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1 Introduction

The monograph “Principles and Techniques of Shock Data Analysis” written by Kelly and Richman

in 1969 has become a seminal reference on the shock response spectrum (SRS) [1]. Because of its clear

physical descriptions and mathematical presentation of the SRS, it has been cited in multiple handbooks on

the subject [2, 3] and research articles [4–10]. Because of continued interest, two additional versions of the

monograph have been published: a second edition by Scavuzzo and Pusey in 1996 [11] and a reprint of the

original edition in 2008 [12]. The main purpose of this note is to correct several typographical errors in the

manuscript’s presentation of a recursive algorithm for SRS calculations. These errors are consistent across all

three editions of the monograph. The secondary purpose of this note is to present a Matlab implementation

of the corrected algorithm.

2 Continuous-time solution

The shock response spectrum considers the response of a single degree-of-freedom damped mechanical

oscillator to a base excitation. The motion of the oscillator is y(t), and the motion of the base is x(t). This

system obeys the following equation of motion.

ÿ + 2ζωn (ẏ − ẋ) + ω2
n (y − x) = 0 (1)

Here, ωn is the natural frequency of the oscillator, and ζ is the damping ratio. Accelerometer data for the

base excitation, however, provides knowledge of ẍ not x or ẋ. Therefore, it is convenient to consider the

relative motion is ξ(t) = y − x and the relative equation of motion.

ξ̈ + 2ζωnξ̇ + ω2
nξ = −ẍ (2)

For arbitrary initial conditions, ξ0 and ξ̇0, Eq. (2) has the following solution.

ξ(t) =e−ζωnt

[
ξ0

(
cosωdt +

ζ√
1 − ζ2

sin ωdt

)
+

ξ̇0

ωd
sinωdt

]

− 1
ωd

∫ t

0

ẍ(τ)e−ζωn(t−τ) sin ωd(t − τ)dτ (3)
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Here, ωd = ωn

√
1 − ζ2. Differentiation gives the solution for the relative velocity.

ξ̇(t) =e−ζωnt

[
−ξ0

ωn√
1 − ζ2

sin ωdt + ξ̇0

(
cosωdt − ζ√

1 − ζ2
sin ωdt

)]

−
∫ t

0

ẍ(τ)e−ζωn(t−τ)

[
cosωd(t − τ) − ζ√

1 − ζ2
sinωd(t − τ)

]
dτ (4)

Finally, the absolute acceleration of the oscillator can be reconstructed using the relative position and velocity.

ÿ(t) = ξ̈ + ẍ = −2ζωnξ̇(t) − ω2
nξ(t) (5)

Equations (3) and (4) correspond Eq. (4.21) and (4.27), respectively, in Kelly and Richman; however, they

reflect several errors in the original source.

3 Discrete-data approximation

In practice, evaluating Eqs. (3) and (4) requires several considerations. First, the input accelerations

are often only available at discrete time instants, and the output accelerations may only be desired at the

same instants. The data points are here considered to be separated in time by a regular interval Δt. Next,

to avoid evaluating the integrals in Equations (3) and (4) over τ = 0 → t for each instant in time, a

recursive algorithm is desired. The solutions for ξk ≡ ξ(tk) and ξ̇k ≡ ξ̇(tk) are treated as initial conditions

in calculating ξk ≡ ξ(tk+1) and ξ̇k ≡ ξ̇(tk+1), and the integrals only need to be evaluated over τ = 0 → Δt.

ξk+1 =e−ζωnΔt

[
ξk

(
cosωdΔt +

ζ√
1 − ζ2

sin ωdΔt

)
+

ξ̇k

ωd
sinωdΔt

]

− 1
ωd

∫ Δt

0

ẍ(tk + τ)e−ζωn(Δt−τ) sinωd(Δt − τ)dτ (6)

ξ̇k+1 =e−ζωnΔt

[
−ξk

ωn√
1 − ζ2

sin ωdΔt + ξ̇k

(
cosωdΔt − ζ√

1 − ζ2
sin ωdΔt

)]

−
∫ Δt

0

ẍ(tk + τ)e−ζωn(Δt−τ)

[
cosωd(Δt − τ) − ζ√

1 − ζ2
sinωd(Δt − τ)

]
dτ (7)

In order to evaluate the integral terms in Eqs. (6) and (7) a continuous approximation of the discrete

data needs to be formed. Kelly and Richman considered a parabolic approximation using the (k−1), k, and
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(k + 1) data points.

