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The receptivity, stability, and transition of three-dimensional supersonic 
boundary layers over (1) a swept cylinder, (2) a swept wing with a sharp leading 
edge, and (3) a swept wing with a blunt leading edge are numerically investigated 
for a free-stream Mach number of 3.  These computations are compared to an 
earlier experimental and computational study performed by Archambaud et al.1 
The steady flow fields with and without roughness elements are obtained by solving 
the full Navier-Stokes equations.  The N-factors computed in this study at the 
transition onset locations reported in Ref. 1 for flow over the swept cylinder are 
approximately 16.5 for traveling crossflow disturbances and 9 for stationary 
disturbances.  The N-factors for the traveling crossflow are high based on our past 
experiences.  However, they are comparatively smaller than those reported by 
Archambaud et al., who found N-factor values in the range of 20 to 25 for traveling 
disturbances and 13 to 20 for stationary disturbances.  Similarly, the N-factors 
computed in this study for the traveling and stationary disturbances for the flow 
over the sharp wing are approximately 7 and 2.5, respectively, and for the flow over 
the blunt wing are 6.5 and 4.8, respectively. Using the envelope method, 
Archambaud et al. obtained values of approximately 8.0 and 4.0 for the sharp wing 
case and 16.0 and 12.0 for the blunt wing case. 

  

I. Introduction 
Major technical challenges exist in achieving and maintaining laminar flow over swept wings.  These 

challenges include the accurate prediction of the laminar-to-turbulent transition fronts and the ability to 
control the different boundary-layer instabilities that cause transition in these flows.  These boundary-
layer instabilities may include, but are not limited to, attachment-line, crossflow, and Tollmien-
Schlichting instabilities.  In this paper, we are concerned with predicting transition in supersonic three-
dimensional boundary-layer flows over swept wings.  Numerous studies have been conducted on the 
linear stability, nonlinear stability, and prediction of transition in three-dimensional boundary layers.  
Review articles by Arnal2, Reed & Saric3, Malik4, Bippes5 and Saric et al.6 give comprehensive overviews 
of the various instability mechanisms and prediction capabilities.  Boundary-layer transition over swept 
wings near the leading edge is typically caused by the crossflow instability induced by spanwise pressure 
gradients.  Crossflow instability is comprised of both three-dimensional traveling and stationary 
disturbances. 

The transition in swept wing incompressible flows caused by stationary crossflow vortices has been 
thoroughly investigated both experimentally and numerically5,6.  The crossflow vortices originate from 
three-dimensional roughness elements located near the leading edge of the wing where the boundary layer 
is thin.  After the vortices form, the amplitudes of the perturbations grow exponentially downstream due 
to linear instability and eventually saturate at values of approximately 20% of the boundary-layer edge 
values.  These saturated vortices persist for long distances and appear as co-rotating vortices aligned very 
close to the local inviscid streamlines.  These vortices lift the low momentum fluid from the wall region 
towards the outer edge of the boundary layer into regions of high-speed fluid.  This produces highly 
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inflectional velocity profiles in the streamwise and spanwise directions.  These profiles become strongly 
unstable to high frequency secondary instabilities.  After the initiation of the secondary instability, the 
boundary layer breaks down to turbulence in a relatively short distance.  Since the crossflow vortices 
originate from three-dimensional roughness elements, the transition onset is mainly determined by the 
roughness amplitude and distribution that exist near the leading edge of the wing.  Transition also results 
from traveling disturbances that are generated by free-stream acoustic and/or turbulent disturbances or by 
the interaction between free-stream disturbances and surface roughness.  The growth rates of the traveling 
disturbances are generally larger than those for the stationary disturbances.  The importance of traveling 
versus stationary disturbances depends on the environmental conditions such as the surface finish and the 
unsteady free-stream disturbance levels, as these determine the initial amplitude values of the 
disturbances. It has been well established in incompressible flows that the stationary crossflow vortices 
dominate the transition process in most cases except in high turbulence environments.  In supersonic 
compressible flows, the relative importance between traveling and stationary crossflow disturbances is 
still being investigated. 

Several experiments have been performed to measure the transition front in compressible three-
dimensional boundary layers.  Malik and Balakumar7 provide a partial list of experiments performed in 
compressible three-dimensional boundary layers.  Most were performed in conventional wind tunnels 
except those performed in the NASA Langley Supersonic Low Disturbance Tunnel at Mach 3.5 (Creel et 
al.8, Chen et al.9, King10, and Cattafesta et al.11).  Creel et al.8 measured attachment-line transition 
locations on a swept cylinder.  Thermocouples were used to infer transition location on the thin-skin 
model.  Lin and Malik12 performed linear stability and transition prediction computations assuming 
infinite swept cylinder approximations for the Creel et al. experiment and found N-factor values of N~11.  
Chen et al.9 measured the transition onset on a flat plate using a surface pitot tube and on a 5° half-angle 
cone at zero angle of attack using thermocouples.  The linear stability and transition prediction 
calculations for the Chen et al. experiment were also performed in that study.  The N-factors computed by 
Chen et al. using the envelop method at the measured transition onset locations were approximately 
N~10.  Similarly, N-factors computed for the flat plate and cone by Balakumar13,14 using the constant 
spanwise wavelength method were N~8 and 9, respectively.  When this experiment was conducted in the 
noisy conditions consistent with conventional wind tunnels, the transition Reynolds numbers decreased 
substantially and the N-factors at the transition onset locations were N~3 to 4.  King10 measured the 
transition on a 5° half-angle sharp cone at several angles of attack using surface pitot tubes.  The linear 
stability and transition prediction calculations for King’s experiment were performed by Malik & 
Balakumar7.  The N-factors computed for the most amplified traveling disturbances were about N~11 at 
the transition front and were about N~5 for the stationary disturbances.  Cattafesta et al.11 investigated the 
transition onset on a swept wing using thermocouples on a thin-skin swept wing model.  Both temperature 
sensitive paint and sublimating chemicals were each used to visualize the transition front and stationary 
crossflow disturbances for one case. The calculated N-factors4,11 for the most amplified traveling 
disturbances using the envelope method were between N~10 to 14 depending on the model surface finish.  
Cattafesta et al. speculated that the transition was probably dominated by traveling crossflow 
disturbances, even though the surface flow visualization revealed faint evidence of stationary crossflow 
disturbances.  In the experiments of Refs. 8-11, the disturbances leading to breakdown were not measured 
and therefore only indirect inference can be made to the actual cause of transition, i.e., whether transition 
was due to traveling or stationary disturbances. 

