ABSTRACT

Antibodies have been developed against the different molecular forms of urokinase using synthetic peptides as immunogens. The peptides were synthesized specifically to represent those regions of the urokinase molecules which are exposed in the three-dimensional configuration of the molecule and are uniquely homologous to urokinase. Antibodies are directed against the lysine 158-isoleucine 159 peptide bond which is cleaved during activation from the single-chain (ScuPA) form to the bioactive double chain (54 KDa and 33 KDa) forms of urokinase and against the lysine 135 lysine 136 bond that is cleaved in the process of removing the alpha-chain from the 54 KDa form to produce the 33 KDa form of urokinase. These antibodies enable the direct measurement of the different molecular forms of urokinase from small samples of conditioned medium harvested from cell cultures.

12 Claims, 2 Drawing Sheets
FIG. 1
(Prior Art)

CORRELATION = 0.98726
MOLECULAR-SPECIFIC UROKINASE ANTIBODIES

ORIGIN OF THE INVENTION

The invention described herein was made at least in part in the performance of work under a NASA contract and is subject to Public Law 96-517 (35 U.S.C. §200 et seq.). The contractor has not elected to retain title to the invention.

FIELD OF THE INVENTION

The invention relates to compositions and methods of using antibodies to analyze molecular forms of urokinase. More particularly, a group of such antibodies, each of which recognizes and selectively binds to one of several molecular forms of urokinase, is used to detect, quantify or purify individual forms of urokinase. Species of urokinase that can be analyzed using the compositions and methods of the invention include the inactive 54,000 dalton single chain form, the bioactive, 34,000 dalton double-chain form and the bioactive 33,000 dalton form.

DESCRIPTION OF THE RELATED ART

Urokinase is one member of a class of proteins known as fibrinolytic proteins. Other fibrinolytic proteins include streptokinase and tissue plasminogen activator (tPA). These type proteins aid in natural blood clot dissolution. Blood clot dissolution is an important therapy in the treatment of several major debilitating and life threatening diseases including myocardial infarction associated with heart attacks, stroke, deep vein thrombosis and pulmonary embolus.

Urokinase is more specifically a serine protease. Its natural substrate is plasminogen, which it converts to bioactive plasmin. When plasmin comes in contact with the major structural component of blood clots called fibrin, the fibrin is degraded into small fragments dissolving the clot.

Consequently, there is great interest in urokinase as a therapeutic agent. U.S. Pat. No. 4,873,083 discloses a fibrinolytic composition employing an enzyme such as urokinase tissue plasminogen activator (tPA). These type proteins aid in natural blood clot dissolution. Blood clot dissolution is an important therapy in the treatment of several major debilitating and life threatening diseases including myocardial infarction associated with heart attacks, stroke, deep vein thrombosis and pulmonary embolus.

Urokinase is more specifically a serine protease. Its natural substrate is plasminogen, which it converts to bioactive plasmin. When plasmin comes in contact with the major structural component of blood clots called fibrin, the fibrin is degraded into small fragments dissolving the clot.

For these reasons, there is also great interest in urokinase as a therapeutic agent. U.S. Pat. No. 4,873,083 discloses a fibrinolytic composition employing an enzyme such as urokinase tissue plasminogen activator (tPA). These type proteins aid in natural blood clot dissolution. Blood clot dissolution is an important therapy in the treatment of several major debilitating and life threatening diseases including myocardial infarction associated with heart attacks, stroke, deep vein thrombosis and pulmonary embolus.

Urokinase is synthesized as a single polypeptide of 431 amino acid residues. An amino terminal signal peptide of 20 amino acids (N220 to N1) is cleaved from the polypeptide as it is processed during export from the cell, leaving a 411 amino acid protein (1-411) that is called the urokinase zymogen or single chain urokinase plasminogen activator (scuPA).

Urokinase zymogen has very little or no enzymatic activity. Activation of the urokinase zymogen involves cleavage of the peptide bond between lysine 158 and isoleucine 159 and the loss of lysine 158 to form the high molecular weight (HMW) 54,000 dalton active enzyme (Verstraete and Collen, Blood 67:1529-1541 (1986)). Activation can also include (in addition to 158-159 cleavage) cleavage of the bond between lysine 135 and lysine 136 followed by loss of the amino terminal 136 amino acids (the “A chain”) leaving an active low molecular weight (33,000 dalton) enzyme. The non-enzymatic products of these cleavage events are rapidly degraded. Activation and autolysis of urokinase in a cell culture can result in all three types of urokinase being present in culture medium at one time.

To identify cell populations that express increased levels of urokinase a quantitative measurements of all forms of urokinase is necessary. To be of practical use, such assays must be sensitive enough that urokinase production from small numbers of cells can be analyzed. Such assays must also be relatively easy to perform so that large numbers of samples containing as many as 5-10xi106 cells/ml or more can be tested.

Current urokinase assay methods are cumbersome. One of the common procedures is the fibrin plate lysis assay. See, e.g., U.S. Pat. No. 4,741,903; and, Lewis et al., “Problems in the Bioassay of Products from Cultured HEK Cells: Plasminogen Activator” in Eukaryotic Cell Cultures: Basics and Applications 172 Plenum Press, New York; 1984. This assay measures fibrinolytic activity. Test samples are incubated with fibrin clots and the increase in the diameter of the clot lysis zone is measured as a function of time. The rate of clot disappearance is a measure of fibrinolytic activity. The detection limit for such assays is generally 10-15 IU/ml. Other assays include the timed clot-lysis assay (Swank et al. in Computer Meth. Programs Biomed., 33:95-105 (1990)), 125I-labeled fibrinogen assay and colorimetric assays which use synthetic chemical substrates, and the S-2444 assay, Kabivitrum, Sweden (Claeson et al., Haemostasis 7:76-78 (1978)). Assays such as these are also activity assays since they are based on measurement of fibrinolytic activity. They are used to detect and quantitate active urokinase but are incapable of detecting the inactive zymogen.

Furthermore, existing assays are inadequate to detect small quantities of uPA in very small (e.g. 10 ml) samples of culture
medium or bodily fluids. Thus, such assays may not identify potentially important cell lines that produce large quantities of the urokinase zymogen (scuPA). The scuPA levels can be approximated by preincubation of samples with plasmin (which activates urokinase zymogen) followed by an activity assay. However, additional steps in an already cumbersome assay increase the variation in assay results. Moreover, it is difficult to determine the presence of plasmin and hydrolysis times needed to fully activate zymogen in all cases.

Inconsistent test results are frequently associated with fibrin clot activity assays. For example, storage of samples affects apparent activity, dose response curves are nonlinear, and replicate cell cultures produce variable activities. More importantly, protein diffusion is a factor affecting the apparent activity of urokinase. The 33,000 dalton form diffuses faster than the 54,000 dalton form increasing the apparent activity relative to the 54,000 dalton form. Although the chromogenic assay is not limited by protein diffusion, this assay is not as sensitive as the fibrin clot assay. Sample composition can greatly affect activity measurements, for example the presence of inhibitors of urokinase may greatly reduce the amount of activity measured for a given amount of enzyme. Similarly, other non-urokinase fibrinolytic enzymes in the sample may interfere by increasing the apparent activity. Moreover, these assays are not sensitive enough to detect urokinase produced from different subpopulations of small numbers of cells.

Activity assays also are unable to distinguish between various active forms of urokinase since they only measure total fibrinolytic activity. This makes comparisons between samples difficult. Use of a combination of assays, such as the clot lysis assay in combination with the chromogenic assay, can give approximate estimates of the ratios of the 54,000 and the 33,000 dalton forms of urokinase. However, this is a cumbersome and time-consuming procedure.