ẍ(tk + τ) = ẍk + Sk
τ

Δt
+

S2
k−1

2

(
τ2

Δt2
− τ

Δt

)
(8)

Sk = ẍk+1 − ẍk

S2
k−1 = ẍk+1 − 2ẍk + ẍk−1

Given a discrete time-history of accelerometer data, the resulting oscillator acceleration at any instant in

time can now be calculated by substituting Eq. (8) into Eqs. (6) and (7), and using the resulting values in

Eq. (5). Evaluating Eqs. (6) and (7) requires the calculation of the following Duhamel integrals.

I1 ≡
∫ Δt

0

e−ζωn(Δt−τ) sinωd(Δt − τ)dτ

=

√
1 − ζ2

ωn

[
1 − e−ζωnΔt

(
cosωdΔt +

ζ√
1 − ζ2

sin ωdΔt

)]
(9)

I2 ≡
∫ Δt

0

τe−ζωn(Δt−τ) sin ωd(Δt − τ)dτ

=
1
ω2

n

{
ωdΔt − 2ζ

√
1 − ζ2 + e−ζωnΔt

[
2ζ

√
1 − ζ2 cosωdΔt − (

1 − 2ζ2
)
sin ωdΔt

]}
(10)

I3 ≡
∫ Δt

0

τ2e−ζωn(Δt−τ) sinωd(Δt − τ)dτ

= − 1
ω3

n

{
4ζωdΔt +

√
1 − ζ2

(
2 − 8ζ2 − ω2

nΔt2
)

+ e−ζωnΔt
[(

8ζ2 − 2
)√

1 − ζ2 cosωdΔt +
(
8ζ2 − 6

)
ζ sin ωdΔt

]}
(11)

I4 ≡
∫ Δt

0

e−ζωn(Δt−τ) cosωd(Δt − τ)dτ

=
1

ωn

[
ζ − e−ζωnΔt

(
ζ cosωdΔt −

√
1 − ζ2 sin ωdΔt

)]
(12)

I5 ≡
∫ Δt

0

τe−ζωn(Δt−τ) cosωd(Δt − τ)dτ

=
1
ω2

n

{
1 − 2ζ2 + ζωnΔt − e−ζωnΔt

[(
1 − 2ζ2

)
cosωdΔt + 2ζ

√
1 − ζ2 sin ωdΔt

]}
(13)
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I6 ≡
∫ Δt

0

τ2e−ζωn(Δt−τ) cosωd(Δt − τ)dτ

=
1
ω3

n

{
2ζ

(
4ζ2 − 3

)
+ 2

(
1 − 2ζ2

)
ωnΔt + ζω2

nΔt2

− e−ζωnΔt
[
2ζ

(
4ζ2 − 3

)
cosωdΔt + 2

√
1 − ζ2

(
1 − 4ζ2

)
sin ωdΔt

]}
(14)

Using Eqs. (9-14), the solutions for ξk+1 and ξ̇k+1 can now be rewritten as shown.

ξk+1 = B1ξk + B2ξ̇k + B3ẍk + B4Sk + B5S
2
k−1 (15)

ξ̇k+1

ωn
= B6ξk + B7ξ̇k + B8ẍk + B9Sk + B10S

2
k−1 (16)

Here, the B coefficients are defined using Eqs. (6) and (7) and the definitions of I1 through I6.

