [see, for example, M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, "Practical loss-resilient codes," in Proc. 29th Annual ACM Symp. Theory of Computing, 1997, pp. 150-159], and the decoding method described in that paper has become the standard erasure correcting algorithm. This erasure correcting algorithm succeeds if and only if the erased symbol positions do not contain a stopping set [see T. Richardson and R. Urbanke, "Efficient Encoding of Low-Density Parity-Check Codes, IEE Trans. on Information Theory, February 2001, pp. 638-656].

SUMMARY

In accordance with the present disclosure, novel encoders, encoding methods, and a hardware encoder implementation for block-circulant LDPC codes will be presented.

According to a first aspect, an encoding apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition four is disclosed, the apparatus comprising: a first multiplier to multiply a first portion of the input symbols with a first matrix, forming first intermediate symbols; a second multiplier to multiply a second portion of the input symbols with a second matrix, forming second intermediate symbols; a third multiplier to multiply a third intermediate symbols with a third matrix, forming third intermediate symbols; a fourth multiplier to multiply a fourth intermediate symbols with a fourth matrix, forming fourth intermediate symbols; a fifth multiplier to multiply a fifth intermediate symbols with a fifth matrix, forming fifth intermediate symbols; a sixth multiplier to multiply a sixth intermediate symbols with a sixth matrix, forming sixth intermediate symbols; a permutor to permute the fifth intermediate symbols, forming permuted symbols; and an accumulator to accumulate the permuted symbols, forming a second set of output symbols.

According to a second aspect, a method for encoding message input symbols in accordance with an accumulate-repeat-accumulate code with repetition four is disclosed, comprising: multiplying a first portion of the input symbols with a first matrix, forming first intermediate symbols; multiplying a second portion of the input symbols with a second matrix, forming second intermediate symbols; adding the first inter-
mediated symbols to the second intermediate symbols, forming third intermediate symbols; multiplying the third intermediate symbols with a third matrix, forming fourth intermediate symbols; multiplying the fourth intermediate symbols with a fourth matrix, forming a first set of output symbols; adding the fourth intermediate symbols with the input symbols, forming fifth intermediate symbols; permuting the fifth intermediate symbols, forming permuted symbols; and accumulating the permuted symbols, forming a second set of output symbols.

According to a third aspect, an encoding apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three is disclosed, the apparatus comprising: a puncturing device, puncturing k input symbols and outputting k/2 input symbols, forming a first set of output symbols; a first multiplier to multiply k input symbols with a first matrix, forming first intermediate symbols; a second multiplier to multiply k input symbols with a second matrix, forming a second set of output symbols; a permuter to permute the first intermediate symbols, forming permuted symbols; and an accumulator to accumulate the permuted symbols, forming a third set of output symbols.

According to a fourth aspect, a method for encoding message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three is disclosed, comprising: puncturing k input symbols and outputting k/2 input symbols, forming a first set of output symbols; multiplying k input symbols with a first matrix, forming first intermediate symbols; multiplying the k input symbols with a second matrix, forming a second set of output symbols; permuting the first intermediate symbols, forming permuted symbols; and accumulating the permuted symbols, forming a third set of output symbols.

According to a fifth aspect, an encoding apparatus to encode message input symbols in accordance with a block-circulant LDPC code is disclosed, the apparatus comprising: providing a plurality of recursive convolutional encoders, each recursive convolutional encoder comprising storage units, multipliers and adders to encode the input symbols; and a plurality of circulants to build the full code. The result is a parity check matrix such as the one shown in FIG. 3 for a very small AR3A codes.