An alternative approach to analysis of the urokinase from cell culture is to use quantitative immunological techniques such as enzyme linked immunosorbent assays (ELISA) or radioimmunoassays (RIA). Various murine and rabbit IgG monoclonal antibodies are available against the A-chain (residues 1-135) or B-chain (residues 159-411) of urokinase (i.e., American Diagnostica, New York). These antibodies are made from animals immunized with the major molecular forms of urokinase. U.S. Pat. No. 4,474,756 discloses a method of producing antibodies by immunization of animals with a whole protein, such as human urokinase, after chemically crosslinking the protein to a polysaccharide. However, since urokinase has more than 70% homology with trypsin and significant homology to other serine proteases and tissue plasminogen activator (tPA), specificity is a problem. Therefore, non-specific antibodies such as these also bind to and detect other serine proteases and fibrinolytic proteins, and they do not give reliable quantitative estimates of urokinase in samples.

Thus, compositions and methods are needed that can sensitively and specifically quantitate urokinase in all its forms in a sample. Assays are needed which overcome the cumbersome aspects of existing methods and which produce less variable results and which are not subject to interferences from inhibitors which could contaminate sample preparations. Assays are needed which are specific for urokinase and which distinguish between closely related proteins such as tissue plasminogen activator or streptokinase or homologous serine proteases that increase the "apparent" concentration of urokinase observed in samples making existing assays inaccurate. Lastly, assays are needed which are capable of measuring the concentration of each form of urokinase in a sample.

SUMMARY OF THE INVENTION

In accordance with the present invention, polyclonal and monoclonal antibody compositions are provided that can sensitively and specifically quantitate urokinase in all its forms. The compositions provided can be used in methods that are convenient to perform, give reliable results, and are free from interferences from enzyme inhibitors that could affect fibrinolytic activity measurements. The compositions are specific for urokinase and will not detect closely related proteins such as tissue plasminogen activator or homologous serine proteases. Compositions provided with this invention can be used to measure the concentration of each form of urokinase even in a small sample.

Antibodies (polyclonal and monoclonal) were generated against urokinase by employing synthetic peptides as immunogens. The antibodies that are generated by injecting an immunogen into an animal are said to be "directed against" that immunogen. Antibodies directed against immunogens may bind to other molecules as well. Particularly, antibodies directed against an immunogen may bind to other biological macromolecules that contain the immunogen. In particular, where as here the immunogen is a peptide which represents a particular portion of the urokinase macromolecule, antibodies directed against the peptide immunogen can bind to the biological macromolecule urokinase in any of its forms which contains the immunogen peptide sequence. If the immunogen is found on one macromolecule or a subset of macromolecules, and the antibody directed against that immunogen binds preferentially to that macromolecule or subset of macromolecules, the antibody is said to have "specific" binding for that macromolecule or subset of macromolecules. "Specific" binding is merely a reflection of the fact that the binding affinity of the antibody to macromolecules containing the immunogen is higher than the binding affinity of the same antibody to other molecules.

In certain aspects, the invention relates to an antibody directed against a peptide whose sequence is chiefly derived from the urokinase amino acid sequence (Seq. ID No. 16). "Chiefly derived" for purposes of this invention means that the sequence of the peptide is virtually identical to at least a portion of a linear sequence of urokinase except for minor alternation such as additional terminal residues or substitutions of cysteine residues to prevent internal disulfide linkages (i.e., see Seq. ID No. 5 where cysteine-131 is replaced by a glycine residue in the peptide to prevent disulfide formation with cysteine-126).

The antibody is first characterized by its capability to specifically bind to urokinase. As further amplified in the claims, the characteristic of specific binding to urokinase is such that the antibody possesses a substantially lower binding affinity to proteins other than urokinase than that it has for urokinase. Importantly, this reduced binding affinity for non-urokinase proteins includes those proteins as similar in amino acid sequence to that of urokinase as is trypsin, a protein with a high degree of sequence homology with urokinase.

One group of antibodies that meet this general description will be antibodies which bind to the amino terminal end of urokinase. The amino terminal end of the urokinase molecule for purposes of the invention comprise urokinase amino acid residues 1-135 of Seq. ID No. 16.

Among those antibodies which are specific for the amino terminal end of the urokinase molecule will be those antibod-
ties directed against one or more of six specific peptides. These
peptides may be any one of a number of such peptides based
upon sequences of the amino terminal sequence of urokinase
such as: SNEHQQPSNC (Seq. ID No. 1), RGKASDTY-
MGRPCLP (Seq. ID No. 2), CRPNDNNRP (Seq. ID No.
3), RNPDNNRRPWRC (Seq. ID No. 4), CMVHDCADGK
(Seq. ID No. 5) or MVHDCADGK (Seq. ID No. 6). In certain
instances, an original residue found in urokinase will be
altered for ease of synthesis which alteration does not mate-
rially affect the immunological response to the synthetic peptide
(e.g., instead of asparagine-10 as in urokinase, Seq. ID
No. 1 possesses an aspartate; instead of cysteine-131, Seq. ID
No. 5 possesses a glycine).

Another group of antibodies that meet this general descrip-
tion will be antibodies which bind to the carboxyl terminal
development of the invention comprise urokinase
amino acid residues 159-411 of Seq. ID No. 16.

Among those antibodies which are specific for the carboxy
terminal end of the urokinase molecule will be those antibod-
ies directed against one or more of the specific peptides. These
peptides may be any one of a number of such peptides based
upon sequences of the amino terminal sequence of urokinase
such as: YRRHRGGSVTVYC (Seq. ID No. 7), CFIDYP-
KEDY (Seq. ID No. 8), SRLNSNTPGEMK (Seq. ID No.
9), SMYNDPGFGTSC (Seq. ID No. 10), LISIHRCQQ-
PHYYGGEVVTKMLC (Seq. ID No. 11), or SST-
KEENGL (Seq. ID No. 12).

Other antibodies which meet the general descriptions pro-
vided by the antibodies of the invention include antibodies
which can detect cleavage sites in urokinase. These antibod-
ies include an antibody which has a binding site that includes
the peptide bond between lysine 158 and isoleucine 159.
More specifically, such an antibody will be one which is
directed against one or more of two peptides selected from
the group of peptides comprising PRFKIIG (Seq. ID No. 13)
or RPRFKIIGGE (Seq. ID No. 14). These antibodies also
include an antibody which has a binding site that includes the
peptide bond between lysine 135 and lysine 136. More spe-
cifically, such an antibody will be one which has a lower
binding affinity for urokinase when no chemical bond exists
between lysine 158 and isoleucine 159. Similarly, such an
antibody will be one which has a lower binding affinity for
urokinase when no chemical bond exists between lysine 135
and lysine 136. The site defined by lysine 135 and lysine 136
is the natural cleavage site of the urokinase proenzyme and is
structurally exposed to cleavage, and thus is a likely natural
epitope region. This site is bridged by Seq. ID No. 17.

Particularly, in a preferred embodiment, an antibody
directed against the peptide sequence RPRFKIIGGE (Seq.
ID No. 14), with a binding affinity constant for the urokinase
zymogen of at least 1x10^8 M^-1, is disclosed which addition-
ally exhibits the binding affinity constant for urokinase lack-
ing a peptide bond between lysine 158 and isoleucine 159
decreased by at least ten-fold.

It is also possible to make multimers of peptides by
covalently linking one or more of peptides in Seq. ID Nos.
1-15. Thus, duplex peptides may easily be covalently linked
by disulfide linkages, as for example by making (102-111)-(126-135), (59-73)-(103-113), (177-189)-(205-215). It is
also possible to cause a peptide to form an internal disulfide,
as for example in 319-341 (Seq. ID No. 11).