B1 = e−ζωnΔt

(
cosωdΔt +

ζ√
1 − ζ2

sin ωdΔt

)
(17)

B2 =
e−ζωnΔt

ωd
sin ωdΔt (18)

B3 = − I1

ωd
(19)

B4 = − I2

ωdΔt
(20)

B5 = − 1
2ωd

(
I3

Δt2
− I2

Δt

)
(21)

B6 = − e−ζωnΔt√
1 − ζ2

sin ωdΔt (22)

B7 =
e−ζωnΔt

ωn

(
cosωdΔt − ζ√

1 − ζ2
sin ωdΔt

)
(23)

B8 =
ζI1

ωd
− I4

ωn
(24)

B9 =
ζI2

ωdΔt
− I5

ωnΔt
(25)

B10 =
ζ

2ωd

(
I3

Δt2
− I2

Δt

)
− 1

2ωn

(
I6

Δt2
− I5

Δt

)
(26)

Finally, the expressions for these coefficients can be simplified using Eqs. (9-14).

B1 = e−ζωnΔt

(
cosωdΔt +

ζ√
1 − ζ2

sin ωdΔt

)
(27)

B2 =
e−ζωnΔt

ωd
sin ωdΔt (28)
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B3 = − 1
ω2

n

(1 − B1) (29)

B4 = − 1
ω2

n

[
1 − 2ζ

ωnΔt

(
1 − e−ζωnΔt cosωdΔt

) −
(
1 − 2ζ2

)
e−ζωnΔt sin ωdΔt

ωdΔt

]
(30)

B5 = − 1
2ω2

n

{
− 4ζ

ωnΔt
−

[
2

(
1 − 4ζ2

)
ω2

nΔt2
− 2ζ

ωnΔt

] (
1 − e−ζωnΔt cosωdΔt

)

+

(
1 − 2ζ2

ωnΔt
+

2ζ
(
3 − 4ζ2

)
ω2

nΔt2

)
e−ζωnΔt sin ωdΔt√

1 − ζ2

}
(31)

B6 = −ωnB2 (32)

B7 =
e−ζωnΔt

ωn

(
cosωdΔt − ζ√

1 − ζ2
sin ωdΔt

)
(33)

B8 = −B2

ωn
(34)

B9 =
B1 − 1
ω3

nΔt
(35)

B10 = − 1
2ω2

n

{
2

ωnΔt
−

(
1

ωnΔt
+

4ζ

ω2
nΔt2

) (
1 − e−ζωnΔt cosωdΔt

)

−
[

2
(
1 − 2ζ2

)
ω2

nΔt2
− ζ

ωnΔt

]
e−ζωnΔt sin ωdΔt√

1 − ζ2

}
(36)

Equations (27-36) correspond with Eqs. (6.58-67) in Kelly and Richman and Eqs. (7.38-47) in Scavuzzo and

Pusey; however, they reflect negative-sign errors in B3, B4, and B10 in the original source. The corrected SRS

algorithm for a sequence of input accelerations and a desired range of natural frequencies can be evaluated

using Eqs. (5), (15), (16), and (27-36).

4 Comparison and Results

The corrections described in the preceding paragraphs were verified by comparing the corrected algorithm

and the original algorithm to an independent SRS code. The independent code used a piecewise-linear

approximation for the base acceleration, as described by Paz [13]. The various algorithms were applied

to accelerometer data from the ignition environment of live-fire testing of the Space Shuttle Reusable Solid

Rocket Motor (RSRM). Specifically, data was evaluated from the radial channel at station 1479.5 on Technical

Evaluation Motor 13. The data was sampled at 10,000 Hz. The acceleration time history is shown in Fig. (1).

6



Time

In
pu

t A
cc

el
er

at
io

n

Fig. 1: Time history of sample input acceleration.

The SRS of this acceleration data is shown in Fig. (2) as calculated using three different algorithms.

The corrected algorithm of Eqs. (5), (15), (16), and (27-36) are compared with the uncorrected equa-

tions from Kelly and Richman as well as the independent code. For each algorithm, a damping ratio of

ζ = 0.05 was used, and the peak response was calculated for a range of natural frequencies at one-third

octaves up to the Nyquist frequency. The corrected algorithm and the independent code show strong

agreement with each other; however, the uncorrected algorithm displays large differences in the high-

frequency regime. The MATLAB implementation of the corrected algorithm is available for download at

http://www.eng.auburn.edu/users/sinclaj/SRS/.
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Fig. 2: SRS of input acceleration for ζ = 0.05 using three different algorithms.
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