According to a sixth aspect, a method for encoding input symbols in accordance with a block-circulant LDPC code is disclosed, comprising: providing a plurality of recursive convolutional encoders, each recursive convolutional encoder comprising storage units, multipliers and adders; setting the storage units to a first binary value; repeating the following operations: i) computing a set of circulant patterns, ii) providing each recursive convolutional encoder with a binary sequence of T message bits, each message bit sent to the output as a codeword symbol, and each message bit being multiplied with a circulant pattern, summed to the result of a previous multiplication, stored in a storage unit and shifted, until the T message bits have been encoded, until KT message bits have been encoded; and generating an output codeword by reading the contents of the storage units of the recursive convolutional encoders.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a protograph for an AR3A code.
FIG. 2 shows a protograph for an AR4A code.
FIG. 3 shows a parity check matrix for an AR4A code.
FIG. 4 shows a block diagram of an AR4A encoder.
FIG. 5 shows a parity check matrix for an AR3A code.
FIG. 6 shows a block diagram of an AR3A encoder.
The iterative encoding algorithm will be described pictorially for a variation of the AR3A code. In the AR3A code of Fig. 1, variable node 4 is connected by two edges to check node B, and variable node 5 is also doubly connected to check node C. A similar protograph can be constructed by crossing two of these edges, so nodes 4 and 5 are each singly connected to both B and C. When the columns are placed in order (1, 4, 5, 3, 2) and rows in order (A, B, C), the protograph is expanded first by a factor of 8, and then a second time with circulants of size 64x64. For the AR4A code, the iterative encoding begins with the constructed check equation h, which computes the 2T'Th code symbol as the parity of the preceding 2T−1 symbols. Iterative encoding then proceeds to completion exactly as for the AR4A code.

The iterative encoding algorithm is designed to handle the problematic 2 in the lower right corner, one redundant check equation can be constructed by summing the last T rows of H to get the length N+P=5T vector, \(h=\{0, 1, 0, 1, 0, 1\} \), where 0, 1, 0, and 1 represent strings of zeros and ones, respectively. This check equation shows that the first 2T variable nodes are not linearly independent, and cannot all be assigned information bits. Instead, information bits are assigned to the first 2T−1 and to the very last variable node. Iterative encoding begins with the constructed check equation h, which computes the 2T'th code symbol as the parity of the preceding 2T−1 symbols. Iterative encoding then proceeds to completion exactly as for the AR4A code.

For the AR4A code, the iterative encoding begins by applying the kT=2T information symbols to the first two columns in the base matrix. The first row of T check equations can be solved in parallel to determine the third column of code symbols, and then the next row can be solved to determine the fourth column. The 2 in the lower right corner means that each remaining check equation has two unknowns, and iterative encoding is halted by this stopping set. However, note that this parity check matrix is not full rank: the sum of the first T and last T rows of H is the all-zero vector, independent of the circulants chosen. This means that one of the remaining T undetermined code symbols can be assigned an additional information bit, and iterative encoding now completes successfully, operating (in a permuted order) as an accumulator of length T.

FIG. 4 shows a block diagram of an AR4A encoder performing the above described process steps. An input message \(s_0 \) comprises 2T input symbols \(s_{i0} \) and \(s_{i1} \).

Symbols \(s_i \) are multiplied by a circulant matrix \(H_1 \). Symbols \(s_i \) are multiplied by matrix \(H_0 \). The results are summed, producing the T untransmitted parity symbols, denoted \(p_0 \), corresponding to the fifth column of H. The untransmitted parity symbols \(p_0 \) are then multiplied by matrix \(H_1 \) (upper right branch of FIG. 4) and matrix \(H_4 \) (lower right branch of FIG. 4). The matrix multiplication in the lower right branch of FIG. 4 computes the T parity symbols denoted \(p_1 \), corresponding to the third column of H. The matrix multiply, permute (element 20), and accumulate (elements 31, 32) steps in the upper right branch of FIG. 4 compute T more parity symbols \(p_2 \). Concatenating with the input message gives the systematic output codeword 40.

As shown in Fig. 3, each row and each column of matrices \(H_1 \) and \(H_2 \) have Hamming weight 2, and each row and each column of matrices \(H_3 \) and \(H_4 \) have Hamming weight 3; these Hamming weights match the corresponding entries in the AR4A base matrix.