It will be recognized by one of skill in the art of making
antibodies against specific peptides, that such antibodies may
be derived from polyclonal sera. Alternatively, and in certain
aspects, preferably, the antibody of any of the embodiments
mentioned above may be a monoclonal antibody. More spe-
cifically, the monoclonal antibodies of the invention have
been given the designations: A3-E5-A7, A3-E5-B8, A3-E5-
G10, A3-E5-H12, A3-E5-B3, C2-A4-H4, C2-A4-F10, C2-
A4-F11, D4-A5-E7, D4-A1-A5, D4-C1-G4, D4-C6-A4,
D4-C6-A8, D4-C6-E12, D4-C6-F7 or D4-C6-G12. Hybri-
doma cell lines capable of producing such monoclonal anti-
bodies are also provided. While these specific monoclonal
antibodies and the hybridomas that produce them represent
the results of the particular experiments defined in greater
detail below, they are in merely exemplary in nature. Using
the sequences selected and disclosed in the invention, the
normally skilled practitioner may readily obtain antibodies
with the same characteristics as reported here and which will
function identically to those reported here by first obtaining
one or more peptides that “correspond to” one or more pre-
determined sequences of amino acids. The following three
paragraphs describe the meaning of the term “corresponding
to” and its derivatives in greater detail.

The peptides will be one of the group of peptides disclosed
in Sequence ID Nos. 1-15. It will be recognized, however, by
those of skill in the art that the catalysts described above and
those claimed in general may contain functionally equivalent
amino acid substitutions. The importance of the hydrophobic
index of amino acids in conferring biological function on a
peptide is generally known by those of skill in the art. It has
been found by many researchers that certain amino acids may
be substituted for other amino acids having a similar hydro-
phobic index or score and still retain similar if not identical
biological activity. As displayed below, amino acids are
assigned a hydrophobic index on the basis of their hydropho-
icity and charge characteristics. It is believed that the relative
hydrophobic character of the amino acid determines the sec-
ondary structure of the resultant peptide, which in turn defines
the interaction of the peptide with the substrate molecule. It is
proposed that biological functional equivalence may typically
be maintained where amino acids are exchanged having no
more than a ±1 to 2 difference in the index value, and more
preferably within a ±1 difference.

<table>
<thead>
<tr>
<th>AMINO ACID</th>
<th>HYDROPHOBIC INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoleucine</td>
<td>4.5</td>
</tr>
<tr>
<td>Valine</td>
<td>4.2</td>
</tr>
<tr>
<td>Leucine</td>
<td>3.8</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>2.8</td>
</tr>
<tr>
<td>Cysteine/Cystine</td>
<td>2.5</td>
</tr>
<tr>
<td>Methionine</td>
<td>1.9</td>
</tr>
<tr>
<td>Alanine</td>
<td>1.8</td>
</tr>
<tr>
<td>Glycine</td>
<td>-0.4</td>
</tr>
<tr>
<td>Threonine</td>
<td>-0.7</td>
</tr>
<tr>
<td>Tryptophan</td>
<td>-0.9</td>
</tr>
<tr>
<td>Serine</td>
<td>-0.8</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>-1.3</td>
</tr>
<tr>
<td>Proline</td>
<td>-1.6</td>
</tr>
<tr>
<td>Histidine</td>
<td>-3.2</td>
</tr>
<tr>
<td>Gistamic Acid</td>
<td>-3.5</td>
</tr>
<tr>
<td>Glutamine</td>
<td>-3.5</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>-3.5</td>
</tr>
<tr>
<td>Asparagine</td>
<td>-3.5</td>
</tr>
<tr>
<td>Lysine</td>
<td>-3.9</td>
</tr>
<tr>
<td>Arginine</td>
<td>-4.5</td>
</tr>
</tbody>
</table>

Thus, for example, isoleucine, which has a hydrophobic
index of +4.5, can be substituted for valine (+4.2) or leucine
(+3.8), and might still obtain a peptide having similar bio-
logical activity. Alternatively, at the other end of the scale,
lysine (-3.9) can be substituted for arginine (-4.5), and so on.

Accordingly, these amino acid substitutions are generally
based on the relative similarity of R-group substitutes, for
example, in terms of size, electrophilic character, change, and the like. In general, although these are not the only such substitutions, the preferred substitutions which take various of the foregoing characteristics into consideration include the following:

<table>
<thead>
<tr>
<th>ORIGINAL RESIDUE</th>
<th>EXEMPLARY SUBSTITUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>alanine</td>
<td>glycine; serine</td>
</tr>
<tr>
<td>arginine</td>
<td>lysine</td>
</tr>
<tr>
<td>asparagine</td>
<td>glutamic acid; histidine</td>
</tr>
<tr>
<td>aspartic acid</td>
<td>glutamic acid</td>
</tr>
<tr>
<td>cysteine</td>
<td>serine</td>
</tr>
<tr>
<td>glutamine</td>
<td>asparagine</td>
</tr>
<tr>
<td>glycine</td>
<td>alanine</td>
</tr>
<tr>
<td>histidine</td>
<td>asparagine; glutamine</td>
</tr>
<tr>
<td>isoleucine</td>
<td>leucine; valine</td>
</tr>
<tr>
<td>leucine</td>
<td>isoleucine; valine</td>
</tr>
<tr>
<td>lysine</td>
<td>arginine; glutamic acid</td>
</tr>
<tr>
<td>methionine</td>
<td>leucine; tyrosine</td>
</tr>
<tr>
<td>serine</td>
<td>threonine</td>
</tr>
<tr>
<td>threonine</td>
<td>serine</td>
</tr>
<tr>
<td>tryptophan</td>
<td>tyrosine</td>
</tr>
<tr>
<td>tyrosine</td>
<td>tryptophan; phenylalanine</td>
</tr>
<tr>
<td>valine</td>
<td>isoleucine; leucine</td>
</tr>
</tbody>
</table>

In addition to the compositions provided by the invention, methods are disclosed which utilize the anti-urokinase antibody compositions in a variety of ways. Thus, in one embodiment, a method of detecting urokinase zymogen in a sample is provided. This method comprises standard plate assays including solid phase plate radioimmunoassay or enzyme linked immunosassays (ELISA). Another method made possible by the anti-urokinase antibody compositions of the invention include detecting urokinase associated with the surface of a cancer cell. This method comprises using the antibodies of the invention to detect urokinase levels in a cell population, which levels are correlated to DNA content for evaluation of potential of tumor cells.

For whatever purpose the quantitation is accomplished, the technique will be similar in its use of the peptides of the invention. Thus, Seq. ID Nos. 1-15 can be used to generate immunological compositions capable of recognizing the urokinase zymogen. The same is true of a peptide comprising residues 135 and 136 of Seq. ID No. 16. When the same battery of immunological compositions is used against the high molecular form of urokinase which lacks the 158-159 peptide bond, each such composition will bind the high molecular weight form of urokinase except immunological composition derived from Seq. ID Nos. 13 and 14, thusly providing a test to distinguish the inactive zymogen from the active high molecular weight form of urokinase. The same battery of immunological compositions is useful in distinguishing the low molecular weight form will not efficiently bind immunological compositions derived from Seq. ID Nos. 1-6, 13-14 or from a peptide comprising residues 135 and 136 of Seq. ID No. 16.

Diagnostic kits for detecting the presence and quantity of urokinase in a sample are also provided. Such kits comprise effective amounts of the antibodies which individually bind to the amino terminal end of urokinase, the carboxyl terminal end of urokinase, the binding site that includes the peptide bond between lysine 158 and isoleucine 159, and the binding site that includes the peptide bond between lysine 135 and lysine 136. Additionally, each such antibody includes an indicating group capable of detecting binding of the antibody to a target molecule and standards of an effective concentration of each of the bioactive and inactive forms of urokinase detectable using the four antibodies included in the kit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1: Standard curve for Run 4 Day 12 supernatants radioimmunoassay.
FIG. 2: Bar graph comparing amount of scuPA in the Run 4 Day 12 supernatants using two prior art methods (S-2444 and MCLA) and methods of invention (MSA-RIA).

