NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Psychrophilic and Psychrotolerant Microbial Extremophiles in Polar EnvironmentsThe microbial extremophiles that inhabit the polar regions of our planet are of tremendous significance. The psychrophilic and psychrotolerant microorganisms, which inhabit all of the cold environments on Earth have important applications to Bioremediation, Medicine, Pharmaceuticals, and many other areas of Biotechnology. Until recently, most of the research on polar microorganisms was confined to studies of polar diatoms, yeast, fungi and cyanobacteria. However, within the past three decades, extensive studies have been conducted to understand the bacteria and archaea that inhabit the Arctic and Antarctic sea-ice, glaciers, ice sheets, permafrost and the cryptoendolithic, cryoconite and ice-bubble environments. These investigations have resulted in the discovery of many new genera and species of anaerobic and aerobic microbial extremophiles. Exotic enzymes, cold-shock proteins and pigments produced by some of the extremophiles from polar environments have the potential to be of great benefit to Mankind. Knowledge about microbial life in the polar regions is crucial to understanding the limitations and biodiversity of life on Earth and may provide valuable clues to the Origin of Life on Earth. The discovery of viable microorganisms in ancient ice from the Fox Tunnel, Alaska and the deep Vostok Ice has shown that microorganisms can remain alive while cryopreserved in ancient ice. The psychrophilic lithoautotrophic homoacetogen isolated from the deep anoxic trough of Lake Untersee is an ideal candidate for life that might inhabit comets or the polar caps of Mars. The spontaneous release of gas from within the Anuchin Glacier above Lake Untersee may provide clues to the ice geysers that erupt from the tiger stripe regions of Saturn s moon Enceladus. The methane productivity in the lower regimes of Lake Untersee may also provide insights into possible mechanisms for the recently discovered methane releases on Mars. Since most of the other water bearing bodies of our Solar system are frozen worlds, microbial extremophiles from the Polar Regions of Earth are of great importance to Astrobiology in understanding where and how to search for evidence of life elsewhere in the Cosmos.
Document ID
20100002095
Acquisition Source
Marshall Space Flight Center
Document Type
Book
Authors
Hoover, Richard B.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Pikuta, Elena V.
(National Space Science and Technology Center Huntsville, AL, United States)
Date Acquired
August 25, 2013
Publication Date
January 1, 2010
Publication Information
Publisher: CRS Press
Subject Category
Exobiology
Report/Patent Number
M09-0601
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available