2B. Iterative Encoder for AR3A Code

The AR3A code shows somewhat different behavior. With the same row and column ordering, the AR3A base matrix is

\[
H = \begin{bmatrix}
2 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 1 & 3 & 0 & 2 \\
\end{bmatrix}
\]

Iterative encoding begins by applying the kT=2T information symbols to the first two columns in the base matrix. The first row of T check equations can be solved in parallel to determine the third column of code symbols, and then the next row can be solved to determine the fourth column. The 2 in the lower right corner means that each remaining check equation has two unknowns, and iterative encoding is halted by this stopping set. However, note that this parity check matrix is not full rank: the sum of the first T and last T rows of H is the all-zero vector, independent of the circulants chosen. This means that one of the remaining T undetermined code symbols can be assigned an additional information bit, and iterative encoding now completes successfully, operating (in a permuted order) as an accumulator of length T.
In the remainder of this section, reference will be made again to the AR3A and AR4A codes discussed earlier.

3A. Generator Matrix for AR3A

The $3T \times 5T$ parity check matrix for AR3A is full rank, and so a generator matrix for this code will have dimension $2T$. The matrix H is partitioned into $[Q \, S]$, where Q contains the columns to make systematic, and S is the square matrix of parity symbols that must be invertible. If Q is chosen to include the circulants corresponding to variable nodes 4 and 2 in the protograph, as done for the iterative encoder, it can be found that S has rank $T-1$, deficient by 1. This misfortune occurs because of the closed loop of degree-2 variable nodes created by protograph nodes 5 and 7.

Alternatively, one can choose to make protograph variable nodes 4 and 5 systematic. In this case, S has full rank, and a systematic block-circulant G can be calculated exactly as described. When this is done for the parity check matrix in Fig. 5, the result is the generator matrix shown in Fig. 7. An encoder that performs matrix multiplication by G is particularly suitable for hardware implementation as described in the next section.

3B. Generator Matrix for AR4A

The AR4A code will be now taken into consideration. For this code, there is no set of R columns that can be selected from H to form an invertible square matrix S, because H itself is rank deficient by 1. Remarkably, these two defects cancel and the method for constructing G can proceed with minor modifications. Variable nodes 4 and 2 are selected to be systematic, and when H is arranged to put these on the left, it appears as shown in Fig. 3. The left two fifths of H is the matrix Q, and the remaining square portion on the right is S. The equations are solved to find codewords of the form $c_{z} = [0_{2T-1}, p_{1}^{T}, p_{2}^{T}]$, and of the form $c_{y} = [0_{T}, 1_{T}, 0_{T-1}, p_{y}^{T}, p_{x}^{T}]$, where 0_{T} is a string of T zeros, and each p_{y} is a binary string of length T. By expanding these solutions into circulants, a block-circulant "generator" matrix can be formed,

$$G = \begin{bmatrix} C_{1} \\
C_{2} \end{bmatrix}$$

of size $2T \times 5T$. This is one dimension short, and the missing codeword is $c = [0_{2T}, 1_{T}, 0_{T}]$. Note that if c were expanded into circulants, the resulting $5T \times T$ matrix has rank 1. For implementation, it is preferable to use this G as the generator matrix and discard the one additional dimension in the code, accepting the miniscule performance loss. The generator matrix G, corresponding to the parity check matrix of Fig. 3, is shown in Fig. 8. Because the last T code symbols are punctured, the rightmost columns of circulants would be deleted from G in implementation. By design, the first two columns of circulants form an identity matrix; the remaining circulants could have been dense by the construction algorithm, but the AR4A protograph structure assures that many remain sparse.