DESCRIPTION OF PREFERRED EMBODIMENTS

With respect to the inactive form of urokinase (See Seq. ID No. 16), activation of the zymogen involves cleavage of the peptide bond 158-159 and the loss of Lys-158. An active form of the enzyme is produced which has the sequence 1-157 (A chain) linked to sequence 159-411 (B chain) by a disulfide bond between Cys-148 and Cys-249. Another active form of the enzyme has sequence 136-157 (A1 chain) linked to sequence 159-411 (B chain). The various regions selected for synthesis correspond to sequences 1-12 (Seq. ID No. 1), 59-73 (Seq. ID No. 2), 102-111 (Seq. ID No. 3), 103-113 (Seq. ID No. 4), 126-135 (G at 131) (Seq. ID No. 5), 127-135 (Seq. ID No. 6), 177-189 (Seq. ID No. 7), 205-215 (Seq. ID No. 8), 222-233 (Seq. ID No. 9), 319-330 (Seq. ID No. 10), 319-341 (Seq. ID No. 11), 401-411 (Seq. ID No. 12), 155-161 (Seq. ID No. 13) and 154-163 (Seq. ID No. 14). In addition, the following peptide pairs will be linked by disulfide bonds: (59-73), (102-111)-(126-135), (G at 131) and (177-189)-(205-215). The covalent structures of the peptides that have been (or are being) synthesized are shown in Table 1. The single letter notations of the amino acids are: A, alanine; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; Y, tyrosine.

Peptide Immunogen Synthesis

The peptides used for certain particular examples of the invention correspond to the Sequence ID Nos. 1-6. These peptides, as well as other peptides produced using the methods of the invention, are synthesized either by t-butyloxycarbonyl (t-Boc) on a phenylacetamidomethyl (PAM) resin or by 9-fluorenmethylcarbonyl (Fmoc) amino acids on a benzyloxymethyl alcohol resin as described elsewhere (McCormick and Atassi, Biochem. J., 224:995-1000 (1984); Mulac-Jericevic and Atassi, J. Prot. Chem. 6:365-373 (1987); Atassi et al., Proc. Natl. Acad. Sci. USA, 88:3613 (1991)), together with methods for purification and characterization of the peptides.

Peptide immunogens can be synthesized chemically by the well known methods discussed above. They can also be isolated by purification after proteolysis of individual forms of urokinase. Particular care must be given to the choice of epitope used in the latter method so that desired epitopes are not destroyed.

To avoid generating antibodies that cross react with other known proteins peptide immunogen sequences are selected which are unique to urokinase. To determine which sequences are unique to urokinase, the urokinase sequence can be aligned with other proteins whose sequences are known. Many of these protein sequences can be found in data bases and convenient computer programs can be enlisted to perform a homology search. Such searches may be accom-
Fourteen peptides were prepared for use as immunogens. Peptides derived from the amino terminal end of the urokinase protein, including residues 1 through 135, were used to generate antibodies specific for the A chain of urokinase. Six peptides represent areas present only in the zymogen and high molecular weight forms of the enzyme. The low molecular weight form does not contain these areas due to the loss of the first 158 residues after enzymatic degradation. As a result, antibodies directed against these peptides only bind the high molecular weight forms of urokinase, providing compositions suitable for screening for antibodies against the whole enzyme. The six peptides that were used to generate antibodies that bind to the urokinase binds to the urokinase binding site of its high molecular weight form are: PRFKIIG (Seq. ID No. 1), RPRFKIIGGE (Seq. ID No. 10), LISHRECQQPHYYGSEVTTKMLC (Seq. ID No. 7), CFIDYPKKEDY (Seq. ID No. 8), SRLN-50NDNPCQFTSC (Seq. ID No. 3), RNPDNRRPPWC (Seq. ID No. 4), CMVIDH-100GADUK (Seq. ID No. 5) and MVHDAGDACG (Seq. ID No. 6).

Peptides derived from the carboxy terminus of urokinase containing residues 159-411 were used to generate antibodies specific for the B chain of urokinase also known as the low molecular weight (LMW) form or 33,000 dalton form of urokinase. Six peptides that find use in generating B chain specific antibodies include: YRRHRGGSVTYYC (Seq. ID No. 7), CFDYDPKKEEDY (Seq. ID No. 8), SRLNSNTQGEMK (Seq. ID No. 9), SMYNPDQPGTSC (Seq. ID No. 10), LISHRECQQPHYYGSEVTTKMLC (Seq. ID No. 11), and SHTKKEENGLAL (Seq. ID No. 12).

Other especially useful peptides encompass the peptide bond between lysine 158 and isoleucine 159. These peptides were used to generate antibodies that bind to the urokinase zymogen, also known as the single chain urokinase plasminogen activator (ScuPA). Two peptides that find use in generating urokinase zymogen specific antibodies include: PRFKIIG (Seq. ID No. 13) and RPRFKIIGGE (Seq. ID No. 14). Additional compositions may be considered as immunogens in the preparation of antibodies useful for this invention, for example carbohydrates linked to urokinase or other biochemical or chemical modifications to the urokinase polypeptide chain or peptide sequences homologous to urokinase sequences. Additionally, combinations of the peptides discussed above, as mixtures, and covalently attached in groups of two or more may be useful.

Immunization

Peptides may be used for immunization directly, after formulation or after conjugation to a carrier molecule. Examples of formulations for peptide immunogen injection include Freund’s adjuvant. Carrier molecules that can be used to conjugate to peptide immunogens include bovine serum albumin (BSA), lysozyme, and polysaccharides such as dextrans.

Antisera Against Peptides

Antibodies against the synthetic peptides were raised in mice by two methods (a) an immunization by peptide-protein conjugates: Mice were injected and boosted with the peptide-SuBSA conjugate (50 µg per mouse) as an emulsion in complete Freund’s adjuvant in the footpads and subcutaneously in the neck. Serial bleedings from 10 days prior, up to 230 days after, the first injection will be collected and studied separately. (b) Immunization with free peptide: In view of the finding (Young et al., Immunol. Commun., 11:9-16 (1982)) that small synthetic peptides (6 residues or larger), when immunized in their free form in complete Freund’s adjuvant, will stimulate an in vivo antibody response, peptides were injected into mice in their free form (i.e., without coupling to carrier). Each animal received peptide (25-50 µg per mouse) as an emulsion in complete Freund’s adjuvant distributed into three sites as above. The animals were boosted with similar doses 3 weeks after the first injection and thereafter monthly. Serial bleedings from 10 days before, up to 200 days after, the initial injection were studied separately.

Monoclonal Antibody Preparation

Methods for preparing monoclonal antibodies are well established. See for example, Monoclonal Antibodies, eds. Roger H. Kennett, Thomas J. McKeam, Kathleen B. Bechtol, Plenum Press, New York, 1980; Nature (1975) 256:495-497. The discovery (Young et al., 1982, id.) that synthetic peptides will evoke antibody formation when used as immunogens in their free form (i.e., without coupling to a carrier) was exploited to prepare monoclonal antibodies with preselected submolecular binding specificities to desired protein regions (Schmitz, et al., Mol. Immunol., 19:1699-1702 (1982)). Peptides representing antigenic sites as well as synthetic peptides representing surface regions that are not antigenic when the whole molecule is used as an immunogen have been shown to produce antisera and subsequently monoclonal antibodies of preselected specificities (Schmitz, et al., Mol. Immunol., 20:719-726 (1983); Schmitz, et al., Mol. Immunol., 12:161-175 (1983)).