Archambaud et al.1 published the results of a set of transition experiments conducted in the supersonic 
wind tunnel at ONERA configured with a free-stream Mach number of 3.  Their objective was to obtain 
an experimental database for a range of transition mechanisms.  Transition onset locations were acquired 
on a flat plate, a swept cylinder, a swept wing with a sharp leading edge and a swept wing with a blunt 
leading edge. The data were obtained at different unit Reynolds numbers and at different sweep angles. 
Surface pressure distributions were acquired using pressure taps on the swept cylinder and swept wing 
models.  Transition onset locations were determined using thermocouples and infrared images.  Linear 
instability and N-factor computations were performed using local instability and non-local PSE 
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(Parabolized Stability Equations) methods.  The computed N-factors at the transition onset locations on 
the flat plate are approximately 4, consistent with N-factor values obtained by Chen et al.9 in a noisy flow 
environment.  The N-factors at transition onset locations for the swept cylinder were found to be very 
high, ranging from 20 to 25 for traveling crossflow disturbances and 13 to 20 for stationary disturbances. 
Depending on the unit Reynolds number, the N-factors for the swept wing case with the sharp leading 
edge ranged from 3 to 11 for the traveling crossflow disturbances and 1 to 10 for the stationary 
disturbances.  Similarly, the N-factors for the swept wing with the blunt leading edge ranged from 11 to 
16 for the traveling disturbances and 8 to 12 for the stationary disturbances. 

The first objective of the current research is to compute the N-factors for three cases considered by 
Archambaud et al.1 (swept cylinder, swept wing with sharp leading edge, and swept wing with blunt 
leading edge) and to compare the results of the stability computations.  The approach is to compute the 
mean flow by solving the full Navier-Stokes equations and to perform linear stability theory and PSE 
computations for each reference configuration and compare the N-factor results to those presented by 
Archambaud et al.  The second objective is to compute the receptivity coefficients for the stationary 
crossflow vortices that originate from three-dimensional roughness elements.  The receptivity coefficients 
are obtained by performing full Navier-Stokes simulations with three-dimensional roughness elements.  
The roughness elements are placed parallel and near to the leading edge of the wing and are periodic in 
the spanwise direction.  Computations are performed for the reference configurations and test conditions 
as those reported in Ref. 1.   

The paper is organized in the following manner.  The governing equations and a brief discussion about 
the solution procedure are discussed in section II.  Results that include mean flow profiles, linear stability 
analysis, transition onset predictions, receptivity coefficients and evolution of crossflow vortices 
originating from the roughness elements are presented in section III.  And finally, conclusions are drawn 
in section IV. 
 

II. Governing Equations 
The equations solved are the three-dimensional unsteady compressible Navier-Stokes equations in 

conservation form 
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,                           (2) 

(x, y, z) are the Cartesian coordinates, (u, v ,w) are the velocity components, ρ is the density, and p is the 
pressure.  E is the total energy per unit mass given by  

E = e +
u2 + v2 + w2

2
, 

            e = cvT ,  p = ρRT                                                                (3) 

where e is the internal energy per unit mass and T is the temperature.  The shear stress and the heat flux 
are given by 
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The viscosity, µ, is computed using Sutherland’s law and the coefficient of conductivity, k, is given in 
terms of a constant Prandtl number, Pr.  The variables ρ, p, T and velocity are non-dimensionalised by 
their corresponding reference variables ρ∞, p∞, T∞, and RT∞ , respectively.  The subscript “∞’’ denotes 
free-stream quantities.  Additionally, q∞ is defined as the free-stream velocity and yn is the local wall-
normal coordinate.  For the computation, the equations are transformed from the physical coordinate 
system (x, y, z) to the computational curvilinear coordinate system 

€ 

ξ,η,ζ( )  in a conservative manner. 

A. Solution Algorithm 
The governing equations are solved using a 5th-order accurate weighted essentially non-oscillatory 

(WENO) scheme for space discretization and using a 3rd-order, total variation diminishing (TVD)  Runge-
Kutta scheme for time integration.  These methods are suitable in flows with discontinuities or high 
gradient regions.  The governing equations are solved discretely in a uniform structured computational 
domain where flow properties are known point wise at the grid nodes.  In a given direction, the spatial 
derivatives are approximated to a higher order at the nodes, using the neighboring nodal values in that 
direction.  The resulting equations are then integrated in time to get the point values as a function of time. 
Since the spatial derivatives are independent of the coordinate directions, multi dimensions can be easily 
added to the method.  It is well known that approximating a discontinuous function by a higher order (two 
or more) polynomial generally introduces oscillatory behavior near the discontinuity, and this oscillation 
increases with the order of the approximation.  The essentially non-oscillatory (ENO) and the improved 
WENO methods were developed to maintain the higher-order approximations in the smooth regions and 
to eliminate or suppress the oscillatory behavior near the discontinuities. These objectives are achieved by 
systematically adopting or selecting the stencils based on the smoothness of the function that is being 
approximated.  Shu15 explains the WENO and the TVD methods and the formulas.  Atkins16 gives the 
application of the ENO method to the Navier-Stokes equations.  Balakumar et al.17 describe in detail the 
solution method implemented in this computation. 