3C. Generator Matrix for AR347A

A third example is the AR347A codes, built from the protograph,
These codes do not have an iterative encoder of the form described earlier, because \(H \) cannot be lower triangularized. However, quasi-cyclic encoders do exist. It is not hard to show that the two columns of \(H \) chosen for systematic symbols must be one of the first two (identical) columns, and either the third or the fifth column. For these choices, a quasi-cyclic encoder can be constructed in the usual way, just as for the AR3A code described earlier. Any other choice fails to yield a quasi-cyclic encoder, because it results in a rank-deficient sub-matrix \(S \) that cannot be inverted.

4. Software Implementation

The iterative encoders described so far often can be implemented efficiently in software. This is because the computations can be performed in parallel, operating on \(T \) symbols at a time. Moreover, the use of circulants means that the required reordering of symbols is typically minimal, unlike the situation with more general permutations. Preliminary results from a software implementation of this algorithm indicate that it runs at 90 Kbps/MHz for several rate 1/2 AR3A codes. In particular, the software encoder runs at 128 Mbits/sec on a 1.42 GHz Macintosh, and can be expected to run at something like 1.8 Mbits/sec on a 20 MHz RAD6000 spaceflight qualified microprocessor.

5. Hardware Implementation

The systematic block-circulant generator matrices developed in the previous sections are particularly amenable to hardware implementation. A hardware encoder can pass the \(kT \) message bits to the output as code symbols, while internally performing a multiplication by the (dense) \(k \times (n-k) \) matrix in the right hand portion of \(G \). The resulting vector serves as the remaining \((n-k)T \) code symbols. A direct implementation of this dense matrix multiplication is shown in FIG. 9, as proposed in S. Lin, "Quasi-Cyclic LDPC Codes." CCSDS working group white paper, October 2003. The set of \(n-k \) cyclic shift registers at the top of the figure, each of length \(T \), are loaded with the circulant patterns for the first row of \(G \). For each message bit \(m \) in turn, these registers are cycled once and, if \(m = 1 \), exclusive-ORed with the \(n-k \) symbol output register. When each row of circulants is completed, sequences for the next row of circulants in \(G \) are loaded into the shift registers.

In accordance with the present disclosure, an improvement in the hardware encoder is to cyclicly shift the output register, rather than the circulant register, as shown in FIG. 10.

The hardware encoder of FIG. 10 comprises one-bit storage units \(200 \) shown as squares, one-bit multipliers (logical AND gates) \(210 \) shown as circled crosses, one-bit adders (logical Exclusive OR gates) \(220 \) shown as circled plusses, and switches \(230, 240 \). Many of these are organized into structures \(250, 260 \) known as Recursive Convolutional Encoders (RCEs), as shown. For a block-circulant generator matrix \(G \) of size \(k \times T \times nT \), this encoder comprises primarily \(n-k \) RCEs, each of length \(T \).

The encoder is initialized by setting all the storage units \(200 \) within the RCEs to zero, and setting the \(n-k \) switches \(230 \) as shown in the figure. Setting of the switches \(230 \) as shown in FIG. 10 allows the contents of the last storage unit of each RCE to be fed back to the first adder of that RCE. Then encoding is performed in a bit-serial fashion, \(T \) bits at a time. Before encoding the first \(T \) bits, each RCE is provided with a binary sequence of length \(T \) via the incoming arrows shown \(270 \) along its top edge \(280 \). This binary sequence could be computed and placed in the collection of \(n-k \) \(T \) storage units \(190 \) shown by the row of boxes across the top of FIG. 10. Alternatively, the binary sequence could be provided directly by combinatorial logic driven by a message bit counter. These binary sequences describe the circulants of the generator matrix, and so are called circulant patterns. The first set of circulant patterns used is given by the first row of the generator matrix \(G \), and it is stored from right to left in the boxes \(190 \) across the top of FIG. 10.