Mice were immunized as above with a given synthetic peptide (25-50 µg) in complete Freund’s adjuvant and boosted and test-bled at 3 week intervals until high antibody titer was obtained in the test sera. Somatic cell fusions, hybridoma selection, limiting dilution cloning and subcloning, and hybrid cell expansion were performed as described by Schmitz et al. (Schmitz, et al., 1982 id.). Expanded subclones were also injected into BALB/cByJ mice (2 x 10⁶ cells/1.0 ml. fresh tissue culture media) that had been primed with pristane (Sigma Chemical Co., St. Louis, Mo.). Ascites fluid was collected, clarified and stored frozen at ~20° C. until screened for the presence of hybridoma antibodies.

Essentially the peptide immunogen is injected into an animal, then cells producing a useful composition are immortalized and identified. Additional injections at timed intervals may be used to increase the titer and avidity of the antibodies in the serum. Polyclonal antibodies are prepared by removing serum from these animals. Usually mice are the animal of choice and spleen cells that produce antibodies are immortalized by fusion to immortal mouse myeloma cells, for example SP/2 or 653 cells. Other animals may also be used to generate monoclonal antibodies including chickens or guineas or any animal with cells that produce an antibody molecule such that the productive cell can be immortalized. Immortalization of the producing cell is needed to produce a stable starting material for the repeated production of the useful monoclonal antibodies when required. Techniques for cell immortalization include: fusion to immortal cells where the fused cell product continues to express the useful immunoglobulin, or viral infection may be used to immortalize productive cells.

Screening for antibodies with desired specificity can be performed using any of a variety of methods. In a Western blot method, protein of interest is immobilized on a solid surface, such as nitrocellulose, can be incubated with hybridoma supernatants or serum and ¹²⁵I-labelled anti-mouse IgG, following removal of the incubation medium and washing of the surface, radioactivity that is bound to the surface is measured. Another method involves addition of the original peptide immunogen to the well of a growing hybridoma culture and
looking for blebs or disruptions in the growing cell monolayer. Disruptions are an indication that the hybridoma is producing antibodies against the added immunogen.

Monoclonal antibodies have been prepared which are of use in the present invention. Murine monoclonal antibodies produced from clones A3-E5-A7, A3-E5-B8, A3-E5-G10, A3-E5-H12, A3-E5-B3, A3-E5-D1 were produced against the peptide immunogen PRFKIKIG (Seq. ID No. 13). Murine monoclonal antibodies produced from clones C2-A4-H14, C2-A4-F10, C2-A4-F11 were produced against the peptide immunogen RPRFKIKIGGE (Seq. ID No. 14). Murine monoclonal antibodies produced from clones D4-C5-E7, D4-C1-A5, D4-C1-G4, D4-C6-A4, D4-C6-A8, D4-C6-E12, D4, C6-F7 and D4-C6-G12 were directed against the peptide RPRFKIKIGGE (Seq. ID No. 14) after it was chemically conjugated to bovine serum albumin.

Polyclonal Antibody Preparation

Essentially any animal that generates an immune response could be used to generate useful polyclonal antibodies for this invention. Animals commonly used include goats, sheep, rabbits, rats, chickens and cows. Particular polyclonal antibody preparations that find use in this invention were prepared from mice and rabbits. Peptides that were of use in generating antibodies against the low molecular weight form of urokinase include YRHRGGSVTYYVC (Seq. ID No. 7), CFIDYPKKEDY (Seq. ID No. 8), SRLNSNTQGEMK (Seq. ID No. 9), SMYNDPQFGTSC (Seq. ID No. 10), LISHRECQ-PHYGSSVTTMLC (Seq. ID No. 11), SHTKEENGLAL (Seq. ID No. 12). These antibodies were chemically conjugated to BSA prior to injection. Chemical conjugation is not always required. For example, useful antibodies were also generated against the free peptides CFIDYPKKEDY (Seq. ID No. 8), SRLNSNTQGEMK (Seq. ID No. 9), and SMYNDPQFGTSC (Seq. ID No. 10) in mice. Other peptides that produced polyclonal antibodies of use in this invention include SNELHQVPSNCD (Seq. ID No. 1), RGKASTDTPGFCLP (Seq. ID No. 2), CRNPDNRRRP (Seq. ID No. 3), RNPDNRRRPPIC (Seq. ID No. 4), CMVHDAGDK (Seq. ID No. 5) and MVHDACDGK (Seq. ID No. 6). Polyclonal antibodies are conveniently prepared by injecting animals with immunogen as described above.

Serum is removed from the animal and prepared by conventional techniques as described above. A blood clot is formed spontaneously. The clot is removed and the remaining serum can be purified further. The IgG molecules can be purified away from the serum by affinity chromatography to immobilized protein A or protein G. Proteins that lack an IgG heavy chain constant region will not bind to this affinity resin and will be separated from the desired polyclonal IgG antibodies. Immobilized urokinase may also be used to purify the desired antibody away from other serum proteins. Elution of the bound antibodies can be achieved by using mild denaturants such as 2 molar guanidine hydrochloride or extremes of pH such as a glycine-HCl buffered solution at pH 2.5.

The antibody preparations are then screened. Immune IgG preparations or protein A were radiolabeled with 125I (Amer sham Corp., Arlington Heights, Ill.) using the chloramine-T method (Hunter et al., Nature, 194:495-496 (1962)). Unbound 125I was separated from the radiolabeled sample by gel filtration on Sephadex G-25 (Pharmacia Fine Chemicals, Piscataway, N.J.). Protein-associated 125I was assayed by precipitation with 10% (v/v) trichloroacetic acid.

Polyvinylchloride protein assay plates (Costar, Cambridge, Md.) were incubated for 3 hours at 37° C. with excess (1.5 µg in 50 µg of PBS/well) test and control antigens, washed extensively with PBS, and blocked with 1% BSA in PBS (100 µl/well) for 1 hr at 37° C. to prevent non-specific binding of subsequent reagents. After washing, the plates were used for binding antibody.

In the present invention, human monoclonal antibodies were screened for anti-UK antibodies using a solid phase RIA described by Sakata and Atassi (Mol. Immunol., 18:961-967 (1981) as modified by Schmitz et al. (1982) id.). This assay was also used to determine antibody binding specificities to peptides. Briefly, RIA plates that had been coated with the appropriate test antigens (various forms of UK or peptide conjugates) were incubated for 3 hours at 37° C. with an antibody preparation (50 µl/well) appropriately preluted in PBS-BSA so as to maximize specific binding. The plates were subsequently washed with PBS and amplified with excess (1:1000 dilution of the stock reagent in PBS-BSA) rabbit anti-mouse IgG+IgM antisera (Litton Bionetics, Kensington, Miss.) for 2 hrs at 37° C. After washing, the plates were developed with excess (2.0×10E5 cpm in 50 µl PBS-BSA/well) 125I labelled protein A for 2 hrs at room temperature, washed, and then separated into individual wells that are counted in a gamma counter (Beckman Instruments, Inc., Irvine, Calif.). Results are corrected for nonspecific (0.1-2%) binding detected in control wells not coated with test antigen but blocked with BSA.

When peptide-SuBSA conjugates are the immunizing antigens then antibody responses were analyzed by peptide-lysozyme (not succinyl lysozyme) conjugates since lysozyme and SuBSA do not cross-react immunochemically. Correction for non-specific binding is derived from binding to lysozyme control. When the free peptides were the antigens then antibodies were analyzed on peptide-SuBSA conjugates and employing lysozyme and SuBSA as controls.

One of the novel aspects of these antibodies is their specificity for binding only to urokinase and not to other related proteins such as trypsin or TPA.

Other Methods of Using the Compositions

Analysis of Separated Kidney Cells

Cell separation in microgravity is one of the significant new applications of space technology to basic and clinical medical research. Separations are more effective in microgravity conditions due to the lack of sedimentation and absence of other limitations imposed by physical forces. Kidney cells have been used as a model for their separation by continuous flow electrophoresis and other methods under microgravity conditions. After the cells are separated, it is important to determine their purity, viability and physiologic performance. The compositions and methods provided in this invention have been used to determine these parameters.