At the outflow boundary, characteristic boundary conditions18 are implemented to obtain the flow 
variables.  At the wall, no-slip conditions are used for the velocities and a constant temperature condition 
is employed for the temperature.  The density at the wall is computed from the continuity equation.  In the 
spanwise direction, periodic conditions are imposed at the boundaries.  The free-stream values are 
prescribed at the upper boundary that lies outside the bow shock and simulations are performed using a 
variable time step until the maximum residual reaches a small value on the order of 10-11.  A CFL number 
of 0.5 is used in these computations. 

The grid stretches in the 

€ 

η direction close to the wall and is uniform outside the boundary layer.  In 
the 

€ 

ξ  direction, the grid is symmetric about the nose and is very fine near the nose and becomes uniform 
in the flat region.  The grid is uniform in the spanwise 

€ 

ζ  direction.  The outer boundary outside of the 
shock follows a parabola where the vertex is located a short distance upstream of the nose to capture the 
boundary layer accurately.  

 

III. Results 
The computations are performed for supersonic flows over (1) a swept cylinder, (2) a swept wing with 

a sharp leading edge, and (3) a swept wing with a blunt leading edge.  Figure 1 shows the schematic 
diagram of the three geometries.  The Cartesian coordinates, (x, y, z), are oriented such that x is along the 
chord direction perpendicular to the leading edge, y is along the normal direction, and z is along the 
spanwise direction.  S is the distance measured along the surface starting from the leading edge and θ is 
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the angle measured from the leading edge.  Computations are performed for the reference configurations 
and parameters that were tested in Ref. 1. 
 
Case 1: Swept cylinder 

We consider a supersonic flow over an infinite swept cylinder. The flow parameters and the 
dimensions for the reference configuration1 are given in Table 1. The transition onset in the experiment 
occurred at θ = 31.5° from the leading edge for this case. 

 

Table 1.  Flow parameters for the swept cylinder model 

Cylinder radius: a = 30 mm 

Free-stream Mach number: M∞=3.0 

Sweep angle: Λ  = 50 degrees 

Free-stream Reynolds number: Re∞ =28.3x106/m. 

Free-stream temperature: T∞=121.42 °K 

Wall temperature: Tw=300.0 °K 

Prandtl number: Pr= 0.70 

Ratio of specific heats: γ=1.4 

Non–dimensional frequency F=1x10-5 is equivalent to 29.4 kHz 

The non-dimensional frequency F is defined as F =
2πν∞ f
U∞
2 ,  

where f is the frequency in Hertz. 

A. Mean flow 
 Figure 2 shows the leading-edge bow shock and the density contours obtained from the Navier-Stokes 
simulation.  For this sweep angle of 50 degrees, the Mach number normal to the leading edge is 
supersonic (Mnormal = 1.93).  Figures 3(a) and 3(b) depict the computed pressure distribution around the 
cylinder and the density profiles at three axial stations, θ = 10.6, 15.2, and 30.0º.  To validate the results 
obtained from the WENO code, mean flow computations were also performed using the well-documented 
CFL3D19 code. The pressure distribution and the boundary-layer density profiles obtained from the 
CFL3D computations are also included in Figs. 3(a) and 3(b) for comparison.  Figure 3(a) shows the 
variation of the crossflow Reynolds number around the cylinder.  The crossflow Reynolds number is 
defined based on the maximum crossflow velocity in the direction normal to the inviscid streamline and 
the distance from the wall to the location where the crossflow velocity is 10% of its maximum value.  The 
crossflow Reynolds number increases approximately linearly around the cylinder and reaches a value of 
about 400 near the transition onset point of θ = 30º.  The agreement between the WENO and CFL3D 
results is excellent.  Figures 4(a) and 4(b) show the boundary-layer velocity and the crossflow velocity 
profiles at different axial stations obtained from the WENO code.  Figure 4(a) depicts the velocity profiles 
along the inviscid streamlines in the wall-normal similarity coordinate and Fig. 4(b) shows the crossflow 
velocity profiles in the physical coordinate normal to the inviscid streamlines.  It is interesting to see that 
the velocity profiles are almost similar along different axial stations of the cylinder. The boundary-layer 
thickness increases from a value of 0.17 mm at θ = 5° to a value of 0.19 mm at θ = 30°.  The maximum 
crossflow velocity increases with the streamwise direction and reaches a value of 8% of the free-stream 
value at θ = 30°.  
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B. Linear instability 
The linear stability and N-factor computations are performed using local and PSE methods for 

constant spanwise wavelengths.  Figures 5(a) and 5(b) show the growth rates and N-factor curves 
obtained from local stability calculations for the stationary disturbances.  To check the consistency of our 
computations, we also performed the computations using the stability and transition prediction code 
LASTRAC20.  The solid lines display the results obtained with LASTRAC and the dashed lines show the 
results computed using our research code.  The results obtained from both codes are identical to three or 
four decimal places.  The growth rates exhibit the distribution characteristics of the crossflow instability. 
The spanwise wavelengths of the most amplified waves are in the range of 2.0 to 3.0 mm.  The neutral 
point is located approximately θ = 8° from the leading edge for the most amplified disturbance with 
wavelength of 2.5 mm.  The results show that the maximum N-factors are about 9.0 for the stationary 
disturbances at the transition onset location of θ = 31.5°.  Figure 5(b) also includes the results computed 
using the linear PSE method for a constant spanwise wavelength of 2.5 mm.  The N-factors were 
calculated using growth rates based on umax and wmax.  The N-factors based on linear PSE at the transition 
onset location are approximately 10.0 based on umax and 9.0 based on wmax.  These N-factors are 
significantly smaller than those reported in Ref. 1 of 13 to 22. 