The first \(T \) message bits are encoded sequentially as follows. The first bit is sent directly to the output as the first codeword symbol. Simultaneously, the sequence stored in each RCE \(250, 260 \) is either Exclusive-ORed with the corresponding circulant pattern (if the message bit is a 1) or taken unmodified (if the message bit is a 0), and is right circularly shifted one position. Then the second bit is encoded the same way: it is taken as the second codeword symbol, and simultaneously determines whether the circulant patterns are Exclusive-ORed with the contents of each RCE, before the next right circular shift. This process is repeated until \(T \) message bits have been encoded.

Before encoding the next \(T \) message bits, a new set of circulant patterns are computed and provided to the RCEs. Then message bits \(T+1 \) through \(2T \) are encoded by conditional Exclusive OR operations and right circular shifts. These steps are repeated until all \(kT \) message bits have been encoded.

To completely generating the codeword, all \(n-k \) switches are changed to the opposite position from that shown, and all circulant patterns are set to zero. The contents of the \(n-k \) RCEs are then sequentially read out via right shifts as the parity portion of the codeword.

In other words, when the output switch \(240 \) is set as drawn in FIG. 10, all \(kT \) input message bits go straight through the RCEs unchanged, and serve as output codeword symbols. Simultaneously, each message bit is multiplied by a circulant pattern, and the result is added to the shifted register contents. Then, the switch \(240 \) is flipped and (because the other \(n-k-1 \) switches \(230 \) are flipped too) the daisy-chain of all \(n-k \) T registers in the RCEs are read out sequentially. The result is a codeword of length \(nT \), of which the first \(kT \) symbols are just a copy of the input message (i.e. the encoder of FIG. 10 is a systematic encoder).

For each set of \(T \) message bits input through the input line, the circulant pattern is generally different for each of the RCEs. For example, FIG. 8 shows the block-circulant generator matrix for an AR4A code. The first 128 columns of the matrix of FIG. 8 just have a diagonal line: this is an identity matrix that passes the input bits to the output unchanged. The remaining 192 columns comprise an 8x12 array of circulants, each of size \(T \). Except for the occasional coincidence, all 96 circulants are different.

This encoder has been implemented in hardware. It requires \(n-k \) D-latches, \(n-k \) exclusive-OR gates, and a modest amount of additional combinatorial logic. The size \((k=1024, n=2048)\) LDPC code fits comfortably in a Xilinx XC3S200 Spartan Field Programmable Gate Array (FPGA), and runs at 100 Msymbols/second. Speed is determined by the maximum clock rate of the FPGA. The maximum supported code size is determined primarily by the number of D-latches required to accumulate the parity, and so scales linearly with \(n-k \).

5. Conclusion

As many research groups have discovered in the last couple years, block-circulant LDPC codes have well structured decoders, and offer excellent error correction performance when designed carefully. The Applicants have shown in the present disclosure that block-circulant LDPC codes possess attractive encoders as well, of a couple different forms.
An iterative encoder is often possible for block-circulant LDPC codes, based on the standard erasure correction algorithm. Due to the circulant structure of the parity check matrix, the computational steps are typically sparse matrix multiplication by a circulant, permutation, and modulo-2 accumulation. The circulant matrix multiplications operate on long strings of sequential bits, so parallel computations are practical and permit fast encoders.

Encoders composed of linear feedback shift registers are another attractive alternative for block-circulant LDPC codes. These are based on the block-circulant generator matrices that these LDPC codes often possess. Such an encoder requires remarkably little hardware, and provides a fast, simple, bit-serial architecture. The Applicants have implemented these decoders in a small FPGA operating at 100 Msymbols/second.

The encoders and encoding methods disclosed herein are applicable to a wide range of communication problems. They would be of interest to any application that requires the excellent performance that LDPC codes provide, and that would benefit from low-complexity LDPC encoders. Examples include communications systems onboard spacecraft in deep space or in orbit around the earth, digital encoders in cellular telephones, encoders within data storage devices such as hard disk drives and magnetic tape recorders, and encoders within computer modems.