Cancer Diagnosis and Monitoring

This invention provides methods and compositions that are useful in the diagnosis and monitoring of tumors, which produce urokinase (such as breast, prostate and adenosarcoma). Analysis can be performed on biological fluids such as blood serum, urine, saliva and semen as a way of detecting urokinase and identifying cancer development or progress. The cells are removed from the serum by centrifugation and the soluble protein fraction assayed by a sensitive ELISA or RIA technique as previously described.

Immunohistochemical methods can be used to identify the presence of urokinase in tumor biopsy specimens. For example, the tumor tissue can be quick frozen, sections can be cut and fixed with acetone on glass slides, the sections can be treated with normal serum to reduce non-specific anti-urol

The polyclonal antisera were labelled with 125I as described above and their binding to the peptide-lysozyme conjugate and to the low molecular weight urokinase was determined. Results represent pools of antisera from 3 mice each and varied ±1.7% or less.

TABLE 1

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Peptide-lysozyme conjugate</th>
<th>Low M.W. U.K.</th>
</tr>
</thead>
<tbody>
<tr>
<td>peptide 177-189</td>
<td>43,040</td>
<td>45,570</td>
</tr>
<tr>
<td>(Seq. ID No. 7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peptide 205-215</td>
<td>42,490</td>
<td>44,310</td>
</tr>
<tr>
<td>(Seq. ID No. 8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peptide 222-233</td>
<td>45,570</td>
<td>47,520</td>
</tr>
<tr>
<td>(Seq. ID No. 9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peptide 319-330</td>
<td>49,540</td>
<td>51,090</td>
</tr>
<tr>
<td>(Seq. ID No. 10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peptide 319-341</td>
<td>42,590</td>
<td>43,510</td>
</tr>
<tr>
<td>(Seq. ID No. 11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peptide 401-411</td>
<td>41,060</td>
<td>42,520</td>
</tr>
<tr>
<td>(Seq. ID No. 12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It was similarly shown that certain of the C-terminal domain peptides demonstrated binding to all forms (LMW and HMW) of urokinase with affinities comparable to the binding exhibited by the correlative free peptide.

TABLE 2

Antisera (polyclonal) Against Peptides in the common C-terminal Domain Bind All Forms of Urokinase.

<table>
<thead>
<tr>
<th>Specific Binding (CPM)</th>
<th>Peptide</th>
<th>Mouse No.</th>
<th>Urokinase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The same test were run on N-terminal domain peptides with similar results against whole urokinase.

TABLE 3

Antisera (polyclonal) Binding to Urokinase Peptides and to Urokinase.

<table>
<thead>
<tr>
<th>Specific Binding to Free Peptide</th>
<th>Peptide</th>
<th>Mouse No.</th>
<th>Urokinase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preparation of Monoclonal Antibodies

A general description of the method used for the preparation of monoclonal antibodies can be found in Description of Preferred Embodiments. Monoclonal antibodies were prepared with the capacity to discriminate between the three common molecular forms of urokinase. Three groups of antibodies were developed by the use of synthetic peptides which represent the areas described above. The first group of peptides consisted of areas present both in prourokinase and high molecular weight urokinase, but absent in the low molecular weight form. These six peptides were synthesized, cleaved, purified and injected into BALB/c mice for the preparation of monoclonal antibodies. In addition, six peptides representing areas present in all three molecular forms were made. Monoclonal antibodies raised against these peptides bound all forms of urokinase but not other serine proteases.

For the differential recognition of prourokinase from high molecular weight urokinase, specific monoclonal antibodies, binding to the area of cleavage, were developed. Two peptides were constructed which represent the area around the single bond at Lys-135-Lys-136 during conversion of the zymogen into the active enzyme. Monoclonal antibodies specific for this area only bound to urokinase zymogen but not high molecular weight urokinase.

After injection of the peptides into outbred mice, and fusion of their spleen cells, 17 monoclonal antibodies were constructed which represent the area described above. The first group of peptides consisted of areas present both in prourokinase and high molecular weight urokinase, but absent in the low molecular weight form. These six peptides were synthesized, cleaved, purified and injected into BALB/c mice for the preparation of monoclonal antibodies. In addition, six peptides representing areas present in all three molecular forms were made. Monoclonal antibodies raised against these peptides bound all forms of urokinase but not other serine proteases.

For the differential recognition of prourokinase from high molecular weight urokinase, specific monoclonal antibodies, binding to the area of cleavage, were developed. Two peptides were constructed which represent the area around the single bond at Lys-135-Lys-136 during conversion of the zymogen into the active enzyme. Monoclonal antibodies specific for this area only bound to urokinase zymogen but not high molecular weight urokinase.

After injection of the peptides into outbred mice, and fusion of their spleen cells, 17 monoclonal antibodies were selected for their specificity to one of the peptides (peptide 154-163, Seq. ID No. 14). A table showing the results of this screening is shown at Table 4, below.

These monoclonals were tested for binding to the different forms of urokinase by the western blot method. The nitrocellulose paper was incubated with cell culture supernatants and 125I-labelled anti-mouse IgG. Three of the monoclonals were constructed which represent the area around the single bond at Lys-135-Lys-136 during conversion of the zymogen into the active enzyme. Monoclonal antibodies specific for this area only bound to urokinase zymogen but not high molecular weight urokinase.

After injection of the peptides into outbred mice, and fusion of their spleen cells, 17 monoclonal antibodies were selected for their specificity to one of the peptides (peptide 154-163, Seq. ID No. 14). A table showing the results of this screening is shown at Table 4, below.

These monoclonals were tested for binding to the different forms of urokinase by the western blot method. The nitrocellululose paper was incubated with cell culture supernatants and 125I-labelled anti-mouse IgG. Three of the monoclonals showed specific binding to single chain urokinase. The clones involved were expanded and the monoclonal antibodies purified for further characterization and testing.

Several monoclonal antibodies were also made in mice and were then tested for specificity to ScuPA, the A-chain, B-chain the cleavage bonds at Lys-158-Ile-159, the loss of Lys-158 and the cleavage bond at Lys-135-Lys-136 during activation. Additional murine monoclonal antibodies and rabbit anti-urokinase monoclonal antibodies were made and tested.

<table>
<thead>
<tr>
<th>Clone No.</th>
<th>Peptide</th>
<th>Peptide</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3-E5-A7</td>
<td>71,813</td>
<td>803</td>
<td>901</td>
</tr>
<tr>
<td>A3-E5-A8</td>
<td>47,816</td>
<td>1,321</td>
<td>876</td>
</tr>
<tr>
<td>A3-E5-G10</td>
<td>58,503</td>
<td>1,454</td>
<td>1,311</td>
</tr>
<tr>
<td>A3-E5-H12</td>
<td>85,240</td>
<td>1,138</td>
<td>1,158</td>
</tr>
<tr>
<td>A3-E5-B3</td>
<td>59,674</td>
<td>871</td>
<td>821</td>
</tr>
<tr>
<td>A3-E5-D1</td>
<td>36,729</td>
<td>934</td>
<td>877</td>
</tr>
<tr>
<td>C2-A4-H4</td>
<td>7,633</td>
<td>1,855</td>
<td>928</td>
</tr>
<tr>
<td>C2-A4-F11</td>
<td>91,196</td>
<td>6,987</td>
<td>1,136</td>
</tr>
<tr>
<td>C2-A4-H4</td>
<td>7,633</td>
<td>1,855</td>
<td>928</td>
</tr>
<tr>
<td>D4-A5-E7</td>
<td>4,962</td>
<td>1,393</td>
<td>1,430</td>
</tr>
<tr>
<td>D4-C6-A8</td>
<td>43,013</td>
<td>1,109</td>
<td>781</td>
</tr>
</tbody>
</table>

Comparison of Prior Art Test for Urokinase with that of Invention

Comparison of three assay methods for measuring urokinase in supernatants from kidney cell cultures were made in order to test the efficacy of the methods and compositions of the invention with those of the prior art. Cell cultures of HEK cells were prepared as described previously above and supernatants of the cultures were isolated. The supernatants were divided into aliquots for standardization runs, and runs using one of the three test methods.