Similarly, Figs. 6(a) and 6(b) display the results for the traveling crossflow disturbances (f≠0).  The 
first observation is that the results obtained from the LASTRAC and the research codes are in excellent 
agreement.  The results are given for a frequency range of 24 to 60 kHz and spanwise wavelengths in the 
range of 2.0 to 3.0 mm.  At the smaller frequencies of 24 and 48 kHz and smaller wavelengths of 2 to 2.5 
mm, the growth rates are similar to the growth rates for the stationary disturbances.  At the higher 
frequencies of 54 and 60 kHz, the growth rates increase steeply from the neutral point to a peak value and 
drop steeply to lower values.  The maximum N-factor obtained near the transition onset location using 
these parameters is approximately 16.5.  This occurs for a disturbance with a frequency of 48 kHz and a 
spanwise wavelength of 2.5 mm.  The N-factor obtained using linear PSE is about 18.0 based on umax. 
These N-factor values are lower than those reported in Ref. 1 of 20 to 25.  However, these N-factors are 
still quite high for an experiment performed in a conventional facility and based on our experience in 
“quiet”-tunnel experiments. 

If we extend the computations to higher frequencies and higher wavelengths, we start to get very large 
unphysical N-factors.  We looked at the growth rate curves and observed that the upstream and 
downstream propagating modes merged near θ = 14° for these parameters.  This is illustrated in Fig. 7.  
Figure 7(a) shows the growth rates for three spanwise wavelengths (2.5, 2.55 and 2.60 mm) at a 
frequency of 60 kHz.  For the spanwise wavelength of 2.5 mm, the solid red curve depicts the growth rate 
for the downstream propagating wave while the dashed red curve shows the growth rate for the upstream 
propagating wave. The downstream propagating wave results are similar to the results observed in Fig. 
6(a).  At a spanwise wavelength of 2.55 mm, the growth rate curve exhibits a discontinuity in the slope 
near θ = 14°. At a spanwise wavelength of 2.6 mm, the growth rate curve for the downstream propagating 
wave merges with the growth rate curve for the upstream propagating wave near θ = 14°and produces 
large unphysical growth rates. This phenomenon, known as mode pinching, suggests that beyond a certain 
parameter space, convective spatially unstable waves cease to exist and the system is susceptible to 
absolute instability.  Interestingly, Lin et al.21 discussed this phenomenon when they investigated the 
stability of a three-dimensional incompressible boundary layer formed on an infinite-swept cylinder.  
Figure 7(b) shows the corresponding results in the wave number space.   

C. Roughness 
After the parameters for the most amplified disturbances were identified from the linear stability 

computations, direct numerical simulations were performed (a) to validate the N-factors obtained from the 
PSE computations and (b) to compute the receptivity coefficients of the stationary crossflow vortices 
originating from three-dimensional roughness elements.  Simulations were performed with a three-
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dimensional, spanwise-periodic roughness strip placed on the surface of the cylinder close to the leading-
edge region near the neutral point.  The shape of the roughness is in the form 
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Here yc is the height of the roughness normal to the surface of the cylinder, h is the maximum height, θr is 
the surface location of the roughness, β is the spanwise wave number, ∆θ is related to the spatial extent of 
the roughness, and σ is a constant that determines the width of the roughness around the cylinder.  
Computations are performed for the most amplified wave with the spanwise wavelength λz = 2π/β  = 2.5 
mm.  The parameters θr, h, and σ are given in Table 2.  The boundary-layer thickness near θ = 8.5° is 
about 0.18 mm.  Simulations were performed for a roughness height, k (=h), of 5.0 µm.  The roughness 
Reynolds number, Rek,u = |u|kh/νk, for these parameters is about 6.6. 

  
Table 2.  Location and height of the roughness on the swept cylinder 

 
θ r (deg) h (mm) σ  Δθ(deg) h/δ  Rek,u 

8.5 0.005 3 0.5 1/36 6.6 
 
 Figure 8 depicts the contours of the spanwise velocity w at approximately half the boundary-layer 

height at the roughness (y~0.05 mm) in the plan view (θ, z) plane.  Figure 8 clearly illustrates the 
origination of the crossflow vortices from the roughness elements that are located at θ = 8.5º.  The 
inviscid streamlines immediately downstream of the roughness are almost parallel to the spanwise 
direction and the crossflow vortices approximately follow these inviscid streamlines. These striations are 
the footprints of the crossflow vortices observed, for example, in swept-cylinder flow experiments in both 
low-speed22 and high-speed8 flows.  Downstream of the roughness the crossflow vortices amplify as they 
approximately follow the inviscid streamlines.  Figure 9 shows the u-velocity contours in the cross-
sectional plane (z, y) at different stations along the cylinder and illustrates the characteristics of the 
crossflow disturbances as they are amplified and eventually form co-rotating vortices.  This was observed 
and described in several experiments6 by Saric and colleagues.  The crossflow vortices co-rotate and carry 
the low momentum fluid from the lower part of the boundary layer to the upper part of the boundary layer 
and accumulate high-speed fluid from the free stream between the vortex and the wall boundary layer.  
This leads to the formation of strong shear layers in both the normal and spanwise directions.  Eventually 
these shear layers become unstable to high-frequency secondary instabilities23-26 and quickly lead to 
turbulent flow a short distance downstream.  Figures 10(a) and 10(b) show the perturbations of the 
maximum u velocity (normalized by the free-stream velocity q∞) generated by the roughness elements 
using a linear scale and log scale for the perturbations, respectively.  We clearly observe the formation of 
the unstable crossflow vortices from the roughness elements, the exponential growth of the vortices and 
the eventual nonlinear saturation of the amplitude of the vortices.  Figure 10(b) also includes the 
amplitude of the perturbations computed using linear PSE, which is appropriately scaled to match the 
simulations.  The agreement is very good in the linear region.  The computations from the linear theory 
deviate from the simulation results when the maximum normalized u-velocity perturbations reach about 
0.035.  This amplitude is equivalent to 0.175 (or 17.5%) when it is non-dimensionalised by the boundary-
layer edge velocity.  The linear growth and early nonlinear saturation are characteristics of stationary 
crossflow vortices as demonstrated by White et al.26 in low-speed experiments.  Their measurements, 
which were conducted in a low disturbance environment, also show that the amplitude at saturation is 
about 20% of the boundary-layer edge velocity and is independent of the initial amplitude.  From this 
figure we can calculate the initial amplitude and the receptivity coefficients for the crossflow vortices that 
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are generated by the roughness elements using the linear PSE calculations.  The initial amplitude of the 
instability waves near the neutral points is about  
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In terms of the roughness height, the receptivity coefficient becomes 
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Case 2: Swept wing with a sharp leading edge 