While several illustrative embodiments of the invention have been shown and described in the above description, numerous variations and alternative embodiments will occur to those skilled in the art. Such variations and alternative embodiments are contemplated, and can be made without departing from the scope of the invention as defined in the appended claims.

What is claimed is:
1. An encoding apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition four, the apparatus comprising:
 a first multiplier to multiply a first portion of the input symbols with a first matrix, forming first intermediate symbols;
 a second multiplier to multiply a second portion of the input symbols with a second matrix, forming second intermediate symbols;
 a first adder to sum the first intermediate symbols with the second intermediate symbols, forming third intermediate symbols;
 a third multiplier to multiply the third intermediate symbols with a third matrix, forming fourth intermediate symbols;
 a fourth multiplier to multiply the fourth intermediate symbols with a fourth matrix, forming a first set of output symbols;
 a second adder to sum the fourth intermediate symbols with the second portion of the input symbols, forming fifth intermediate symbols;
 a permuter to permute the fifth intermediate symbols, forming permuted symbols; and
 an accumulator to accumulate the permuted symbols, forming a second set of output symbols.
2. The apparatus of claim 1, wherein the first portion of the input symbols corresponds to a first half of the input symbols and the second portion of the input symbols corresponds to a second half of the input symbols.
3. The apparatus of claim 1, wherein output symbols are obtained by combining the first set of output symbols, the second set of output symbols, and the input symbols.
4. The apparatus of claim 1, wherein each row of the first matrix has Hamming weight 2, each row of the second matrix has Hamming weight 3, each row of the third matrix has Hamming weight 3, and each row of the fourth matrix has Hamming weight 2.
5. The apparatus of claim 1, wherein the first matrix, second matrix, third matrix and fourth matrix are block-circulant matrices.
6. A method for encoding message input symbols in accordance with an accumulate-repeat-accumulate code with repetition four, comprising:
 multiplying a first portion of the input symbols with a first matrix, forming first intermediate symbols;
 multiplying a second portion of the input symbols with a second matrix, forming second intermediate symbols;
 adding the first intermediate symbols to the second intermediate symbols, forming third intermediate symbols;
 multiplying the third intermediate symbols with a third matrix, forming fourth intermediate symbols;
 multiplying the fourth intermediate symbols with a fourth matrix, forming a first set of output symbols;
 adding the fourth intermediate symbols with the input symbols, forming fifth intermediate symbols;
 permuting the fifth intermediate symbols, forming permuted symbols; and
 accumulating the permuted symbols, forming a second set of output symbols.
7. The method of claim 6, wherein output symbols are obtained by combining the first set of output symbols, the second set of output symbols, and the input symbols.
8. The method of claim 6, wherein the first portion of the input symbols corresponds to a first half of the input symbols and the second portion of the input symbols corresponds to a second half of the input symbols.
9. The method of claim 6, wherein each row of the first matrix has Hamming weight 2, each row of the second matrix has Hamming weight 3, each row of the third matrix has Hamming weight 3, and each row of the fourth matrix has Hamming weight 2.
10. The method of claim 6, wherein the first matrix, second matrix, third matrix and fourth matrix are block-circulant matrices.
11. An encoding apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three, the apparatus comprising:
 a puncturing device, puncturing k input symbols and outputting k/2 input symbols, forming a first set of output symbols;
 a first multiplier to multiply the k input symbols with a first matrix, forming first intermediate symbols;
 a second multiplier to multiply the k input symbols with a second matrix, forming a second set of output symbols;
 a permuter to permute the first intermediate symbols, forming permuted symbols; and
 an accumulator to accumulate the permuted symbols, forming a third set of output symbols.
12. The apparatus of claim 11, wherein an output codeword is obtained by combining the first, second and third sets of output symbols.
13. The apparatus of claim 11, wherein the first matrix is a block matrix of size k x k, comprising two on-diagonal submatrices each of size k/2 x k/2 and two off-diagonal submatrices each of size k/2 x k/2, and the second matrix is of size k x k, k being an integer.
14. The apparatus of claim 13, wherein the two on-diagonal submatrices are zero and the two off-diagonal submatrices...
each have rows of Hamming weight 2, and the second matrix
has k/2 rows with Hamming weight 1 and k/2 rows with
Hamming weight 2.