The S-244 method used a chromotogenic substrate to measure active urokinase. The method used was that of Claeson, G. et al., “Methods for Determination of Prekallikrein in plasma, Glandular Kallikrein, and Urokinase,” Haemostasis 7:76-87 (1978), incorporated specifically herein to the extent that it provides materials and methods not otherwise provided herein.

The microclot lysis assay (“MCLA”) assay measures the optical density of the clots being lysed by the urokinase to determine the half-lysis time for standard concentrations. The method used was that of Lewis et al., “A Miniaturized Fibrinolytic Assay for Plasminogen Activators,” Thrombosis Res. 64:223-234 (1991), incorporated specifically herein to the extent that it provides materials and methods not otherwise provided herein.

The molecular-specific antibody (“MSA”) assay of the invention has been previously described. It is typically run as an RIA (“MSA(RIA)”) method (although it can also be an ELISA assay or other non-radioactive assay) using antibodies which are specific for the intact region of the active site (158-159) on the urokinase molecule. The RIA methods utilized were similar to those previously described above for the screening of supernatants for anti-UK antibodies using solid-phase assays (Sakata and Atassi 1981, as modified by Schmitz et al. 1982). While it is possible to label either the supernatant proteins to be tested or to label the antibodies, the inventors typically label the antibodies as previously described.

All assays were calibrated against an international reference standard for urokinase (IRP-UK; National Biologies Standards Board, London). A typical standard curve for the RIA assay (specifically, those used to standardize values observed for the Run 4 Day 12 supernatants below) is shown in FIG. 1. That standard curve plots the results from three separate standard assays as net counts per minute versus microgram concentrations of urokinase in 50 microliter volumes.

FIG. 2 is a graph comparing the amount of scuPA in the Run 4 Day 12 supernatants using the differential S-2444
The amount of scuPA contained in the supernatant culture medium harvested from four (4) day old cultures of human kidney cells, which cells had been separated by continuous flow electrophoresis into twenty-four (24) subpopulations, were determined. The estimates of scuPA found by the S-2444 assay were obtained by using two different aliquots of the supernatant and subtracting the levels of uPA activity found in the S-2444 assay (direct) and the levels found in the S-2444 assay following pre-incubation with 15 nM plasmin (2 hours at 37° C.), (which converts all of the scuPA to active two-chain uPA). This shows that the pre-incubation with plasma misses a significant amount of scuPA which is actually present in the culture medium. Conversely, the MSA is sensitive enough to measure it directly. Similarly, the MCLA assays routinely detected far less of the scuPA than did the MSA(RIA) methods of the invention. Typically, the MCLA assay is the most comparable to the MSA(RIA) assay. Thus, for instance as can be seen in supernant fraction 24, the two values are almost identical. Conversely, both the MCLA and the MSA(RIA) methods routinely detect substantially higher levels of scuPA than does the S-2444 assay. This was not always the case, however, since, for instance, in supernatant fractions 2-4, the S-2444 assay detected slightly more scuPA than did the MCLA assay. However, in all instances, the MSA(RIA) assays of the invention were able to detect substantially higher levels of scuPA than the two prior art approaches.

The present invention has been described in terms of particular embodiments found or proposed to comprise preferred modes for the practice of the invention. It will be appreciated by those of skill in the art that, in light of the present disclosure, numerous modifications and changes can be made in the particular embodiments exemplified without departing from the intended scope of the invention. For example, the antibody preparations of the invention would be useful for whole body imaging techniques to look for tumors with elevated local concentrations of urokinase. Immunoaffinity columns may be constructed with the discriminating antibodies of the invention to quantitate the different forms of urokinase in a sample (e.g., See, Sibley, et al., Biotechniques Vol. 10, 1993; Universal Sensors, Metairie, La.). All such modifications are intended to be included within the scope of the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 17

<110> SEQ ID NO 1
<111> LENGTH: 15
<112> TYPE: PRT
<113> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide

<400> SEQUENCE: 1
Arg Gly Lys Ala Ser Thr Met Gly Arg Pro Cys Leu Pro
1 5 10 15

<110> SEQ ID NO 2
<111> LENGTH: 15
<112> TYPE: PRT
<113> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide

<400> SEQUENCE: 2
Arg Gly Lys Ala Ser Thr Asp Thr Met Gly Arg Pro Cys Leu Pro
1 5 10 15

<110> SEQ ID NO 3
<111> LENGTH: 10
<112> TYPE: PRT
<113> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic Peptide

<400> SEQUENCE: 3
Cys Arg Asn Pro Asp Arg Arg Arg Arg Arg Pro
1 5 10
Organism: Artificial
Feature: Synthetic Peptide