Next we consider a supersonic flow over an infinite swept wing with a sharp leading edge at zero 
angle of attack as presented in Fig. 1.  The airfoil is a biconvex shape with a constant curvature radius.  
The chord length is 150 mm and the maximum thickness is 30 mm.  A circle with a very small radius of 
0.0025 mm models the leading edge of the wing.  The flow parameters and the dimensions are given in 
Table 3.  The transition onset location in the experiment1 corresponding to the flow parameters in the 
table occurred near x = 60 mm from the leading edge.  The computational domain extends in the axial 
direction from x = -10 to 75.0 mm.   
 

Table 3.  Flow parameters for the sharp swept wing model 

Chord length: C = 150 mm 

Maximum thickness: t = 30 mm 

Free-stream Mach number: M∞=3.0 

Sweep angle: Λ  = 30 degrees 

Free-stream Reynolds number: Re∞ =30.0x106/m. 

Free-stream temperature: T∞=121.42 °K 

Wall temperature: Tw=300.0 °K 

Non–dimensional frequency F=1x10-5 is equivalent to 31.6 kHz 

The non-dimensional frequency F is defined as F =
2πν∞ f
U∞
2 ,  

where  f is the frequency in Hertz. 

 

A. Mean flow 
 Figure 11 shows the density contours obtained from the Navier-Stokes simulation.  The normal Mach 
number is 2.60.  Due to the sharp leading edge, the shock is only detached a very small distance of 0.003 
mm from the nose.  Figure 12(a) depicts the computed pressure distribution and the crossflow Reynolds 
number along the wing.  The computed pressure distribution agrees with the results obtained from the 
Newton’s law that is given in Ref. 1.  The pressure decreases steeply from the leading edge up to x/c = 
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0.001 and then decreases gradually over the main part of the wing.  Figure 12(b) displays the crossflow 
velocity profiles at different axial locations (x=10, 20, 40 and 60 mm).  The boundary-layer thickness is 
very thin near the leading edge and gradually increases from 0.20 mm at x = 10 mm to 0.50 mm at x = 60 
mm.  The maximum crossflow velocity also gradually increases from 0.015 at x = 10 mm to 0.075 at x = 
60 mm.  The crossflow Reynolds number near the leading edge is very small up to x = 3 mm.  It then 
increases approximately linearly along the wing and reaches a value of 750 near the transition onset 
location, x = 60 mm. 

B. Linear instability 
Figure 13 shows the N-factor results obtained from the local stability and linear PSE calculations for 

both the traveling and the stationary disturbances.  Computations are performed for a constant spanwise 
wavelength and include curvature effects.  The results show that the N-factors at the transition onset point 
x = 60 mm are about 7.0 for the traveling disturbances and about 2.5 for the stationary disturbances, as 
compared to the N-factors computed using the envelop method in Ref. 1 of 8 and 4 for traveling and 
stationary disturbances, respectively.  The frequency and wavelength of the most amplified wave are 
about 48 kHz and 1.5 mm.  The wavelength of the most amplified stationary disturbances is 
approximately 1.25 mm.  The N-factors obtained from linear PSE computations based on umax are 1.75 
and 7.2 for the most amplified stationary and traveling disturbances, respectively. 

C. Roughness 
 Similar to the cylinder case, we performed direct numerical simulations with roughness elements 

placed near the neutral point.  A three-dimensional, spanwise-periodic roughness strip is placed on the 
surface of the wing very close to the leading-edge region near the neutral point.  The shape of the 
roughness is in the form 

 

€ 

yc (x,z) = he
−σ

x−xr
Δx

 

 
 

 

 
 
2

cosβz                                                               (6) 
 
Here yc, h, β, and σ are as defined earlier, xr is the surface location of the roughness, and Δx is related to 
the spatial extent of the roughness along the wing.  The parameters xr, Δx, h, and σ are given in Table 4. 
The boundary-layer thickness near x = 20.0 mm is about 0.24 mm.  Simulations are performed for a 
spanwise wavelength of 1.5 mm and for roughness heights, k, of 5.0µm and 10µm.  The roughness 
Reynolds numbers, Rek,u = |u|kh/νk, for these parameters are about 3.4 and 13.2, respectively (where |u|k is 
the resultant velocity at height k). 