15. The apparatus of claim 11, wherein the first matrix and
the second matrix are block-circulant matrices.

16. A method for encoding message input symbols in
accordance with an accumulate-repeat-accumulate code with
repetition three, comprising:
- puncturing k input symbols and outputting k/2 input sym-
bols, forming a first set of output symbols, k being an
integer;
- multiplying the k input symbols with a first matrix, forming
first intermediate symbols;
- multiplying the k input symbols with a second matrix,
forming a second set of output symbols;
- permuting the first intermediate symbols, forming per-
mutated symbols; and
- accumulating the permuted symbols, forming a third set of
output symbols.

17. The method of claim 16, further comprising combining
the first, second and third sets of output symbols to obtain an
output codeword.

18. The method of claim 16, wherein the first matrix is a
block matrix of size k x k, comprising two on-diagonal sub-
matries each of size k/2 x k/2 and two off-diagonal sub-
matries each of size k/2 x k/2, and the second matrix is of size
k x k/2.

19. The method of claim 18, wherein the two on-diagonal
sub-matries are zero and the two off-diagonal sub-matries
each have rows of Hamming weight 2, and the second matrix
has k/2 rows with Hamming weight 1 and k/2 rows with
Hamming weight 2.

20. The method of claim 16, wherein the first and second
matrix are block-circulant matrices.

21. An encoding apparatus to encode input symbols in
accordance with a block-circulant low density parity check
(LDPC) code, the apparatus comprising:
- a plurality of recursive convolutional encoders, each recur-
svive convolutional encoder comprising storage units,
multipliers and adders to encode the input symbols; and
- a plurality of circulant patterns to be fed to the recursive
convolutional encoders, one set of patterns for each
recursive convolutional encoder.

22. The apparatus of claim 21, wherein the recursive
encoders further comprise switches, each switch having a first
condition where contents of a rightmost storage unit of a
recursive convolutional encoder are sent back to that recur-
vive convolutional encoder and a second condition where
contents of a rightmost storage unit are sent towards the
output.

23. The装置 of claim 21, wherein output symbols are
obtained by combining the input symbols with the contents of
the storage units within the recursive convolutional encoders.

24. A method for encoding input symbols in accordance
with a block-circulant LDPC code, comprising:
- providing a plurality of recursive convolutional encoders,
each recursive convolutional encoder comprising stor-
age units, multipliers and adders;
- setting the storage units to a first binary value;
- repeating the following operations:
 i) computing a set of circulant patterns,
 ii) providing each recursive convolutional encoder with a
binary sequence of T message bits, each message bit sent
to the output as a codeword symbol, and each message
bit being multiplied with a circulant pattern, summed to
the result of a previous multiplication, stored in a storage
unit and shifted, until the T message bits have been
encoded,
until KT message bits have been encoded; and
- generating an output codeword by reading the contents of
the storage units of the recursive convolutional encod-
ers,
wherein k and T are integers.

25. The method of claim 24, wherein the binary sequences
so are provided through an additional plurality of storage units.

26. The method of claim 24, wherein the binary sequences
are provided by combinatorial logic.

27. The method of claim 24, wherein the binary sequences
correspond to circulant patterns of a generator matrix.

28. The method of claim 24, wherein the plurality of recur-
sive convolutional encoders comprises n-k convolutional
encoders, n being an integer, wherein n-k-1 recursive convolu-
tional encoders comprise a switch, the switch having a first
condition where the contents of the rightmost storage unit of
a recursive convolutional encoder are sent to the leftmost
adder of that recursive convolutional encoder, and a second
condition where the contents of the rightmost storage unit of
a recursive convolutional encoder are sent towards the output.