Sequence: 4

Arg Asn Pro Asp Asn Arg Arg Arg Pro Trp Cys

Sequence: 5

Cys Met Val His Asp Gly Ala Asp Gly Lys

Sequence: 6

Met Val His Asp Cys Ala Asp Gly Lys

Sequence: 7

Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys

Sequence: 8

Cys Phe Ile Asp Tyr Pro Lys Lys Glu Asp Tyr

Sequence: 9

Ser Arg Leu Asn Ser Asn Thr Gln Gly Glu Met Lys

FEATURE:
OTHER INFORMATION: Synthetic Peptide

SEQ ID NO: 1
LENGTH: 24
TYPE: PRT
ORGANISM: Artificial

FEATURE:
OTHER INFORMATION: Synthetic Peptide

SEQ ID NO: 2
LENGTH: 11
TYPE: PRT
ORGANISM: Artificial

FEATURE:
OTHER INFORMATION: Synthetic Peptide

SEQ ID NO: 3
LENGTH: 7
TYPE: PRT
ORGANISM: Artificial

FEATURE:
OTHER INFORMATION: Synthetic Peptide

SEQ ID NO: 4
LENGTH: 10
TYPE: PRT
ORGANISM: Artificial

FEATURE:
OTHER INFORMATION: Synthetic Peptide

SEQ ID NO: 5
LENGTH: 411
<400> SEQUENCE: 16

Ser Asn Glu Leu His Gln Val Pro Ser Asn Cys Asp Cys Leu Asn Gly
1 5 10 15
Gly Thr Cys Val Ser Asn Lys Tyr Phe Ser Asn Ile His Trp Cys Asn
20 25 30
Cys Pro Lys Lys Phe Gly Gly Gin His Cys Glu Asp Lys Ser Lys
35 40 45
Thr Cys Tyr Glu Gly Asn His Phe Tyr Arg Gly Lys Ala Ser Thr
50 55 60
Asp Thr Met Gly Arg Pro Cys Leu Pro Trp Asn Ser Ala Thr Val Leu
65 70 75 80
Gln Gin Thr Tyr His Ala His Arg Ser Asp Ala Leu Gin Leu Gly Leu
85 90 90
Gly Lys His Asn Tyr Cys Arg Asn Pro Asn Arg Arg Arg Pro Trp
100 105 110
Cys Tyr Val Gln Val Gly Leu Pro Leu Val Glu Cys Met Val
115 120 125
His Asp Cys Ala Asp Gly Lys Pro Ser Ser Pro Pro Glu Glu Leu
130 135 140
Lys Phe Gin Cys Gly Gin Lys Thr Leu Arg Pro Arg Phe Lys Ile Ile
145 150 155 160
Gly Gly Glu Phe Thr Thr Ile Glu Asn Gin Pro Trp Phe Ala Ala Ile
165 170 175
Tyr Arg Arg His Arg Gly Gly Ser Val Thr Tyr Val Cys Gly Gly Ser
180 185 190
Leu Ile Ser Pro Cys Thr Val Ile Ser Ala Thr His Cys Phe Ile Asp
195 200 205
Tyr Pro Lys Lys Glu Asp Tyr Ile Val Tyr Leu Gly Arg Ser Arg Leu
210 215 220
Asn Ser Asn Thr Gin Gly Glu Met Lys Phe Glu Val Glu Asn Leu Ile
225 230 235 240
Leu His Lys Asp Tyr Ser Ala Asp Thr Leu Ala His Asn Asp Ile
245 250 255
Ala Leu Leu Lys Ile Arg Ser Lys Glu Gly Arg Cys Ala Gin Pro Ser
260 265 270
Arg Thr Ile Gin Thr Ile Cys Leu Pro Ser Met Tyr Asn Asp Pro Gin
275 280 285
Phe Gly Thr Ser Cys Glu Ile Thr Gly Phe Gly Lys Glu Asn Ser Thr
290 295 300
Asp Tyr Leu Tyr Pro Glu Gin Leu Lys Met Thr Val Val Lys Leu Ile
305 310 315 320
Ser His Arg Glu Cys Gin Gin Pro His Tyr Tyr Gly Ser Glu Val Thr
325 330 335
Thr Lys Met Leu Cys Ala Ala Asp Pro Gin Trp Lys Thr Asp Ser Cys
340 345 350
Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Ser Leu Gin Gly Arg Met
355 360 365
Thr Leu Thr Gly Ile Val Ser Thr Gly Arg Gly Cys Ala Leu Lys Asp
370 375 380
What is claimed is:

1. A method of determining total urokinase concentration in a sample containing at least one of an active or inactive form of urokinase, comprising:
 generating at least one immunological composition directed against at least one of a first peptide with SEQ ID NOs: 1, 2, 3, 4, 5 or 6;
 generating at least one immunological composition directed against at least one of a second peptide with SEQ ID NOs: 7, 8, 9, 10, 11 or 12; and
 generating at least one immunological composition directed against at least one of a third peptide with SEQ ID NOs: 13 or 14;
 contacting aliquots of said sample separately with each of said at least one immunological composition; and
 measuring quantity and comparing type of said at least one immunological composition bound in each of said aliquots to determine a concentration of said at least one of said active or inactive form of urokinase, wherein each of said at least one immunological composition binds to said at least one of said active or inactive form of urokinase and is indicative of said concentration of the form that is bound thereto, wherein the total of said concentration of said at least one of said active or inactive form of urokinase represents the total urokinase concentration in said sample.

2. The method of claim 1, wherein each of said at least one immunological composition has a binding affinity constant for said first peptide, said second peptide or said third peptide against which it is directed that is substantially higher than its binding affinity constant for a non-urokinase protein as similar in amino acid sequence to urokinase as is trypsin.

3. The method of claim 1, wherein said at least one immunological composition directed against a third peptide with SEQ ID NO: 14 exhibits a binding affinity constant for urokinase zymogen, an inactive form of urokinase, of at least $1 \times 10^{10} \text{ M}^{-1}$ and a binding affinity constant for forms of urokinase lacking a peptide bond between amino acid residues 158 and 159 of Seq ID No. 16 of at least approximately 10-fold lower than that for urokinase zymogen.

4. The method of claim 1, wherein said at least one immunological composition is an antiserum, an antibody, or a supernatant of a hybridoma.

5. The method of claim 1, wherein said determination of said quantity of each of said at least one immunological composition is carried out by radiolabeling said sample.

6. The method of claim 1, wherein said at least one active or inactive form of urokinase comprises:
 - a low molecular weight urokinase that is bound to said at least one immunological composition directed against said second peptide but is not bound to said at least one immunological composition directed against said first peptide;
 - a high molecular weight urokinase that is bound to said at least one immunological composition directed against said first peptide or said second peptide but is not bound to said at least one immunological composition directed against said third peptide; and
 - a urokinase zymogen, an inactive form of urokinase that is bound to said at least one immunological composition directed against said third peptide.

7. The method of claim 1, wherein said step of generating at least one immunological composition is further comprised of generating at least one immunological composition directed against a fourth peptide with SEQ ID NO: 17.

8. The method of claim 7, wherein said at least one of said active or the inactive form of urokinase comprises a low molecular weight urokinase that is bound to said at least one of said immunological composition directed against said second peptide, but is not bound to said immunological composition directed against said fourth peptide; and a high molecular weight urokinase in the sample that is bound to at least one immunological composition directed against said first peptide or said second peptide, but is not bound to said immunological composition directed against said third peptide.

9. A method of determining total urokinase concentration in a sample containing at least one of an active or inactive form of urokinase, comprising:
 - generating at least one immunological composition selected from a group of immunological compositions consisting of an antisera, an antibody and a supernatant of a hybridoma, each of said at least one immunological composition obtained via injection of at least one of a first peptide with SEQ ID NOs: 1, 2, 3, 4, 5 or 6;
 - generating at least one immunological composition selected from a group of immunological compositions consisting of an antisera, an antibody and a supernatant of a hybridoma, each of said at least one immunological composition obtained via injection of at least one of a second peptide with SEQ ID NOs: 7, 8, 9, 10, 11 or 12; and
 - generating at least one immunological composition selected from a group of immunological compositions consisting of an antisera, an antibody and a supernatant of a hybridoma, each of said at least one immunological composition obtained via injection of at least one of a third peptide with SEQ ID NOs: 13 or 14;
consisting of an antisera, an antibody and a supernatant of a hybridoma, each of said at least one immunological composition obtained via injection of at least one of a third peptide with SEQ ID Nos: 13 or 14; contacting aliquots of said sample separately with each of said at least one immunological composition; measuring quantity and comparing type of each of said at least one immunological composition bound in each of said aliquots to determine a total concentration of said at least one of said active and inactive form of urokinase in said sample, wherein each of said at least one immunological composition binds to said at least one of said active or inactive forms of urokinase and is indicative of said total concentration of the form of urokinase that is bound thereto, said determination comprising:
determining a first concentration of low molecular weight urokinase in said sample, wherein said low molecular weight urokinase is bound to said at least one immunological composition directed against said second peptide, but is not bound to said at least one immunological composition directed against said first peptide;
determining a second concentration of high molecular weight urokinase in said sample, wherein said high molecular weight urokinase is bound to said at least one immunological composition directed against said first peptide or second peptide, but is not bound to said at least one immunological composition directed against said third peptide; and
determining a third concentration of urokinase zymogen, an inactive form of urokinase, in said sample, wherein said urokinase zymogen is bound to said at least one immunological composition directed against said third peptide; and
adding the first, second and third concentrations to obtain said total concentration, wherein said total concentration represents a total urokinase concentration in said sample.

10. A kit for determining total urokinase concentration in a sample containing at least one of an active or inactive form of urokinase, comprising:
immunological composition(s) directed against at least one of a first peptide with SEQ ID Nos: 1, 2, 3, 4, 5, or 6;
immunological composition(s) directed against at least one of a second peptide with SEQ ID Nos: 7, 8, 9, 10, 11 or 12;
immunological composition(s) directed against at least one of a third peptide with SEQ ID Nos: 13 or 14; and
instructions for determining said total urokinase concentration in said sample by adding concentrations of said at least one of said active and inactive forms of urokinase obtained by measuring quantity and type of immunological composition(s) bound in aliquots of said sample.

11. The kit of claim 10, wherein said immunological composition(s) is further comprised of:
an immunological composition directed against a fourth peptide with SEQ ID NO: 17.

12. The kit of claim 10, wherein said immunological composition(s) is an antisera, an antibody or a supernatant of a hybridoma.

* * * * *