 
Table 4.  Location and height of the roughness on the sharp swept wing 

 
xr (mm) h (mm) σ  Δx(mm) h/δ  Rek,u 

20 0.005 3 0.25 1/48 3.4 
20 0.010 3 0.25 1/24 13.2 

 
Figure 14(a) shows the perturbations of the maximum normalized u velocity generated by the 

roughness elements.  We also included the amplitude of the perturbations computed using linear PSE.  
The agreement is very good in the linear region and the computations from the linear theory deviates 
when the maximum u-velocity perturbations reach about 0.12.  This is equivalent to 0.15 when it is non-
dimensionalised by the boundary-layer edge velocity.  One interesting observation is that the nonlinear 
saturation occurs near the same amplitude for the small and large roughness elements. The second PSE 
curve (curve 2, green line) was computed by multiplying the first PSE curve (curve 1, black line) by a 
factor of 2.  That curve exactly goes through the amplitude curve for the large roughness of 0.01 mm.  
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This shows the validity of the computations and demonstrates that the generation or receptivity of the 
crossflow vortices is linear for the roughness heights considered.  Another observation is that the initial 
amplitude of the disturbances slightly downstream of the roughness elements are high, on the order of 
0.02 for h = 0.005 mm, compared to the cylinder case (see Fig. 10(b)).  From this figure we computed the 
initial amplitude and the receptivity coefficients for the crossflow vortices that are generated by the 
roughness.  The initial amplitude of the instability waves near the neutral points for the smaller roughness 
height of 0.005 mm is approximately  
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In terms of the roughness height, the receptivity coefficient becomes 
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=1.3 . 

The receptivity coefficient for this case is about 40 times larger than the coefficient for the cylinder case.  
This suggests that even though the N-factors for the stationary disturbances are very small, on the order of 
2.0, small roughness elements can potentially cause large stationary disturbances that lead to early 
transition in flows over swept sharp wings. 

D. Blowing/Suction 
 To validate the N-factors computed by the linear instability and the PSE methods for the traveling 
disturbances, simulations with a harmonic point source located on the surface are performed. A 
blowing/suction distribution in the form  
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v(x,z,t)y= 0 = vmax e
−σ

x−xr
Δx
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 
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2

cosβzsin(ωt)  
 

is prescribed for the vertical v-velocity component across a narrow slot parallel to the leading edge on the 
surface.  Computations are performed for a spanwsie wavelength of 1.5 mm with a frequency of 45 kHz.  
Other parameters are the same as for the roughness elements as given in Table 4.  The maximum forcing 
amplitude is vmax = 0.0001.  Figure 14(b) shows the maximum normalized u-velocity fluctuations on a log 
scale at a fixed time along the wall and includes the results from the PSE computations.  The growth of 
the disturbances agrees very well between the simulation and PSE results.  The linear results start to 
deviate from the simulated results when the maximum amplitude reaches a value of 0.20.  This again 
validates the previous PSE results that the N-factor near the transition onset is about 7.2. 
 
Case 3: Swept wing with blunt leading edge 

Next we consider a supersonic flow over an infinite swept wing with a blunt leading edge at zero 
angle of attack as presented Fig. 1.  The airfoil is the same as that in case 2 except for the first 20% of the 
airfoil.  A parabola with a leading-edge radius of 6 mm replaced the sharp leading edge.  The flow 
parameters and the dimensions are given in Table 5.  The transition onset location in the experiment1 for 
the flow parameters in the table occurred at x = 45 mm from the leading edge. The computational domain 
extends from x = -10 to 55.0 mm in the axial direction.  
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Table 5.  Flow parameters for the blunt swept wing model 

Chord length: C = 150 mm 

Maximum thickness: t = 30 mm 

Free-stream Mach number: M∞=3.0 

Sweep angle: Λ  = 30 degrees 

Free-stream Reynolds number: Re∞=18.0x106/m. 

Free-stream temperature: T∞=121.42 °K 

Wall temperature: Tw=300.0 °K 

Non–dimensional frequency F=1x10-5 is equivalent to 19.0 kHz 

The non-dimensional frequency F is defined as F =
2πν∞ f
U∞
2 ,  

where f is the frequency in Hertz. 

 

A. Mean flow 
 Figure 15 shows the density contours obtained from the Navier-Stokes simulation.  The normal Mach 
number is 2.60 as in case 2.  Due to the blunt leading edge, the shock is detached from the nose a distance 
of 2.8 mm, more than a factor of 900 times the standoff distance for the sharp wing.  Figure 16(a) depicts 
the computed pressure and crossflow Reynolds number distributions along the wing.  The computed 
pressure distribution agrees with the results obtained from the Newton’s law that is given in Ref. 1.  We 
also included the results obtained for the sharp wing with the same unit Reynolds number of 18.0 x 106/m 
and the results obtained in the previous case with a unit Reynolds number of 30.0 x 106/m.  Compared to 
the sharp case, the pressure decreases less aggressively from the leading edge up to x/c = 0.03 and then 
decreases gradually similar to the sharp wing case over the main part of the wing.  Figure 16(b) displays 
the crossflow velocity profiles at different axial locations (x=1, 5, 10, 20 and 40 mm).  The boundary-
layer thickness gradually increases from 0.075 mm at x = 1.0 mm to 0.50 mm at x = 40 mm.  The 
maximum crossflow velocity remains almost at a constant value of approximately 0.07 starting from the 
leading edge.  This is very different from case 2 (sharp wing), where the maximum crossflow velocity 
near the leading edge increases with distance along the wing (see Fig. 12(b)).  This is reflected in the 
crossflow Reynolds number plot in Fig. 16(a).  The crossflow Reynolds number increases to about 250 at 
5% of the chord.  After 5% of the chord, the crossflow Reynolds number increases gradually at a near 
linear rate; however, the rate of increase is smaller than that for the sharp wing case.  For the same unit 
Reynolds number, the crossflow Reynolds number for the sharp wing is smaller than the value for the 
blunt wing.  Hence, the boundary layer over the blunt wing is more unstable to crossflow than the 
boundary layer over the sharp wing.  The crossflow Reynolds number is about 400 near the transition 
onset location, x = 45 mm. 

B. Linear instability 
Figure 17 shows the N-factor results obtained from the local stability and linear PSE calculations for 

the traveling and the stationary disturbances.  Computations are performed for a constant spanwise 
wavelength and include curvature effects.  The results show that the N-factors at the transition onset 
location, x = 45 mm, are about 6.5 for the traveling disturbances and about 4.8 for the stationary 
disturbances, as compared to the N-factors using the envelop method reported in Ref. 1 of 12.0 and 16.0 
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for the stationary and traveling disturbances, respectively.  The frequency and wavelength of the most 
amplified traveling wave are about 40 kHz and 1.5 mm, respectively.  The wavelength of the most 
amplified stationary disturbances is about 1.00 mm to 1.25 mm.  The N-factors obtained from linear PSE 
computations based on umax are 8.0 and 6.2 for the most amplified traveling and stationary disturbances, 
respectively. 

C. Roughness 
 Similar to the sharp wing case, we performed direct numerical simulations with roughness elements 
placed near the neutral point. The parameters xr, Δx, h and σ are given in Table 6.  Note that one of the 
simulations was conducted with the roughness elements placed downstream of the neutral point (xr = 3 
mm).  The boundary-layer thickness near x = 1.0 mm is about 0.075 mm.  Simulations are performed for 
the most amplified wave with the spanwise wavelength λz = 2π/β = 1.0 mm and for roughness heights, k, 
of 1µm and 5µm.  The roughness Reynolds numbers, Rek,u = |u|kh/νk, for these parameters are about 0.5 
and 10.0, respectively. 

 
Table 6.  Location and the height of the roughness on the blunt swept wing 

 
xr (mm) h (mm) σ  Δx(mm) h/δ  Rek,u 

1 0.005 3 0.25 1/15 12.2 
1 0.001 3 0.25 1/75 0.6 
3 0.001 3 0.25 1/110 0.5 

 
Figure 18 depicts the contours of the u velocity at half the boundary layer height (y~0.05 mm) in the 

plan view (θ, z) plane for the case xr = 1.0 mm and h=0.001 mm.  These are the footprints of the 
stationary crossflow vortices that originate from the roughness elements.  The sweep angle in this case, 30 
degrees, is smaller than that for the cylinder case, 50 degrees.  Hence the crossflow vortices near the 
leading edge are not as curved as they are for the cylinder case.  Figure 19 displays the u-velocity 
contours in the cross-sectional planes (z, y) at different stations along the wing.  The observations are 
similar to those discussed previously.  The crossflow vortices amplify downstream and develop strong 
shear layers in both the normal and the spanwise directions. 

Figure 20(a) shows the perturbations of the maximum u velocity generated by the roughness elements.  
We also included the amplitude of the perturbations computed using linear PSE.  The agreement is very 
good in the linear region and the computations from the linear theory deviate when the maximum u-
velocity perturbations reach about 0.18.  Again, this is equivalent to 0.28 when it is non-dimensionalised 
by the boundary-layer edge velocity.  As we observed earlier, the nonlinear saturation occurs near the 
same amplitude for the small and large roughness elements.  The second PSE curve (curve 5, pink line) 
was computed by multiplying the first PSE curve (curve 1, black line) by a factor of 5.  That curve does 
not exactly go through the amplitude curve for the large roughness of 0.005 mm.  Thus, the receptivity or 
generation of the crossflow vortices is nonlinear for this large roughness height.  As before, we calculate 
the initial amplitude and the receptivity coefficients for the crossflow vortices that are generated by the 
roughness.  The initial amplitude of the instability waves near the neutral points for the smaller roughness 
height of 0.001 mm located at xr = 1.0 mm is about  
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In terms of the roughness height, the receptivity coefficient becomes 
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The receptivity coefficient for this case is still large compared to the cylinder case by about 20 times; 
however, it is about 0.5 times smaller than the value for the sharp wing case.  We also performed similar 
simulations with the roughness elements placed at xr = 3.0 mm and h = 0.001 mm.  We note that the 
neutral point is approximately located near x = 1.5 mm.  Since the boundary layer is thicker at x = 3.0 mm 
compared to x = 1.0 mm, the parameter h/δ decreases to 1/110 in this case.  Figure 20(a) shows that the 
initial amplitude and hence the receptivity coefficient is about 3.5 times smaller than the value obtained 
when the roughness is located just upstream of the neutral point. 

D. Blowing/Suction 
 Similar to the sharp wing case, unsteady blowing and suction simulations are performed for the blunt 
wing case for a spanwsie wavelength of 1.5 mm with a frequency of 30 kHz.  Other parameters are the 
same as those given in Table 6.  The maximum forcing amplitude is vmax = 0.0001.  Figure 20(b) shows 
the maximum u-velocity fluctuations on a log scale at a fixed time along the wall and includes the results 
from the PSE computations using the same mean flow solution.  The growth of the disturbances agrees 
very well between the simulation and PSE results.  Again the linear results start to deviate from the 
simulated results when the maximum amplitude reaches a value of 0.20.  This again validates the previous 
PSE results that the N-factor near the transition onset is about 8.0.  

 IV. Summary and Conclusions 
The receptivity, stability and transition of three-dimensional supersonic boundary layers over (1) a 

swept cylinder (2) a swept wing with a sharp leading edge and (3) a swept wing with a blunt leading edge 
are numerically investigated for a free-stream Mach number of 3.  The N-factors, obtained based on 
transition onset locations reported by Archambaud et al.1, are summarized in the Table 7.  The N-factors 
are computed using the linear stability method with constant spanwise wavelength.  The N-factors for the 
flow over the swept cylinder are about 16.5 for the traveling crossflow disturbances and 9 for the 
stationary disturbances.  The N-factors at the transition onset for the traveling disturbances are seemingly 
high based on our past experience.  In the computations of Archambaud et al., they obtained values in the 
range of 20 to 25 for traveling disturbances and 13 to 20 for stationary disturbances.  Our results also 
showed that beyond a certain parameter range in frequency and spanwise wavelength, convective 
spatially growing waves cease to exist.  The boundary layers may be susceptible to an absolute instability. 
The N-factors for the traveling and stationary disturbances are about 7.0 and 2.5 for the flow over the 
sharp wing case and 6.5 and 4.8 for the flow over the blunt swept wing case, respectively.  Using the 
envelope method, Archambaud et al. obtained values in the range 8.0 and 4.0 for the sharp wing case and 
16.0 and 12.0 for the blunt wing case.  

Receptivity computations for the flow over the swept cylinder show that the roughness elements are 
less efficient in generating the stationary crossflow vortices.  The receptivity coefficients based on the 
maximum u-velocity and surface roughness heights for the stationary crossflow vortices originating from 
small three-dimensional roughness elements located near the neutral points are 0.035, 1.30 and 0.66 for 
the cylinder, the sharp wing and the blunt wing, respectively.  Compared to the cylinder case, the 
receptivity coefficients are much larger for both wings (factors of 37 and 19 for the sharp and blunt 
wings, respectively).  Based on the transition location measurements acquired by Archambaud et al., there 
is no direct evidence as to the cause of transition, i.e., stationary or traveling disturbances.  They cited no 
roughness measurements for the cylinder but values of 0.2 µm rms and 2 µm maximum were cited for the 
swept wings with metallic surfaces.  If we were to assume that the transition was predominantly caused 
by stationary disturbances for the three cases and that the surface roughness for both the metallic cylinder 
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and swept wing surfaces were similar, then these suggest that the expected N-factors for the stationary 
disturbances (based only on their receptivity to roughness and an assumed amplitude-based transition 
criterion) at the transition onset locations will be smaller for the swept wing flows as compared to the 
cylinder flow.  And based on relative magnitudes, the flow over the sharp swept wing is expected to have 
the smallest N-factor of the three configurations.  These are the trends observed from the N-factor 
calculations in Table 7. 
 

Table 7.  N-factors at the transition onset locations and the receptivity coefficients 
 

 Stationary Traveling Receptivity 
coefficient 

Cylinder 9.0 16.5 0.035 

Sharp wing 2.5 7.0 1.30 

Blunt wing 4.8 6.5 0.66 
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Figure 1. Supersonic flows over an infinite swept cylinder, a biconvex sharp wing, and a biconvex blunt wing. 

 
Figure 2. Contours of density for flow over an infinite swept cylinder at M = 3.0. 

 
Figure 3. Computed (a) pressure distributions from the WENO and the CFL3D codes and the crossflow 
Reynolds number around the cylinder and (b) the density profiles obtained with the WENO and CFL3D 

codes. 
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Figure 4. Boundary-layer (a) velocity and (b) crossflow velocity profiles at different axial locations for the 

flow over a swept cylinder. 

 
Figure 5. (a) Growth rates and (b) N-factor curves obtained from local stability computations for the 

stationary disturbances along the cylinder. 

 
Figure 6. (a) Growth rates and (b) N-factor curves obtained from local stability computations for the 

traveling disturbances along the cylinder. 
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Figure 7. (a) Growth rates and (b) wavenumbers obtained from local stability computations for the traveling 

disturbances along the cylinder. 

 

 
Figure 8. Contours of the w velocity in the plan view (θ , z) plane for the cylinder. 



48th AIAA Aerospace Sciences Meeting, January 4-7, 2010, Orlando, Florida 

 
American Institute of Aeronautics and Astronautics 

19 of 23 

 
Figure 9. Contours of the u velocity in the cross-sectional planes (y, z) at different stations along the cylinder. 

 
Figure 10. Perturbations of the maximum u-velocity component along the cylinder (a) in linear scale and (b) 

in log scale for comparison with the PSE.  
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Figure 11. Contours of density for flow over an infinite swept wing with a sharp leading edge at M = 3.0. 

 
Figure 12. Computed (a) pressure distribution and the crossflow Reynolds number and (b) crossflow velocity 

profiles along the sharp wing. 

 
Figure 13. N-factor curves obtained from local stability computations for the traveling and stationary 

disturbances for the sharp wing. 
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Figure 14. Perturbations of the maximum u-velocity component and PSE results along the sharp wing for 

perturbations (a) generated by the roughness and (b) generated by the blowing and suction. 

 
Figure 15. Contours of density for flow over an infinite swept wing with a blunt leading edge at M = 3.0. 

 
Figure 16. Computed (a) pressure distribution and the crossflow Reynolds number along the wing and (b) the 

crossflow velocity profiles at different stations for the blunt wing. 
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Figure 17. N-factors computed from local stability method for the stationary and traveling disturbances for 

the blunt wing. 

 
Figure 18. Contours of the u velocity in the plan view (x, z) plane for the blunt wing. 
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Figure 19. Contours of the u velocity in the cross-sectional planes (y, z) at different stations for the blunt wing. 

 
Figure 20. Perturbations of the maximum u-velocity component and PSE results along the blunt wing for 

perturbations (a) generated by the roughness and (b) generated by the blowing and suction. 


